

Detecting Data Errors: Where are we and what needs to be done?

Paolo Papotti Arizona State University

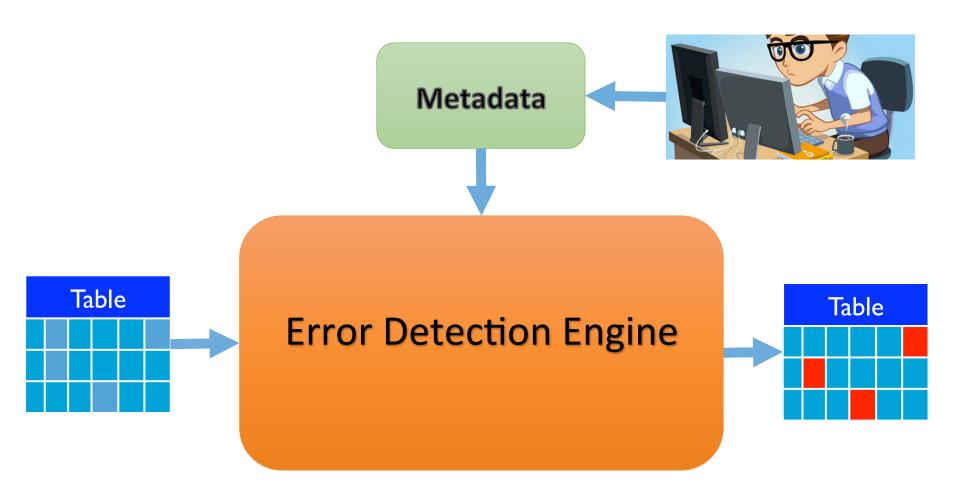
11th International Workshop on Information Search, Integration, and Personalization (ISIP 2016)

Detecting Data Errors

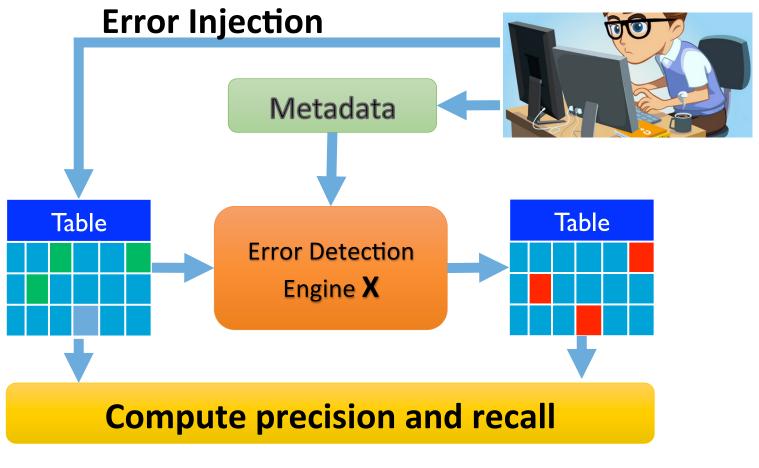
- Where are we?
 - Motivation
 - Error Types, Tools, Data sets
 - Results: single tool, union, min-k, extra mile
- What needs to can be done?
 - Ordering
 - Discovering and Exploration

Error = A value that is different from ground truth

Ideal error detection

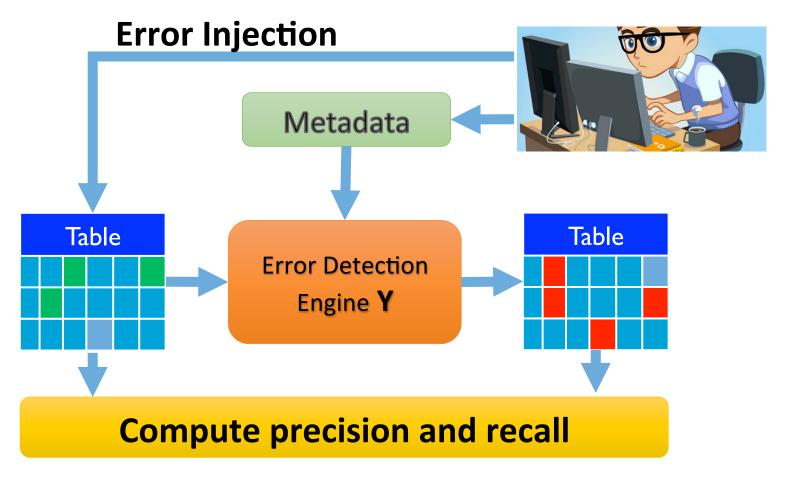


Qualitative Evaluation 1



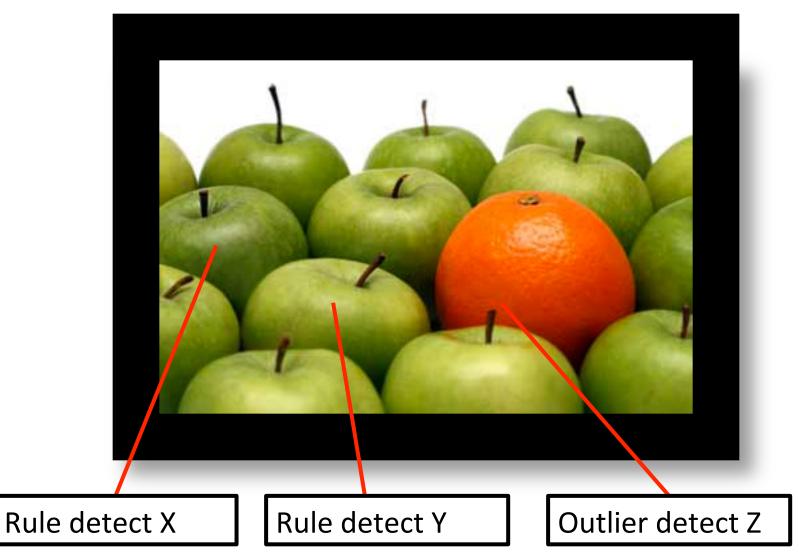
P= 0.66 R= 0.66

Qualitative Evaluation 1



P= 0.25 R= 0.33

Qualitative Evaluation 2



Motivation

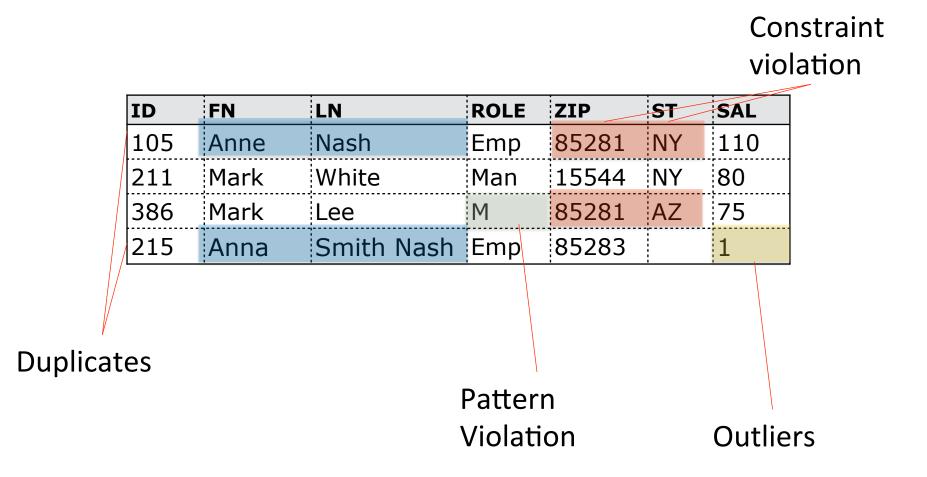
- Extensive research on cleaning algorithms
 - 1. Usually evaluated on errors injected into clean data
 - Good to evaluate algorithms, but <u>does not measure real</u> recall
 - 2. Tools evaluated against tools of the same category
 - Well-defined but <u>narrow scope</u>
- How well do techniques work "in the wild"?
- What about combinations of techniques?

This study is not about finding the best/better tools!

What we did [PVLDB16 – Exp track]

- 1. Analyzed 5 different real datasets
 - Identified general error types that can be discovered by tools
- 2. Selected 8 different error detection systems
- 3. Measured
 - effectiveness of each single system
 - combined effectivity
 - upper-bound recall
- 4. Tested impact of enrichment and domain specific tools

Error Types



Error Detection Strategies

- Rule-based detection algorithms
 - Detecting violation of constraints, such as (conditional) functional dependencies, denial constraints, ...
- Pattern verification and enforcement tools
 - Syntactical patterns, such as date formatting
 - Semantical patterns, such as location names
- Quantitative algorithms
 - Statistical outliers
- Deduplication
 - Discovering conflicting attribute values in duplicates

Tool Selection

- Premise:
 - Tool is State-of-the-Art
 - Tool is sufficiently general
 - Tool covers one of the 4 error types:

	DBOOST	r DC-CH	ean Open	Refine Trifa	cta penta	no KNIN	le Katar	a Tami
Pattern violations			•	~	•	~	~	
Constraint violations		~						
Outliers	~							
Duplicates								v

 \sim

5 Data Sets

- 1. MIT VPF
 - Procurement dataset containing information about **suppliers**
 - Attributes include names, contact data, and business flags, etc.
- 2. Merck
 - List of IT-services and software
 - Attributes include location, number of end users, business flags, etc.
- 3. Animal
 - On field information about capture of animals
 - Attributes include tags, sex, weight, etc.
- 4. Rayyan Bib
 - Literature references collected from various sources
 - Attributes include author names, publication titles, ISSN, etc.
- 5. BlackOak
 - Address dataset
 - Attributes include names, addresses, birthdate, etc.

5 Data Sets - continued

Dataset	# columns	# rows	# rows ground truth	Errors
MIT VPF	42	24K	13k (partial)	6.7%
Merck	61	2262	2262	19.7%
Animal	14	60k	60k	0.1%
Rayyan Bib	11	1M	1k (partial)	35%
BlackOak	12	94k	94k	34%

	MITUP	F Merr	K Anim	al Ravy	an Bib Black) _{9K}
Pattern violations	•	•	•	•	~	
Constraint violations	•	~	~	~	•	
Outliers	~	✓		~	~	
Duplicates	~				~	

Evaluation Methodology

- We obtained knowledge about the data from the data owners:
 - Quality constraints, business rules, distributions
- Best effort in using all capabilities of the tools
 - However: No heroics
 - i.e., no embedding custom Java/Python code in a tool
 - Complete? More on this later
- Metrics:
 - Precision, Recall, F-Measure

Computing Precision for Detection

Constraint violation

ID	FN	LN	ROLE	ZIP	ST	SAL
105	Anne	Nash	Emp	85281	NY	110
211	Mark	White	Man	15544	NY	80
386	Mark	Lee	Μ	85281	AZ	75
215	Anna	Smith Nash	Emp	85283		1

Pattern Violation

P = 1/1

Single Tool Performance: All Datasets

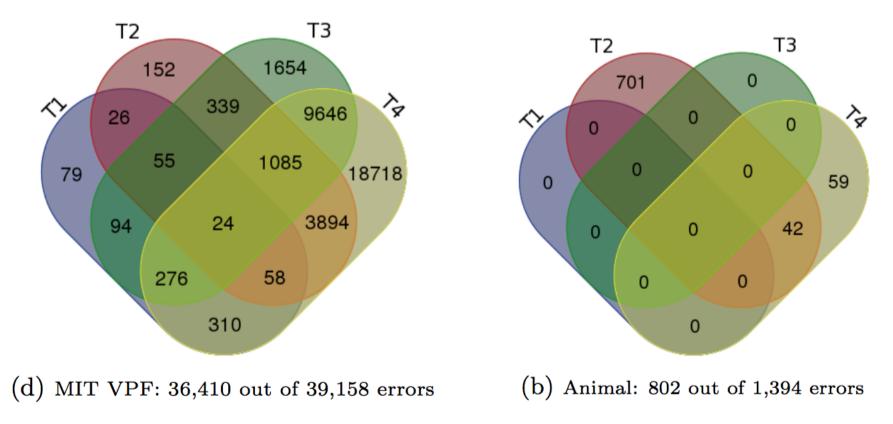
	Tools	N P	/IT VF R	РF F	l P	Merck R	K F	Р	Anima R	F	Ra P	ryyan E R	Bib F	BI P	ackOa R	r F
DC	-Clean	.25	.14	.18	.99	.78	.87	.12	.53	.20	.74	.55	.63	.46	.43	.44
Tri	facta	.94	.86	.90	.99	.78	.87	1.0	.03	.06	.71	.59	.65	.96	.93	.94
Ор	enRefine	.95	.86	.90	.99	.78	.87	.33	.001	.20	.95	.60	.74	.99	.95	.97
Pe	ntaho	.95	.59	.73	.99	.78	.87	.33	.001	.20	.71	.58	.64	1.0	.66	.79
KN	IME	.95	.86	.90	.99	.78	.87	.33	.001	.20	.71	.58	.64	1.0	.66	.79
st	Gaussian	.07	.07	.07	.19	.00	.01	.00	.00	.00	.41	.13	.20	.91	.73	.81
Boost	Histogram	.13	.11	.12	.13	.02	.04	.00	.00	.00	.40	.16	.23	.52	.51	.52
	GMM	.14	.29	.19	.17	.32	.22	.00	.00	.00	.53	.39	.44	.38	.37	.38
Ka	tara	.40	.01	.02				.55	.04	.07	.60	.39	.47	.88	.06	.11
Та	mr	.16	.02	.04										.41	.63	.50
Ur	nion	.24	.93	.38	.33	.85	.48	.13	.58	.21	.47	.85	.61	.39	.99	.56

- Naïve approach
 - At least k tools agree on a value to be identified as error
 - Expected precision-recall trade-off (k=1 is Union)

k	M	IIT VP	F		Merck		Animal			
	Р	R	F	Р	R	F	Р	R	F	
1	0.24	0.93	0.38	0.33	0.84	0.47	0.128	0.575	0.209	
2	0.48	0.90	0.63	0.889	0.789	0.834	0.241	0.030	0.053	
3	0.58	0.41	0.48	0.996	0.787	0.879	1.0	0.001	0.002	
4	0.79	0.09	0.16	0.997	0.280	0.438	0	0	0	
5	0.76	0.03	0.06	0.993	0.015	0.029	0	0	0	
6	0.90	0.00	0.01	1.0	0.000	0.000	0	0	0	

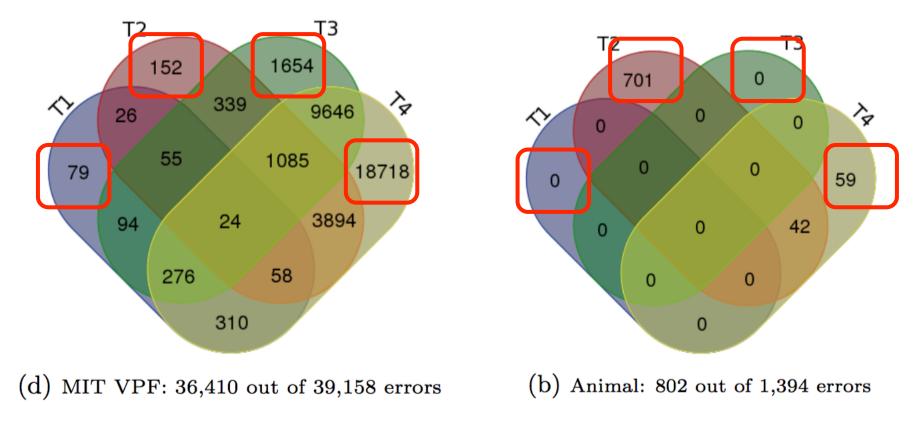
Given labelled data

T1: Duplicates, T2: Constraint Violations, T3: Outliers, T4: Pattern Violations



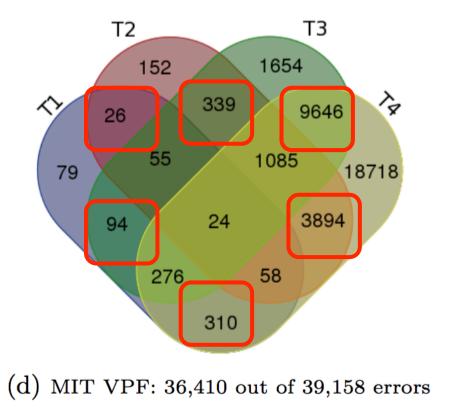
Combining Tools k=1 (approx)

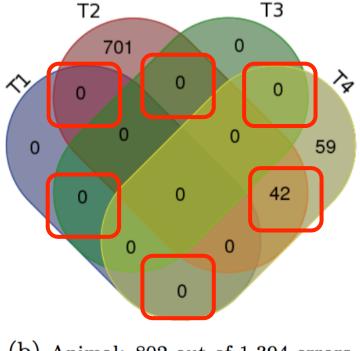
T1: Duplicates, T2: Constraint Violations, T3: Outliers, T4: Pattern Violations



Combining Tools k=2 (approx)

T1: Duplicates, T2: Constraint Violations, T3: Outliers, T4: Pattern Violations





(b) Animal: 802 out of 1,394 errors

Maximum Possible Recall

- Manually checked each <u>undetected error</u>
- Reasoned whether the error could have been detected by a refinement of the tool's input, e.g. a more sophisticated rule or transformation

Dataset	Best effort recall	Upper-bound recall	Remaining errors
MIT VPF	0.92	0.98 (+1,950)	798
Merck	0.85	0.99 (+4,101)	58
Animal	0.57	0.57	592
Rayyan Bib	0.85	0.91 (+231)	347
BlackOak	0.99	0.99	75

Enrichment and Domain-specific tools

- Enrichment
 - Manually append new columns joining other tables

Improves rule-based and duplicate detection tools

Data set	Rule-l	based	Duplicates			
	Р	R	Р	R		
MIT VPF	(+6%) 0.31	(+6%)0.20	(+2%) 0.18	(+1%) 0.03		
BlackOak	0.46	0.43	0.41	(+5%) 0.68		

- Domain-specific tool
 - Tested a commercial address cleaning service

➢High precision on the specific domain

- ➤Very low increase of overall recall
 - 2 (13) new errors detected for MIT VPF (BlackOak)

"Where are we?" Conclusions

(1) There is no single dominant tool

(2) Improving individual tools has marginal benefit

\rightarrow We need a combination of tools

Detecting Data Errors

- Where are we?
 - Motivation
 - Error Types, Tools, Data sets
 - Results: single tool, union, min-k, extra mile
- What needs to can be done?
 - Ordering
 - Discovering and Exploration

• Naïve approach

Labelled data

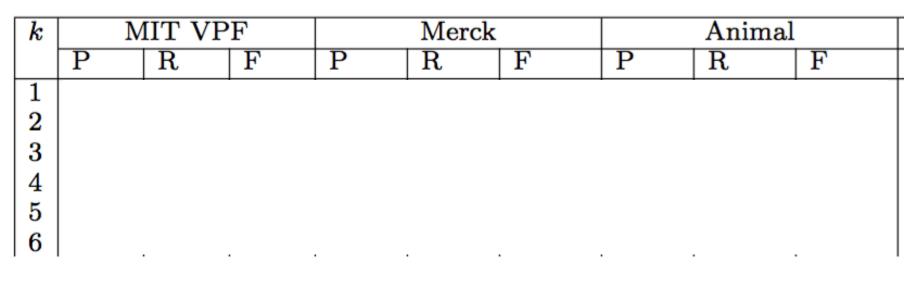
- At least **k** tools agree on a value to be an error
 - Expected precision-recall trade-off (k=1 is Union)

k	Μ	IIT VP	F		Merck		Animal			
	Р	R	F	Р	R	F	Р	R	F	
1	0.24	0.93	0.38	0.33	0.84	0.47	0.128	0.575	0.209	
2	0.48	0.90	0.63	0.889	0.789	0.834	0.241	0.030	0.053	
3	0.58	0.41	0.48	0.996	0.787	0.879	1.0	0.001	0.002	
4	0.79	0.09	0.16	0.997	0.280	0.438	0	0	0	
5	0.76	0.03	0.06	0.993	0.015	0.029	0	0	0	
6	0.90	0.00	0.01	1.0	0.000	0.000	0	0	0	

• Naïve approach

Unlabelled data

- At least **k** tools agree on a value to be an error
 - Expected precision-recall trade-off (k=1 is Union)

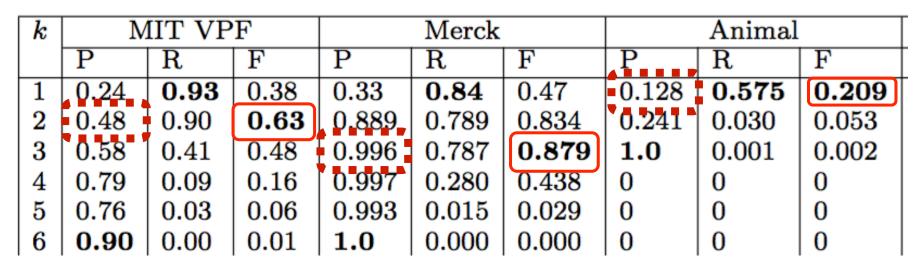


1. What is the right **k** for a given dataset?

• Naïve approach

Labelled data

- At least **k** tools agree on a value to be an error
 - Expected precision-recall trade-off (k=1 is Union)

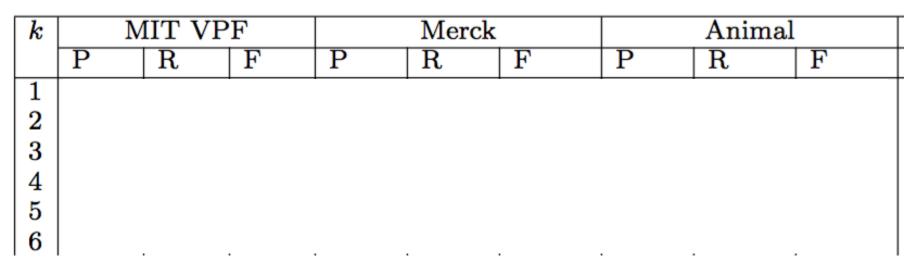


- 1. What is the right k for a given dataset?
- 2. <u>Validate thousands</u> values: up to 87% are

• Naïve approach

Unlabelled data

- At least **k** tools agree on a value to be an error
 - Expected precision-recall trade-off (k=1 is Union)



- 1. What is the right k for a given dataset?
- 2. <u>Validate thousands</u> values: How to minimize effort?

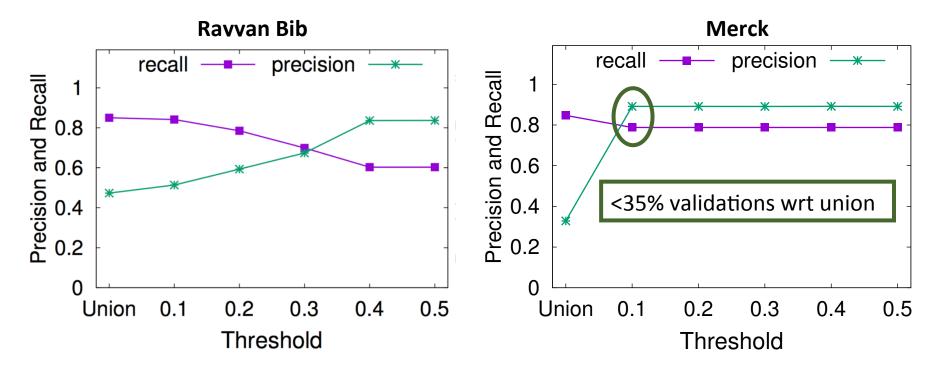
Combining Tools – unlabelled data

- Minimize validation of possible errors
- Maximum entropy-based <u>order selection</u>:
 - 1. Run all tools on samples and verify the results
 - 2. Pick the tool with highest precision
 - 3. Verify the results
 - **4. Update** precision and recall of other tools accordingly (implicitly exploits k overlap)
 - 5. Repeat step 2

Drop tools with precision below threshold (e.g., 10%)

Ordering-based approach

 Precision and recall with different minimum precision thresholds (compared to union)

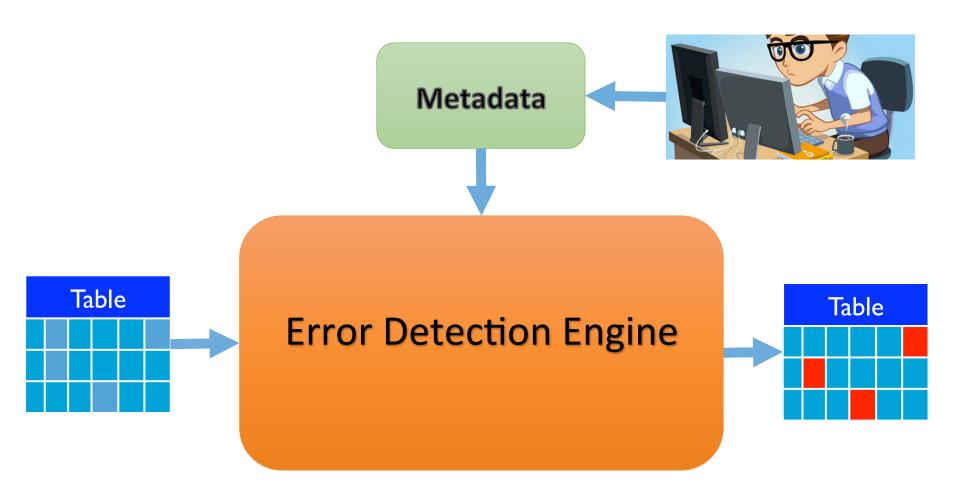


5% of tuples sampled to bootstrap algorithm

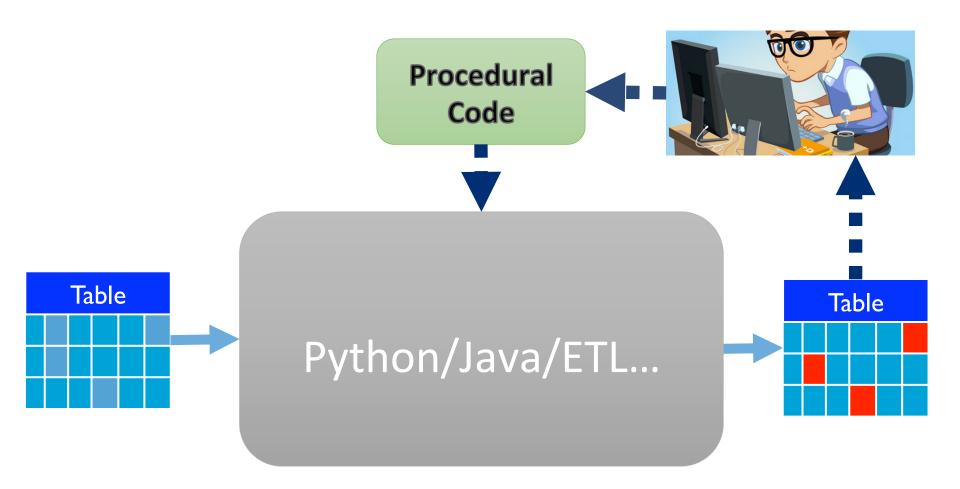
Which tools are adopted?

Trifacta is the Data Wrangling Solution for Over 4,000 Companies in 132 Countries

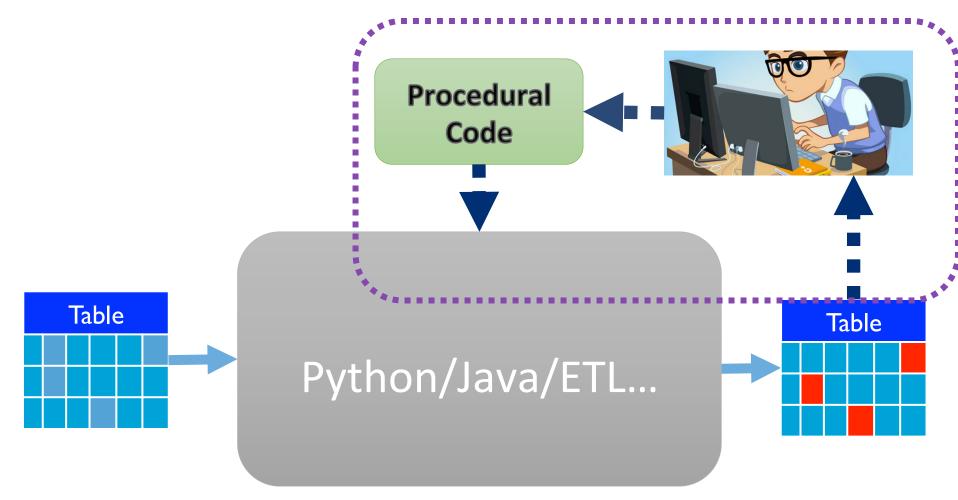
Ideal error detection



Real error detection



Real error detection



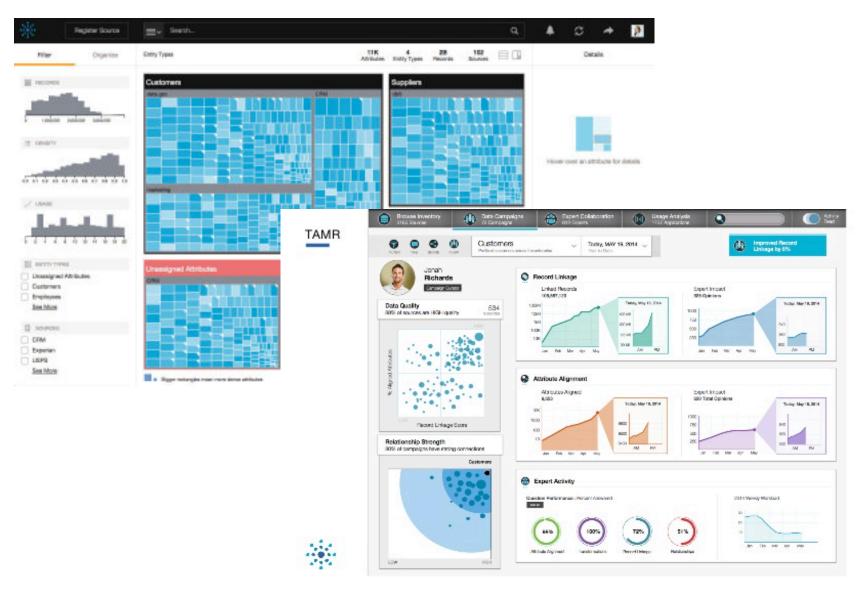
Trifacta Wrangler

Q U:	JSDA Farmers' Mark	tets ∽ San	nple 1 - First 488.28K	KB Y New Sample Ready					Run Job 🚨 ~
B Columns 8	802 Rows 7 Data Ty	Types 🔛 G	ârid 🗠			Rows: 🗸 All	Transfo	ormed - 49 Rows	Filter in grid
Preview									
· ~	ABC	Address2	~ /	ABC Address3 \sim	ABC Address4 ~	Address5	~	# Address6	✓ ABC
1 wedn	781 Categories 201 · Market · Stre	aat		563 Categories Virginia · Beach	411 Categories Virginia·Beach	52 Categories Virginia		1k - 99.64k 23462	10 Categories Other
2 wear >	5960.Stewart.Pa			Douglasville	Douglas	Georgia		30135	Faith-based-institut
3	507.Harrison.St	-		Kalamazoo	Kalamazoo	Michigan		49007	Private · business · par
4	112th Madison A			New·York	New·York	New · York		10029	Private · business · par
5	12th.&.Brandywi			Wilmington	New Castle	Delaware		19801	On·a·farm·from:·a·ba
6	1400.U.Street.N			Washington	District.of.Columbia	District.of.Colu		20009	Other
7	17.Lincoln.Squa			Gettysburg	Adams	Pennsylvania		17325	
8	W.175.St&.Bro			New·York	New·York	New-York		10033	Other
9	1622.6th.St.NE		1	Minneapolis	Hennepin	Minnesota		55413	Faith-based institut
10 :t.com	17th.&.Main.Str	reets	/	Richmond	Henrico	Virginia		23219	
11	71.Waterwitch.A	Avenue	1	Highlands	Monmouth	New.Jersey		7732	Local.government.bui
12	555.W .Grand.Av	1/0		Wisconsin.Ranide	Wood	Wieconsin		54495	Drivata.husinass.na
) SUGGESTI			Delete		Set		Derive		Modify Add to Script
	Address5		Addre Addre	ess5	Address5			Address5	column1
New York		දිස	New York		Virginia		Virgi		false
New York			New York		Georgia		Georg	•	false
New York			New York		Michigan		Michi	5	false
New York New York			New York		Delaware		New·Y Delaw		true false
New York Affects 1 colum	nn. 49 rows		Affects 1 column, 49 m	rows	Changes 1 column			s 1 column, 0 rows	Creates 1 column
Allects residin	Il to the second		Allecia Feordinii, 45 h	UNU I			- Allecta	T Gonaring & Land	Set to Mittage a procession

Open Refine

Facet / Filter Undo / Redo 0	512	nato	hing rows	(5200 total)			
Refresh Reset All Remove All	Show	as: ro	ws records	Show: 5 10 25 50	rows		
X Type of Contract change invert reset			Contract ID	Contractor Name	Type of Contract	Date of Award	Start Date
815 choices Sort by: name count Cluster	\$ 5	70.	2038	CGI FEDERAL INCORPORATED	FFP	10/03/2008	10/03/2008
FFAA: Fiscal/Financial Agent Agreement 3 FFIP 1		71.	2039	CGI FEDERAL INCORPORATED	FFP	01/09/2009	01/09/2009
FFP 512 edit exclude		72.	2040	CGI FEDERAL INCORPORATED	FFP	01/09/2009	01/09/2009
FFP 1 FFP (OPS) 2 FFP (F&E) 1		73.	2041	INTERNATIONAL BUSINESS MACHINES CORPORATION	FFP	03/17/2009	03/23/2009
FFP (Power Supply Retrofit) Old # DTFA01-92-D00004 1 FFP BPA 1		74.	2042	CGI FEDERAL INCORPORATED	FFP	04/21/2009	04/21/2009
		75.	2043	SOLUTIONS ENGINEERING CORP	FFP	11/01/2008	11/01/2008
	\$ 5	76.	2044	EVERGREEN INFORMATION TECHNOLO	FFP	11/20/2008	11/20/2008
		84.	7946	INTERNATIONAL BUSINESS MACHINES CORPORATION	FFP	10/01/2009	10/01/2009
	Ar	95	7047	THE NEWBERRY	EED	10/01/2000	12/01/2000

Tamr



Discovery and Exploration

- Successful for simple patterns
- More challenging for complex rules
 - Pair-wise comparisons
 - Quadratic in the number of tuples (DCs)
 - All attributes subsets
 - Exponential in relation's arity (lattice helps)
 - Mining not robust to **noise**
 - Approximate rules with >10% errors are useless or buried in thousands of candidates
 - Sampling makes problem much harder!

"What can be done?" Conclusions

- (1) Picking the **right order** in applying the tools can improve the precision and help reduce the cost of validation by humans
 - Algorithms for optimal solution: threshold that maximizes F-measure and minimize user's validations
 - Budget version of the problem? How to better use overlap?
- (2) Data exploration and **metadata discovery** is key for adoption and real impact
 - Efficient and robust interactive mining: call for ML solutions

Thanks

Detecting Data Errors: Where are we and what needs to be done?

Paolo Papotti

ppapotti@asu.edu Arizona State University

11th International Workshop on Information Search, Integration, and Personalization (ISIP 2016)