
Modeling Bottom-Up Learning from Activity in Soar

Olivier L. Georgeon

Frank E. Ritter

Steven R. Haynes

College of Information Sciences and Technology

The Pennsylvania State University

University Park, PA 16802

814-865-6166

olg1@psu.edu, frank.ritter@psu.edu, shaynes@ist.psu.edu

Keywords:

Bottom-up learning, constructivist learning, activity trace, Soar

ABSTRACT: This paper presents an implementation of bottom-up learning in a cognitive model. The paper relates

the learning mechanism, its implementation in a Soar agent, and an experiment where the agent learns to solve an

example task. The agent first learns primary schemas (low-level patterns of behavior) and then secondary schemas

(patterns of primary schemas). This implementation draws from theories of hierarchical sequence learning and

constructivist learning. It constitutes a first implementation of these theories in Soar, and it shows that Soar can be

used to model bottom-up learning, using the weighted preference mechanism available in Soar 9. This study also

shows the importance of modeling the agent’s activity traces to help the modeler develop the agent. This approach

offers a way to represent how autonomous agents create declarative knowledge from and about their interaction with

their environment, teammates or opponents.

1. Introduction

This study addresses the question of how an agent can

acquire knowledge (learn) from his activity in an

environment. This is an important issue when developing

artificial cognitive agents, because this learning from

activity could substantially reduce the amount of

knowledge that the modeler has to manually encode in the

agent, assuming the modeler has this knowledge and has a

way to encode it.

Learning from activity is referred to as “bottom-up

learning”, in a view where sensory-motor skills are

considered as low-level, and where more abstract

knowledge is represented above it. Along with many

authors in the area of “Grounding Theory” (Harnad,

1990), we consider that bottom-up learning allows the

symbols to be “grounded in activity”. A nice

argumentation is given by Sun (2004) who claims that

behavior is prior to knowledge, and thus, we should focus

on organizing behavior, and then, organizing the

construction of knowledge from behavior. Our underlying

idea is that we should not represent goals, knowledge nor

emotions in artificial agents, but rather give them a way to

organize their behavior so that we can infer they have

goals, knowledge and emotions when we observe their

activity.

Classical cognitive architectures, such as Soar (Laird,

Gongdon, & Coulter, 1999) and ACT-R (Anderson &

Lebière, 1998) have been criticized for not supporting this

symbol grounding (Sun, 2004). In part to overcome this

limitation, other teams have developed alternative

architectures: CLARION (Sun, Peterson, & Merrill,

1999), MicroPsy (Bach, 2003), CLA (Chaput, 2004),

ICARUS (Langley & Choi, 2006).

In this study, however, we show that a well-tested,

cognitive architecture like Soar could be used in a novel

approach to implement bottom-up learning from activity.

By using Soar instead of these new cognitive

architectures, we take advantage of Soar’s 15-year

process of improvement, concerning both the modeling

facilities it offers and its robustness. Another reason for

using Soar is that we now have a higher level tool to help

generate Soar code, namely Herbal (Haynes, Cohen, &

Ritter, 2009).

We are approaching the implementation of learning from

a constructivist viewpoint, that is evolutionist (through

trial and error), pragmatic (knowledge is grounded on

praxis), and teleological (in our case, self-oriented). For

this approach we can refer to the work of Piaget (1937),

who proposed the idea that basic elements of cognition

are “schemes” or “schemas”, which correspond to

elementary patterns of behavior. These schemas are

organized in a hierarchy of schema/subschemas. Lowest-

level schemas correspond to sensory-motor skills. Above

them, more abstract schemas are constructed and

organized, which ultimately should lead the agent to the

knowledge that invariant objects exist in his environment,

and also lead him to the construction of abstract concepts.

Proceedings of the 18th Conference on Behavior Representation in Modeling and Simulation, Sundance, UT, 31 March - 2 April 2009
[paper: 09-BRIMS-016, pp. 65-72]

This hierarchical learning of higher-order schemas is an

important and a challenging first step in constructivist

learning. For instance, Sun and Sessions (2000) proposed

the Self Segmentation of Sequence (SSS) algorithm.

In this paper, we show how we could implement such a

two-level mechanism in Soar. Our implementation, draws

from previous studies that started to implement

constructivist learning, especially that of Drescher (1991).

Drescher modeled schemas as triples (context, action,

expectation). In this paper, for clarity, we sometimes

group together action and expectation under the term

“intention”. In that description, a schema is a context

associated with an intention, and an intention is an action

associated with an expectation.

Although these principles are not new, their

implementation in Soar is innovative. The Soar

community may find useful both our model itself and the

remarks it suggests about Soar. More broadly, this work is

an illustration of constructivist learning that can be

applied to different architectures where an agent has to

learn from interaction, such as in teamwork or adversarial

interaction.

2. The task

The study of behavior requires a behavior and a task it

arises from. This study was started with the simplest

possible task. In this task, the agent has a choice between

two possible actions: A or B, and he could get two

possible responses from the environment: X or Y. This

approach may seem like Newell’s (1990) approach when

he proposed the “simplest response task” or the “two-

choice response task”. However, as early as this stage, our

approach is actually different. In Newell’s approach, the

task was “reactive”: the subject was previously told what

he had to do in response to a stimulus. In our case, the

task is “proactive”: the agent does not know what to do

but has a built-in “preference” for one of the two

responses, namely Y. Our purpose is to study how the

agent can learn to do the right action (A or B) to get Y

(good) and not X (bad). In other words, our goal is to

have the agent structure his behavior due to the fact that

he has an innate tendency to prefer actions that will lead

to get Y. To achieve this is to have learned a behavior that

results in a desired outcome.

We have placed our agent in different environments that

implemented this task. The first environment always

returned X when the agent was doing A, and Y when the

agent was doing B. So the agent could learn two very

basic schemas: Schema1 = (context = any, action = A,

expectation = X) and Schema2 = (context = any, action =

B, expectation = Y). Because the agent had a hard-coded

preference for schemas having an expectation of Y, then

after at most two tries, he kept performing Schema2 and

getting Y.

Then, we placed our agent in more complex environments

where he had to perform more complex sequences of

behavior before getting a Y. In these new environments,

the connection between action and response was not

systematic but depended on the previous context of

sequence. This approach can be compared to sequence

learning (Sun & Giles, 2000). It is not, however, a passive

sequence learning where the agent could only be an

observer of the sequence, but it is an active sequence

learning where the agent can formulate hypotheses and

test them in the environment. This formulation of

hypotheses is implemented as a construction mechanism

of new schemas. We think that this active approach

should facilitate a hierarchical learning of schemas and

subschemas. Newly constructed schemas are tested

against the environment and reinforced when they

succeed. Our approach differs however from a pure “trial-

and-error with reinforcement learning” approach by the

fact that reinforcement is contextualized into schemas,

and schemas are hierarchically organized.

The different environments where we have put our agent

are further reported in olivier-georgeon.blogspot.com. In

this paper, we only describe an environment where the

agent has to do two consecutive A or two consecutive B

to get a Y. Continuing with the same action will not lead

to Y anymore. So, the agent will only get a Y if he does A

when he has previously done B then A, or if he does B

when he has previously done A then B. We call this task

the “AXAYBXBY” task. This task is designed to

illustrate how the agent can learn second order schemas

that force him to enact primary schemas with an

expectation of X—which is against his hard-coded

tendency—to put himself in a situation where he can get a

Y at the next round.

3. The learning mechanism

Our implementation of learning can be described as three

levels of abstraction made by the agent, above level 0 that

is the raw activity. This mechanism is represented in

Figure 1.

Figure 1: Abstraction process.

The raw activity is a sequence of primary actions (A or B)

performed by the agent, followed by primary responses

(X or Y) returned by the environment. When we run our

agent in the environment, we obtain the raw_sequence =

“B X B Y B X B X A X A Y …”. Note that the first “nil

nil” elements at the beginning of Figure 1 represent the

content of the agent’s short-term memory at the beginning

of the experiment and does not correspond to any real

action.

The first abstraction level consists of having the agent

group primary actions with their primary responses in

what we call an act. For example act A3 = “B X”. The

first abstraction of raw_sequence is then act_sequence =

“A3 A4 A3 A3 A5 A6 …”

The second abstraction level consists of having the agent

group two acts into one primary schema. For example,

Schema S12 = “A3 A4”. A3 is the context act of S12, and

A4 is its intention act. That means that, in a context where

A3 has just been performed, S12 proposes to do A4. A4

consists of doing the primary action “A” and expecting a

response of “Y”. Thus, the second abstraction level of

raw_sequence is primary_schema_sequence = “S12 S17

S13 S11 S19 …”

The third abstraction level consists of grouping three

primary schemas into one secondary schema. For

example, Schema S27 = “S13 S11 S19”. S13 is the

context of S27. S11 is the action of S27, and S19 is the

expectation of S27. S11 and S19 together form the

intention of S27. That means that, in a context where S13

has just been performed, S27 proposes to enact S11,

which should (if it succeeds) lead to the possibility of

enacting S19, which should (if it succeeds) lead to getting

a Y.

In Figure 1, the ascendant solid arrows represent the

construction of more abstract items by the agent. The

relation between higher level and lower level is somewhat

complex, globally higher levels tend to “control” lower

levels, but sometimes they fail, and lower levels “trigger”

higher level schemas, but it is not certain what higher

level schema is performed until the environment has

responded and the schema is completely over. When the

actually performed schema is known, its weight is

incremented. This weight is then used during the selection

phase for selecting the action that lead to a Y. Dashed

gray double-headed arrows “Trigger/Control” represent

this tightly coupling between levels. In the

“AXAYBXBY” environment, secondary schemas always

succeed, so the agent becomes "in control" of his activity

when secondary schemas start to be enacted. In Figure 1,

that is shown by “S29 S30” in green that control the

enaction of S15, S19, S26, S12, which finally control the

sequence AXAYBXBY. This sequence is the beginning

of a stable sequence that gives a Y to the agent every

second round, which is the best he can get in this

environment.

4. The Agent

We have modeled this agent and its environment in Soar

9.1, and executed it with the Soar debugger. So the agent

and his environment are firing each cycle in turn, thanks

to a token mechanism, but they are both part of the same

overall Soar system. This approach avoids tying the

model to an external task at this point, an important, but

complicated aspect of model development (Ritter, Baxter,

Jones, & Young, 2000).

Each round, the agent executes one of the two green

clockwise loops in Figure 2, and the environment

executes the blue counterclockwise loop. At the

beginning, the model starts from the “Construct Context”

phase. The context corresponds to the current situation as

it is retained in the agent’s short-term memory (“nil” at

the beginning).

Figure 2: Execution cycle.

Construct context: structures the current context to

prepare the schema construction and the schema selection.

The context is made up of the three previously enacted

schemas, stored in short-term memory. These schemas

can be of any level and can refer to subschemas. This

phase indexes these different levels.

Construct new schemas: creates new schemas that match

the current context. If they do not yet exist, these new

schemas are added to long-term memory. They constitute

hypotheses about how to deal with a new context, but

they still need to be tested.

Select a schema / First step: selects a schema to be

executed in this context. High-level schemas add weight

to their subschemas. Weights are positive if they lead to Y

and negative if they lead to X. Schemas of any level

compete, and the one with the highest weight is selected.

If there are several equivalent, one of them is randomly

picked. This phase initialize the selected schema at its

first step.

Execute schema step: sends the selected action defined

in the current schema step to the environment: A or B.

(Here the token is passed to the environment.)

Environment: computes the response from the

environment and sends it (Y or X) to the agent. The

environment has its own memory and cycle.

(Here the token is passed back to the agent.)

Assess environment's response: checks if the schema

has succeeded or failed. If the current subschema has

succeeded but it is not the last step of the selected schema,

then the "ongoing" loop is selected.

Next step / subschema: selects the next step in the

subschema hierarchy of the selected schema.

Memorize / reinforce schema: when the schema ends, if

it has succeeded, then it is referred to as the last enacted

schema in short-term memory. The previous two are

shifted, and the previous third is drop out of short-term

memory. If the schema has failed at some point, then the

actually enacted schema is stored in short-term memory

and reinforced in long-term memory. For example, if a

primary schema expecting Y has been selected, but if the

environment actually returned X, then an equivalent

schema but with an expectation of X is actually

memorized and reinforced. The reinforcement consists of

adding 1 to the schema weight.

Trace: is only used to generate the trace of this cycle and

to clear the temporary data.

4.1 The implementation in Soar

Figure 3 shows a part of our model’s memory structure as

it is implemented in Soar. There are three main branches:

the agent’s memory (<agt>), the environment’s memory

(<env>), and a memory structure used for the interface

between the agent and the environment (<int>). The

agent’s primary schema memory and short-term memory

are explicitly represented (<scm> and <stm>). For

example, schema S12 = (A3 A4) = (B X B Y) is stored as

a subgraph (<sch>) of the schema memory node (<scm>).

A3 = (B X) is the context act (<sch>.<con>) made up of

the primary action B (<con>.<set>) and the primary

response X (<con>.<get>). The second B is the primary

action proposed by the schema (<sch>.<set>). Y is the

schema expectation (<sch>.<get>). In addition, this

schema has a weight (<sch>.<wei>) that is an integer

value equal to the number of times this schema has been

successfully enacted.

Figure 3: Memory architecture.

Secondary schemas are stored in a different memory

structure than primary schemas that is not represented on

the figure. Implementing a recursive exploitation of

schemas of any level that would lie on the same memory

structure appears difficult at this point in Soar.

5. The behavior study

To help develop this agent and understand its behavior,

we have given special attention to his activity traces. We

have set up a mechanism to easily format, configure and

display them, based on our previous work on

understanding activity traces (Georgeon, 2008; Georgeon,

Mille, & Bellet, 2006).

This mechanism exports activity traces from the Soar

debugger to text files. It converts these text files into

XML files using a Java program. These XML traces are

filtered to retain only the useful information at a specific

step of the study. The XML files are then displayed in a

browser using stylesheets. These stylesheets are both XSL

and CSS. XSL allows us to specify in which blocks the

trace elements will be rendered, and to define a page

setup. CSS allows us to specify which format will be used

for each block: font, colors, size, margin, etc. This process

automatically generates traces like that shown in Figure 4.

When displayed with Firefox, these traces can be spoken

aloud, which makes them easier to understand. This can

be seen online at olivier-georgeon.blogspot.com. The

trace of Figure 4 is a subpart of the trace drawn in Figure

1 that focuses on the construction and enaction of

secondary schemas.

Figure 4: XML activity trace.

Each round ends by a red or a dark green line: red when

the agent gets X (bad, he says O-o at the end of lines) and

dark-green when he gets Y (good, he says Yee!). Light-

green lines are intermediary steps of context construction

and schema construction. For example the context at the

top is made up of the three previously enacted schemas

S11, S19, and S24. S24 is expanded as acts A6 and A5.

A5 is expanded as primary action A and primary response

X. Below, when S12 succeeds, we can see the

construction of a secondary schema S28 made up of the

three previously enacted schemas S20, S22, S12. At the

bottom of the figure we can see the first enaction of a

secondary schema S29, because its context primary

schema S12 matched the previously-enacted primary

schema.

6. Results and discussion

The interesting results that we think this study has

brought are:

• We have defined a simple task suitable to study

bottom-up learning. We have named this task the

“AXAYBXBY” task.

• We have implemented an agent that can learn two

levels of schemas to perform the “AXAYBXBY” task as

well as other related tasks (reported in the website),

namely, all tasks with a regularity span lower or equal

than two rounds.

• We have shown that this agent could be implemented

in Soar, which is a cognitive architecture that is better

known for supporting learning from higher-level impasses

(through chunking) than bottom-up learning from actions.

• We have developed a mechanism to generate and

display activity traces from Soar debugger logs. We show

that it is useful that the modeler has the possibility to

easily configure and format activity traces during the

modeling process.

• We have illustrated a constructivist approach of

learning, inspired from a conception of cognition where

the basic elements are not declarative chunks but schemas

that can be seen as “contextualized patterns of behavior”.

As said in the introduction, this approach is not novel, but

it is the first time it has been implemented with Soar.

• More broadly, we think that this approach can

illustrate psychological phenomena related to learning and

activity control. For instance, it is interesting to notice

that the cycle represented in Figure 2, which has been

defined from purely logical and ad-hoc engineering

purpose, can be related to more psychological theories,

namely the OODA loop (Hammond, 2001).

• Our implementation led us to several remarks on how

Soar could be used in this approach. These remarks are

listed below.

6.1 Remarks on how Soar is used in this approach

Implementing this in Soar led to a deeper understanding

of Soar and how to build models efficiently with Soar.

We do not use Soar's input and output functions. The Soar

system implements both our agent and his environment.

From the Soar viewpoint, this model does not interact

with any outside environment; it evolves by interaction

between subcomponents of the system. It is only us, as

observers, who understand it as an agent interacting with

an environment. This approach suggests that there may

be a sub-type of environment where the environment’s

behavior and actions can be represented using the same

theory of what is in the head. We term such environments

‘cognitive’ environments. Early work on problem solving

used these environments, such as small towers of Hanoi,

missionaries and cannibals, and water jugs.

Our agent’s memory does not match the classical Soar

memory definition. From our agent’s viewpoint, he stores

schemas in his long-term memory, and the current

situation in his short-term memory. From the Soar

viewpoint, however, these schemas and this situation are

actually stored in what the Soar vocabulary calls working

memory, usually considered as declarative and semantic.

Thus, Soar modelers could think that our agent learns

semantic knowledge, but that would be seen by many as

inappropriate because, from our agent’s viewpoint, this

knowledge has no semantics, it is only behavioral patterns

and thus should be seen as a type of procedural

knowledge.

We do not describe our agent’s action possibilities as

operators, contrary to many Soar models. Instead, we

describe them as schemas, and our model dynamically

creates operators to generate the appropriate action that

results from the evaluation of schemas.

We cannot use Soar-9's built-in reward mechanism for

two reasons. The first is that it only applies to operators,

and we do not need to reinforce operators but schemas.

The second is that Soar reinforcement learning is

designed to let the modeler define rewards from the

environment. From these rewards, Soar computes

operator preferences through an algorithm on which we

have insufficient control. In our case, our agent’s behavior

is not driven by rewards sent to him as inputs (and that

would be backward propagated trough an algorithm like

the bucket brigade algorithm), but by hard-coded

preferences for schemas having certain types of

expectation. Therefore, the Soar reward mechanism does

not help us, and we have to implement our own

reinforcement mechanism that just increments a schema's

weight each time it is enacted. We use, however, the

numerical preference mechanism available in Soar-9, to

select the operator that receives the highest overall weight

from the different schemas that support it.

So far, we do not use the Soar impasse mechanism. In our

approach, when the agent has no knowledge to help him

choose between two or more schemas, that really means

that he has no other thing to do than randomly pick one.

We do not use the Soar's default probabilistic action

selection mechanism. The idea that there should be an

epsilon probability that our agent chooses not his

preferred action is useless in our case. It only impedes the

exploration and learning process. We force the epsilon

value to zero. A non-null epsilon value could however be

useful in the environment’s model, if we would like to

test our agent in a noisy environment. But even in a noisy

environment, we do not think it is useful to add noise in

the agent himself, because, in our approach, the necessary

stochastic exploration comes from the random action

when there is no preferred schema.

From these remarks, it is clear that our usage of Soar does

not correspond completely to what Soar has been

designed to support. Soar has been created for

representing the modeler's knowledge but does not fully

support our approach for developing agents who construct

their own knowledge from their activity. Nevertheless, so

far, Soar has proven to offer enough flexibility to be

usable for this approach. It provides us with powerful and

efficient graph manipulation facilities, and weight

preference management that are essential for our agent.

Further work may align this approach more directly with

how Soar’s mechanisms are typically used, or may

provide more robust suggestions for how they should be

used.

6.2 Difficulties

Our mechanism of schema construction may require some

more discussion; it is different between primary and

secondary schemas. The construction of primary schemas

is implemented through a combination of all the possible

primary actions that could be done in a specific context

with all the primary responses that can be expected. This

is illustrated in Figure 1 by the blue upward arrows. For

example, in context A3, the agent constructs four schemas

S10, S11, S12, S13; respectively of doing A, expecting Y;

doing A, expecting X, doing B, expecting Y; and doing B

expecting X. In contrast, the construction of secondary

schemas is made from the memory of which patterns of

primary schema succeeded. For example, secondary

schema S27 was constructed because the successful

primary schema S19 was enacted. We should explore

more generic schema construction mechanism in the

future.

In terms of scalability, we should notice that the number

of new schemas constructed at each round would not

grow with the environment complexity but with the

agent’s complexity, which remains under the modeler’s

control. The time needed to explore the environment

would however grow with the environment complexity.

This raises the interesting question of the agent’s

“education”, that is, designing “pedagogical” situations

where the agent could more easily learn lower-level

schemas on which higher-level schemas could anchor.

Another difficulty, although related, is that it is not easy

to implement a recursive schema/subschema mechanism

in Soar. Soar has not been designed for this kind of

recursivity. If we could complete that, it would provide a

way for creating further models that use this approach. It

should be pretty general, and particularly applicable to

other Soar models.

6.3 Future work

We now need to continue implementing higher-level

abstraction mechanisms in our agent and test it in more

complex environments. The idea of modeling the

environment in Soar is nice as long as we don’t need a

spatial environment. For a 2D environment that provides

a screen display and 2D interactions, we plan first to use

Vacuum (Cohen, 2005). Vacuum is a simple grid

environment that allows an agent, represented as a

vacuum cleaner, to move in search for dust to clean up.

Then we plan to use dTank (Ritter, Kase, Bhandarkar,

Lewis, & Cohen, 2007). dTank is a lightweight

environment that simulates a battlefield where two teams

of tank can compete. Putting our agent in these

environments will allow us to compare it with previous

agents that have been developed through classical

methods. This will help quantify how less knowledge the

modeler has to encode in the agent with our approach.

We also plan to implement a speech mechanism in real

time, instead of having the trace spoken when it is

analyzed. We believe this would help modelers and users

better understand the agent.

7. Conclusion

We have proposed an approach that offers a way to

implement unsupervised learning that occurs while a

model implemented in Soar is performing a task. This

approach uses reinforcement learning to improve

performance and to generate a summary of behavior. It

does so with declarative representations used to generate

procedural behavior, which is relatively novel.

One could think that Soar is not designed to model

subsymbolic processing. However, from our agent’s

viewpoint, this low-level behavior organization can be

seen as subsymbolic. In our approach, the learned

knowledge is not computed as it is in classic computo-

symbolic approaches. Knowledge of how to perform a

task is not binary in that the agent does or does not know

how to perform a task at a given point in time. Our

approach provides more graded knowledge

representations. We do not claim that our agent “has

symbols in his mind”, nor that he is “mindful” at all. We

think however that this first step of bottom-up learning is

a required step before modeling agents that are able to

manipulate symbols that are grounded in their activity as

well as the world, and thus, in a pragmatic conception of

knowledge, agent for which these symbols make sense.

So far in this study, we demonstrated that a symbolic

cognitive architecture like Soar supports working towards

this goal.

This learning mechanism is important in at least three

ways. First, it provides a way for procedural knowledge to

be learned by an agent through a trial-and-error and the

reinforcement mechanism. Second, the abstraction

mechanism opens a way for declarative knowledge to be

learned by an agent about its procedural knowledge. This

is a novel result. Third, in our approach, the environment

can be seen as another agent, thus this approach can

provide a way for an agent to learn about another agent.

This type of knowledge is useful for understanding

teammates or opponents.

8. References

Anderson, J. R., & Lebière, C. (1998). The Atomic

Components of Thought. Hillsdale, NJ: Lawrence

Erlbaum Associates.

Bach, J. (2003). The MicroPsi agent architecture. Paper

presented at the ICCM-05, Universitäts-Verlag

Bamberg. 15-20.

Chaput, H. H. (2004). The Constructivist Learning

Architecture: A model of cognitive development for

robust autonomous robots. Unpublished doctoral

dissertation, The University of Texas, Austin.

Cohen, M. A. (2005). Teaching agent programming using

custom environments and Jess. AISB Quarterly,

120(Spring), 4.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005).

Herbal: A high-level language and development

environment for developing cognitive models in

Soar. Paper presented at the 14th Conference on

Behavior Representation in Modeling and

Simulation, Orlando, FL. 177-182.

Drescher, G. L. (1991). Made-up minds, a constructivist

approach to artificial intelligence. Cambridge, MA:

MIT Press.

Georgeon, O. (2008). Analyzing traces of activity for

modeling cognitive schemes of operators. AISB

Quarterly, 127, 1-2.

Georgeon, O., Mille, A., & Bellet, T. (2006, 4-8 Sept

2006). Analyzing behavioral data for refining

cognitive models of operator. Paper presented at the

Philosophies and Methodologies for Knowledge

Discovery, Seventeenth international Workshop on

Database and Expert Systems Applications, Krakow,

Poland. 588-592.

Hammond, G. (2001). The mind of War: John Boyd and

american security. Washington, DC: Smithsonian

Institution Press.

Harnad, S. (1990). The symbol grounding problem.

Physica D(42), 335-346.

Haynes, S. R., Cohen, M. A., & Ritter, F. E. (2009).

Design patterns for explaining intelligent systems.

International Journal of Human-Computer Studies,

67(1), 99-110.

Laird, J. E., Gongdon, C. B., & Coulter, K. J. (1999). The

Soar User's Manual Version 8.2: University of

Michigan.

Langley, P., & Choi, D. (2006). Learning recursive

control programs from problem solving. Journal of

Machine Learning Research, 7, 493-518.

Newell, A. (1990). Unified Theories of Cognition.

Cambridge, MA: Harvard University Press.

Piaget, J. (1937). The construction of reality in the child.

New York: Basic Books.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R.

(2000). Supporting cognitive models as users. ACM

Transactions on Computer-Human Interaction, 7(2),

141-173.

Ritter, F. E., Kase, S., E., Bhandarkar, D., Lewis, B., &

Cohen, M. (2007). dTank updated: Exploring

moderator-influenced behavior in a light-weight

synthetic environment. Paper presented at the 16th

Conference on Behavior Representation in Modeling

and Simulation, U. of Central Florida: Norfolk, VA.

51-60.

Sun, R. (2004). Desiderata for cognitive architectures.

Philosophical Psychology, 17(3), 341-373.

Sun, R., & Giles, C. L. (2000). Sequence Learning -

Paradigms, Algorithms, and Applications (Vol.

1828). Berlin Heidelberg: Springer.

Sun, R., Peterson, T., & Merrill, E. (1999). A hybrid

architecture for situated learning of reactive

sequential decision making. Applied Intelligence,

11, 109-127.

Sun, R., & Sessions, C. (2000). Automatic Segmentation

of Sequences through Hierarchical Reinforcement

Learning. In R. Sun & C. L. Giles (Eds.), Sequence

Learning (pp. 241–263). Berlin Heidelberg:

Springer-Verlag.

Acknowledgments

Support was provided by ONR Contracts N00014-08-1-

0481 and N00014-06-1-0164.

Author Biographies

OLIVIER GEORGEON is a cognitive scientist with an

interest in learning from experience; he is currently a

research associate in the ACS (Applied Cognitive

Science) Lab in the college of IST at Penn State.

FRANK RITTER is on the faculty of the College of IST,

an interdisciplinary academic unit at Penn State to study

how people process information using technology. He

edits the Oxford Series on Cognitive Models and

Architectures and is an editorial board member of Human

Factors, AISBQ, and the Journal of Educational

Psychology.

STEVEN HAYNES is a Professor of Practice in the

College of IST at Penn State. His research focuses on

explanation facilities for intelligent systems, and design

rationale.

