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ABSTRACT: This paper presents an implementation of bottom-up learning in a cognitive model. The paper relates 

the learning mechanism, its implementation in a Soar agent, and an experiment where the agent learns to solve an 

example task. The agent first learns primary schemas (low-level patterns of behavior) and then secondary schemas 

(patterns of primary schemas). This implementation draws from theories of hierarchical sequence learning and 

constructivist learning. It constitutes a first implementation of these theories in Soar, and it shows that Soar can be 

used to model bottom-up learning, using the weighted preference mechanism available in Soar 9. This study also 

shows the importance of modeling the agent’s activity traces to help the modeler develop the agent. This approach 

offers a way to represent how autonomous agents create declarative knowledge from and about their interaction with 

their environment, teammates or opponents. 

 

 

1. Introduction 

 

This study addresses the question of how an agent can 

acquire knowledge (learn) from his activity in an 

environment. This is an important issue when developing 

artificial cognitive agents, because this learning from 

activity could substantially reduce the amount of 

knowledge that the modeler has to manually encode in the 

agent, assuming the modeler has this knowledge and has a 

way to encode it. 

 

Learning from activity is referred to as “bottom-up 

learning”, in a view where sensory-motor skills are 

considered as low-level, and where more abstract 

knowledge is represented above it. Along with many 

authors in the area of “Grounding Theory” (Harnad, 

1990), we consider that bottom-up learning allows the 

symbols to be “grounded in activity”. A nice 

argumentation is given by Sun (2004) who claims that 

behavior is prior to knowledge, and thus, we should focus 

on organizing behavior, and then, organizing the 

construction of knowledge from behavior. Our underlying 

idea is that we should not represent goals, knowledge nor 

emotions in artificial agents, but rather give them a way to 

organize their behavior so that we can infer they have 

goals, knowledge and emotions when we observe their 

activity. 

 

Classical cognitive architectures, such as Soar (Laird, 

Gongdon, & Coulter, 1999) and ACT-R (Anderson & 

Lebière, 1998) have been criticized for not supporting this 

symbol grounding (Sun, 2004). In part to overcome this 

limitation, other teams have developed alternative 

architectures: CLARION (Sun, Peterson, & Merrill, 

1999), MicroPsy (Bach, 2003), CLA (Chaput, 2004), 

ICARUS (Langley & Choi, 2006).   

 

In this study, however, we show that a well-tested, 

cognitive architecture like Soar could be used in a novel 

approach to implement bottom-up learning from activity. 

By using Soar instead of these new cognitive 

architectures, we take advantage of Soar’s 15-year 

process of improvement, concerning both the modeling 

facilities it offers and its robustness. Another reason for 

using Soar is that we now have a higher level tool to help 

generate Soar code, namely Herbal (Haynes, Cohen, & 

Ritter, 2009). 

 

We are approaching the implementation of learning from 

a constructivist viewpoint, that is evolutionist (through 

trial and error), pragmatic (knowledge is grounded on 

praxis), and teleological (in our case, self-oriented). For 

this approach we can refer to the work of Piaget (1937), 

who proposed the idea that basic elements of cognition 

are “schemes” or “schemas”, which correspond to 

elementary patterns of behavior. These schemas are 

organized in a hierarchy of schema/subschemas. Lowest-

level schemas correspond to sensory-motor skills. Above 

them, more abstract schemas are constructed and 

organized, which ultimately should lead the agent to the 

knowledge that invariant objects exist in his environment, 

and also lead him to the construction of abstract concepts. 
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This hierarchical learning of higher-order schemas is an 

important and a challenging first step in constructivist 

learning. For instance, Sun and Sessions (2000) proposed 

the Self Segmentation of Sequence (SSS) algorithm.  

 

In this paper, we show how we could implement such a 

two-level mechanism in Soar. Our implementation, draws 

from previous studies that started to implement 

constructivist learning, especially that of Drescher (1991). 

Drescher modeled schemas as triples (context, action, 

expectation). In this paper, for clarity, we sometimes 

group together action and expectation under the term 

“intention”. In that description, a schema is a context 

associated with an intention, and an intention is an action 

associated with an expectation.  

 

Although these principles are not new, their 

implementation in Soar is innovative. The Soar 

community may find useful both our model itself and the 

remarks it suggests about Soar. More broadly, this work is 

an illustration of constructivist learning that can be 

applied to different architectures where an agent has to 

learn from interaction, such as in teamwork or adversarial 

interaction. 

 

2. The task 

 

The study of behavior requires a behavior and a task it 

arises from. This study was started with the simplest 

possible task. In this task, the agent has a choice between 

two possible actions: A or B, and he could get two 

possible responses from the environment: X or Y. This 

approach may seem like Newell’s (1990) approach when 

he proposed the “simplest response task” or the “two-

choice response task”. However, as early as this stage, our 

approach is actually different. In Newell’s approach, the 

task was “reactive”: the subject was previously told what 

he had to do in response to a stimulus. In our case, the 

task is “proactive”: the agent does not know what to do 

but has a built-in “preference” for one of the two 

responses, namely Y. Our purpose is to study how the 

agent can learn to do the right action (A or B) to get Y 

(good) and not X (bad). In other words, our goal is to 

have the agent structure his behavior due to the fact that 

he has an innate tendency to prefer actions that will lead 

to get Y. To achieve this is to have learned a behavior that 

results in a desired outcome. 

 

We have placed our agent in different environments that 

implemented this task. The first environment always 

returned X when the agent was doing A, and Y when the 

agent was doing B. So the agent could learn two very 

basic schemas: Schema1 = (context = any, action = A, 

expectation = X) and Schema2 = (context = any, action = 

B, expectation = Y). Because the agent had a hard-coded 

preference for schemas having an expectation of Y, then 

after at most two tries, he kept performing Schema2 and 

getting Y. 

 

Then, we placed our agent in more complex environments 

where he had to perform more complex sequences of 

behavior before getting a Y. In these new environments, 

the connection between action and response was not 

systematic but depended on the previous context of 

sequence. This approach can be compared to sequence 

learning (Sun & Giles, 2000). It is not, however, a passive 

sequence learning where the agent could only be an 

observer of the sequence, but it is an active sequence 

learning where the agent can formulate hypotheses and 

test them in the environment. This formulation of 

hypotheses is implemented as a construction mechanism 

of new schemas. We think that this active approach 

should facilitate a hierarchical learning of schemas and 

subschemas. Newly constructed schemas are tested 

against the environment and reinforced when they 

succeed. Our approach differs however from a pure “trial-

and-error with reinforcement learning” approach by the 

fact that reinforcement is contextualized into schemas, 

and schemas are hierarchically organized.  

 

The different environments where we have put our agent 

are further reported in olivier-georgeon.blogspot.com. In 

this paper, we only describe an environment where the 

agent has to do two consecutive A or two consecutive B 

to get a Y. Continuing with the same action will not lead 

to Y anymore. So, the agent will only get a Y if he does A 

when he has previously done B then A, or if he does B 

when he has previously done A then B. We call this task 

the “AXAYBXBY” task. This task is designed to 

illustrate how the agent can learn second order schemas 

that force him to enact primary schemas with an 

expectation of X—which is against his hard-coded 

tendency—to put himself in a situation where he can get a 

Y at the next round. 

 

3. The learning mechanism 

 

Our implementation of learning can be described as three 

levels of abstraction made by the agent, above level 0 that 

is the raw activity. This mechanism is represented in 

Figure 1. 

 

 

 



 
Figure 1: Abstraction process. 

 

The raw activity is a sequence of primary actions (A or B) 

performed by the agent, followed by primary responses 

(X or Y) returned by the environment. When we run our 

agent in the environment, we obtain the raw_sequence = 

“B X B Y B X B X A X A Y …”. Note that the first “nil 

nil” elements at the beginning of Figure 1 represent the 

content of the agent’s short-term memory at the beginning 

of the experiment and does not correspond to any real 

action. 

 

The first abstraction level consists of having the agent 

group primary actions with their primary responses in 

what we call an act. For example act A3 = “B X”. The 

first abstraction of raw_sequence is then act_sequence = 

“A3 A4 A3 A3 A5 A6 …” 

 

The second abstraction level consists of having the agent 

group two acts into one primary schema. For example, 

Schema S12 = “A3 A4”. A3 is the context act of S12, and 

A4 is its intention act. That means that, in a context where 

A3 has just been performed, S12 proposes to do A4. A4 

consists of doing the primary action “A” and expecting a 

response of “Y”. Thus, the second abstraction level of 

raw_sequence is primary_schema_sequence = “S12 S17 

S13 S11 S19 …” 

 

The third abstraction level consists of grouping three 

primary schemas into one secondary schema. For 

example, Schema S27 = “S13 S11 S19”. S13 is the 

context of S27. S11 is the action of S27, and S19 is the 

expectation of S27. S11 and S19 together form the 

intention of S27. That means that, in a context where S13 

has just been performed, S27 proposes to enact S11, 

which should (if it succeeds) lead to the possibility of 

enacting S19, which should (if it succeeds) lead to getting 

a Y. 

 

In Figure 1, the ascendant solid arrows represent the 

construction of more abstract items by the agent. The 

relation between higher level and lower level is somewhat 

complex, globally higher levels tend to “control” lower 

levels, but sometimes they fail, and lower levels “trigger” 

higher level schemas, but it is not certain what higher 

level schema is performed until the environment has 

responded and the schema is completely over. When the 

actually performed schema is known, its weight is 

incremented. This weight is then used during the selection 

phase for selecting the action that lead to a Y. Dashed 

gray double-headed arrows “Trigger/Control” represent 

this tightly coupling between levels. In the 

“AXAYBXBY” environment, secondary schemas always 

succeed, so the agent becomes "in control" of his activity 

when secondary schemas start to be enacted. In Figure 1, 

that is shown by “S29 S30” in green that control the 

enaction of S15, S19, S26, S12, which finally control the 

sequence AXAYBXBY. This sequence is the beginning 

of a stable sequence that gives a Y to the agent every 

second round, which is the best he can get in this 

environment. 

 

4. The Agent 

 

We have modeled this agent and its environment in Soar 

9.1, and executed it with the Soar debugger. So the agent 

and his environment are firing each cycle in turn, thanks 

to a token mechanism, but they are both part of the same 

overall Soar system. This approach avoids tying the 

model to an external task at this point, an important, but 



complicated aspect of model development (Ritter, Baxter, 

Jones, & Young, 2000). 

 

Each round, the agent executes one of the two green 

clockwise loops in Figure 2, and the environment 

executes the blue counterclockwise loop. At the 

beginning, the model starts from the “Construct Context” 

phase. The context corresponds to the current situation as 

it is retained in the agent’s short-term memory (“nil” at 

the beginning). 

 

 
Figure 2: Execution cycle. 

 

Construct context: structures the current context to 

prepare the schema construction and the schema selection. 

The context is made up of the three previously enacted 

schemas, stored in short-term memory. These schemas 

can be of any level and can refer to subschemas. This 

phase indexes these different levels. 

Construct new schemas: creates new schemas that match 

the current context. If they do not yet exist, these new 

schemas are added to long-term memory. They constitute 

hypotheses about how to deal with a new context, but 

they still need to be tested. 

Select a schema / First step: selects a schema to be 

executed in this context. High-level schemas add weight 

to their subschemas. Weights are positive if they lead to Y 

and negative if they lead to X. Schemas of any level 

compete, and the one with the highest weight is selected. 

If there are several equivalent, one of them is randomly 

picked. This phase initialize the selected schema at its 

first step. 

Execute schema step: sends the selected action defined 

in the current schema step to the environment: A or B. 

(Here the token is passed to the environment.) 

Environment: computes the response from the 

environment and sends it (Y or X) to the agent. The 

environment has its own memory and cycle. 

(Here the token is passed back to the agent.) 

Assess environment's response: checks if the schema 

has succeeded or failed. If the current subschema has 

succeeded but it is not the last step of the selected schema, 

then the "ongoing" loop is selected. 

Next step / subschema: selects the next step in the 

subschema hierarchy of the selected schema. 

Memorize / reinforce schema: when the schema ends, if 

it has succeeded, then it is referred to as the last enacted 

schema in short-term memory. The previous two are 

shifted, and the previous third is drop out of short-term 

memory. If the schema has failed at some point, then the 

actually enacted schema is stored in short-term memory 

and reinforced in long-term memory. For example, if a 

primary schema expecting Y has been selected, but if the 

environment actually returned X, then an equivalent 

schema but with an expectation of X is actually 

memorized and reinforced. The reinforcement consists of 

adding 1 to the schema weight. 

Trace: is only used to generate the trace of this cycle and 

to clear the temporary data. 

 

4.1 The implementation in Soar 

 

Figure 3 shows a part of our model’s memory structure as 

it is implemented in Soar. There are three main branches: 

the agent’s memory (<agt>), the environment’s memory 

(<env>), and a memory structure used for the interface 

between the agent and the environment (<int>). The 

agent’s primary schema memory and short-term memory 

are explicitly represented (<scm> and <stm>). For 

example, schema S12 = (A3 A4) = (B X B Y) is stored as 

a subgraph (<sch>) of the schema memory node (<scm>). 

A3 = (B X) is the context act (<sch>.<con>) made up of 

the primary action B (<con>.<set>) and the primary 

response X (<con>.<get>). The second B is the primary 

action proposed by the schema (<sch>.<set>). Y is the 

schema expectation (<sch>.<get>). In addition, this 

schema has a weight (<sch>.<wei>) that is an integer 

value equal to the number of times this schema has been 

successfully enacted. 

 

 

 
Figure 3: Memory architecture. 

 

Secondary schemas are stored in a different memory 

structure than primary schemas that is not represented on 

the figure. Implementing a recursive exploitation of 



schemas of any level that would lie on the same memory 

structure appears difficult at this point in Soar. 

 

5. The behavior study 

 

To help develop this agent and understand its behavior, 

we have given special attention to his activity traces. We 

have set up a mechanism to easily format, configure and 

display them, based on our previous work on 

understanding activity traces (Georgeon, 2008; Georgeon, 

Mille, & Bellet, 2006). 

 

This mechanism exports activity traces from the Soar 

debugger to text files. It converts these text files into 

XML files using a Java program. These XML traces are 

filtered to retain only the useful information at a specific 

step of the study. The XML files are then displayed in a 

browser using stylesheets. These stylesheets are both XSL 

and CSS. XSL allows us to specify in which blocks the 

trace elements will be rendered, and to define a page 

setup. CSS allows us to specify which format will be used 

for each block: font, colors, size, margin, etc. This process 

automatically generates traces like that shown in Figure 4. 

When displayed with Firefox, these traces can be spoken 

aloud, which makes them easier to understand. This can 

be seen online at olivier-georgeon.blogspot.com. The 

trace of Figure 4 is a subpart of the trace drawn in Figure 

1 that focuses on the construction and enaction of 

secondary schemas.  

 

 
Figure 4: XML activity trace. 

 

Each round ends by a red or a dark green line: red when 

the agent gets X (bad, he says O-o at the end of lines) and 

dark-green when he gets Y (good, he says Yee!). Light-

green lines are intermediary steps of context construction 

and schema construction. For example the context at the 

top is made up of the three previously enacted schemas 

S11, S19, and S24. S24 is expanded as acts A6 and A5. 

A5 is expanded as primary action A and primary response 

X. Below, when S12 succeeds, we can see the 

construction of a secondary schema S28 made up of the 

three previously enacted schemas S20, S22, S12. At the 

bottom of the figure we can see the first enaction of a 

secondary schema S29, because its context primary 

schema S12 matched the previously-enacted primary 

schema. 

 

6. Results and discussion 

 

The interesting results that we think this study has 

brought are: 

• We have defined a simple task suitable to study 

bottom-up learning. We have named this task the 

“AXAYBXBY” task. 

• We have implemented an agent that can learn two 

levels of schemas to perform the “AXAYBXBY” task as 

well as other related tasks (reported in the website), 

namely, all tasks with a regularity span lower or equal 

than two rounds. 

• We have shown that this agent could be implemented 

in Soar, which is a cognitive architecture that is better 

known for supporting learning from higher-level impasses 

(through chunking) than bottom-up learning from actions.  

• We have developed a mechanism to generate and 

display activity traces from Soar debugger logs. We show 

that it is useful that the modeler has the possibility to 

easily configure and format activity traces during the 

modeling process. 

• We have illustrated a constructivist approach of 

learning, inspired from a conception of cognition where 

the basic elements are not declarative chunks but schemas 

that can be seen as “contextualized patterns of behavior”. 

As said in the introduction, this approach is not novel, but 

it is the first time it has been implemented with Soar. 

• More broadly, we think that this approach can 

illustrate psychological phenomena related to learning and 

activity control. For instance, it is interesting to notice 

that the cycle represented in Figure 2, which has been 

defined from purely logical and ad-hoc engineering 

purpose, can be related to more psychological theories, 

namely the OODA loop (Hammond, 2001). 

• Our implementation led us to several remarks on how 

Soar could be used in this approach. These remarks are 

listed below. 

 

6.1 Remarks on how Soar is used in this approach 

 

Implementing this in Soar led to a deeper understanding 

of Soar and how to build models efficiently with Soar. 

 

We do not use Soar's input and output functions. The Soar 

system implements both our agent and his environment. 

From the Soar viewpoint, this model does not interact 

with any outside environment; it evolves by interaction 

between subcomponents of the system. It is only us, as 



observers, who understand it as an agent interacting with 

an environment.  This approach suggests that there may 

be a sub-type of environment where the environment’s 

behavior and actions can be represented using the same 

theory of what is in the head. We term such environments 

‘cognitive’ environments. Early work on problem solving 

used these environments, such as small towers of Hanoi, 

missionaries and cannibals, and water jugs. 

 

Our agent’s memory does not match the classical Soar 

memory definition. From our agent’s viewpoint, he stores 

schemas in his long-term memory, and the current 

situation in his short-term memory. From the Soar 

viewpoint, however, these schemas and this situation are 

actually stored in what the Soar vocabulary calls working 

memory, usually considered as declarative and semantic. 

Thus, Soar modelers could think that our agent learns 

semantic knowledge, but that would be seen by many as 

inappropriate because, from our agent’s viewpoint, this 

knowledge has no semantics, it is only behavioral patterns 

and thus should be seen as a type of procedural 

knowledge. 

 

We do not describe our agent’s action possibilities as 

operators, contrary to many Soar models. Instead, we 

describe them as schemas, and our model dynamically 

creates operators to generate the appropriate action that 

results from the evaluation of schemas. 

 

We cannot use Soar-9's built-in reward mechanism for 

two reasons. The first is that it only applies to operators, 

and we do not need to reinforce operators but schemas. 

The second is that Soar reinforcement learning is 

designed to let the modeler define rewards from the 

environment. From these rewards, Soar computes 

operator preferences through an algorithm on which we 

have insufficient control. In our case, our agent’s behavior 

is not driven by rewards sent to him as inputs (and that 

would be backward propagated trough an algorithm like 

the bucket brigade algorithm), but by hard-coded 

preferences for schemas having certain types of 

expectation. Therefore, the Soar reward mechanism does 

not help us, and we have to implement our own 

reinforcement mechanism that just increments a schema's 

weight each time it is enacted. We use, however, the 

numerical preference mechanism available in Soar-9, to 

select the operator that receives the highest overall weight 

from the different schemas that support it. 

 

So far, we do not use the Soar impasse mechanism. In our 

approach, when the agent has no knowledge to help him 

choose between two or more schemas, that really means 

that he has no other thing to do than randomly pick one. 

 

We do not use the Soar's default probabilistic action 

selection mechanism. The idea that there should be an 

epsilon probability that our agent chooses not his 

preferred action is useless in our case. It only impedes the 

exploration and learning process. We force the epsilon 

value to zero. A non-null epsilon value could however be 

useful in the environment’s model, if we would like to 

test our agent in a noisy environment. But even in a noisy 

environment, we do not think it is useful to add noise in 

the agent himself, because, in our approach, the necessary 

stochastic exploration comes from the random action 

when there is no preferred schema. 

 

From these remarks, it is clear that our usage of Soar does 

not correspond completely to what Soar has been 

designed to support. Soar has been created for 

representing the modeler's knowledge but does not fully 

support our approach for developing agents who construct 

their own knowledge from their activity. Nevertheless, so 

far, Soar has proven to offer enough flexibility to be 

usable for this approach. It provides us with powerful and 

efficient graph manipulation facilities, and weight 

preference management that are essential for our agent. 

Further work may align this approach more directly with 

how Soar’s mechanisms are typically used, or may 

provide more robust suggestions for how they should be 

used. 

 

6.2 Difficulties  

 

Our mechanism of schema construction may require some 

more discussion; it is different between primary and 

secondary schemas. The construction of primary schemas 

is implemented through a combination of all the possible 

primary actions that could be done in a specific context 

with all the primary responses that can be expected. This 

is illustrated in Figure 1 by the blue upward arrows. For 

example, in context A3, the agent constructs four schemas 

S10, S11, S12, S13; respectively of doing A, expecting Y; 

doing A, expecting X, doing B, expecting Y; and doing B 

expecting X. In contrast, the construction of secondary 

schemas is made from the memory of which patterns of 

primary schema succeeded. For example, secondary 

schema S27 was constructed because the successful 

primary schema S19 was enacted. We should explore 

more generic schema construction mechanism in the 

future. 

 

In terms of scalability, we should notice that the number 

of new schemas constructed at each round would not 

grow with the environment complexity but with the 

agent’s complexity, which remains under the modeler’s 

control. The time needed to explore the environment 

would however grow with the environment complexity. 

This raises the interesting question of the agent’s 

“education”, that is, designing “pedagogical” situations 

where the agent could more easily learn lower-level 

schemas on which higher-level schemas could anchor. 

 

Another difficulty, although related, is that it is not easy 

to implement a recursive schema/subschema mechanism 

in Soar. Soar has not been designed for this kind of 



recursivity. If we could complete that, it would provide a 

way for creating further models that use this approach.  It 

should be pretty general, and particularly applicable to 

other Soar models. 

 

6.3 Future work  

 

We now need to continue implementing higher-level 

abstraction mechanisms in our agent and test it in more 

complex environments. The idea of modeling the 

environment in Soar is nice as long as we don’t need a 

spatial environment. For a 2D environment that provides 

a screen display and 2D interactions, we plan first to use 

Vacuum (Cohen, 2005). Vacuum is a simple grid 

environment that allows an agent, represented as a 

vacuum cleaner, to move in search for dust to clean up. 

Then we plan to use dTank (Ritter, Kase, Bhandarkar, 

Lewis, & Cohen, 2007). dTank is a lightweight 

environment that simulates a battlefield  where two teams 

of tank can compete. Putting our agent in these 

environments will allow us to compare it with previous 

agents that have been developed through classical 

methods. This will help quantify how less knowledge the 

modeler has to encode in the agent with our approach. 

 

We also plan to implement a speech mechanism in real 

time, instead of having the trace spoken when it is 

analyzed. We believe this would help modelers and users 

better understand the agent. 

 

7. Conclusion 

 

We have proposed an approach that offers a way to 

implement unsupervised learning that occurs while a 

model implemented in Soar is performing a task. This 

approach uses reinforcement learning to improve 

performance and to generate a summary of behavior. It 

does so with declarative representations used to generate 

procedural behavior, which is relatively novel. 

 

One could think that Soar is not designed to model 

subsymbolic processing. However, from our agent’s 

viewpoint, this low-level behavior organization can be 

seen as subsymbolic. In our approach, the learned 

knowledge is not computed as it is in classic computo-

symbolic approaches. Knowledge of how to perform a 

task is not binary in that the agent does or does not know 

how to perform a task at a given point in time. Our 

approach provides more graded knowledge 

representations. We do not claim that our agent “has 

symbols in his mind”, nor that he is “mindful” at all. We 

think however that this first step of bottom-up learning is 

a required step before modeling agents that are able to 

manipulate symbols that are grounded in their activity as 

well as the world, and thus, in a pragmatic conception of 

knowledge, agent for which these symbols make sense. 

So far in this study, we demonstrated that a symbolic 

cognitive architecture like Soar supports working towards 

this goal.  

 

This learning mechanism is important in at least three 

ways. First, it provides a way for procedural knowledge to 

be learned by an agent through a trial-and-error and the 

reinforcement mechanism. Second, the abstraction 

mechanism opens a way for declarative knowledge to be 

learned by an agent about its procedural knowledge.  This 

is a novel result. Third, in our approach, the environment 

can be seen as another agent, thus this approach can 

provide a way for an agent to learn about another agent.  

This type of knowledge is useful for understanding 

teammates or opponents. 

 

8. References 
 

Anderson, J. R., & Lebière, C. (1998). The Atomic 

Components of Thought. Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Bach, J. (2003). The MicroPsi agent architecture. Paper 

presented at the ICCM-05, Universitäts-Verlag 

Bamberg. 15-20. 

Chaput, H. H. (2004). The Constructivist Learning 

Architecture: A model of cognitive development for 

robust autonomous robots. Unpublished doctoral 

dissertation, The University of Texas, Austin. 

Cohen, M. A. (2005). Teaching agent programming using 

custom environments and Jess. AISB Quarterly, 

120(Spring), 4. 

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). 

Herbal: A high-level language and development 

environment for developing cognitive models in 

Soar. Paper presented at the 14th Conference on 

Behavior Representation in Modeling and 

Simulation, Orlando, FL. 177-182. 

Drescher, G. L. (1991). Made-up minds, a constructivist 

approach to artificial intelligence. Cambridge, MA: 

MIT Press. 

Georgeon, O. (2008). Analyzing traces of activity for 

modeling cognitive schemes of operators. AISB 

Quarterly, 127, 1-2. 

Georgeon, O., Mille, A., & Bellet, T. (2006, 4-8 Sept 

2006). Analyzing behavioral data for refining 

cognitive models of operator. Paper presented at the 

Philosophies and Methodologies for Knowledge 

Discovery, Seventeenth international Workshop on 

Database and Expert Systems Applications, Krakow, 

Poland. 588-592. 

Hammond, G. (2001). The mind of War: John Boyd and 

american security. Washington, DC: Smithsonian 

Institution Press. 

Harnad, S. (1990). The symbol grounding problem. 

Physica D(42), 335-346. 

Haynes, S. R., Cohen, M. A., & Ritter, F. E. (2009). 

Design patterns for explaining intelligent systems. 

International Journal of Human-Computer Studies, 

67(1), 99-110. 



Laird, J. E., Gongdon, C. B., & Coulter, K. J. (1999). The 

Soar User's Manual Version 8.2: University of 

Michigan. 

Langley, P., & Choi, D. (2006). Learning recursive 

control programs from problem solving. Journal of 

Machine Learning Research, 7, 493-518. 

Newell, A. (1990). Unified Theories of Cognition. 

Cambridge, MA: Harvard University Press. 

Piaget, J. (1937). The construction of reality in the child. 

New York: Basic Books. 

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. 

(2000). Supporting cognitive models as users. ACM 

Transactions on Computer-Human Interaction, 7(2), 

141-173. 

Ritter, F. E., Kase, S., E., Bhandarkar, D., Lewis, B., & 

Cohen, M. (2007). dTank updated:  Exploring 

moderator-influenced behavior in a light-weight 

synthetic environment. Paper presented at the 16th 

Conference on Behavior Representation in Modeling 

and Simulation, U. of Central Florida: Norfolk, VA. 

51-60. 

Sun, R. (2004). Desiderata for cognitive architectures. 

Philosophical Psychology, 17(3), 341-373. 

Sun, R., & Giles, C. L. (2000). Sequence Learning - 

Paradigms, Algorithms, and Applications (Vol. 

1828). Berlin Heidelberg: Springer. 

Sun, R., Peterson, T., & Merrill, E. (1999). A hybrid 

architecture for situated learning of reactive 

sequential decision making. Applied Intelligence, 

11, 109-127. 

Sun, R., & Sessions, C. (2000). Automatic Segmentation 

of Sequences through Hierarchical Reinforcement 

Learning. In R. Sun & C. L. Giles (Eds.), Sequence 

Learning (pp. 241–263). Berlin Heidelberg: 

Springer-Verlag. 

 

 

Acknowledgments 

 

Support was provided by ONR Contracts N00014-08-1-

0481 and N00014-06-1-0164. 
 

Author Biographies 

 

OLIVIER GEORGEON is a cognitive scientist with an 

interest in learning from experience; he is currently a 

research associate in the ACS (Applied Cognitive 

Science) Lab in the college of IST at Penn State.  

FRANK RITTER is on the faculty of the College of IST, 

an interdisciplinary academic unit at Penn State to study 

how people process information using technology. He 

edits the Oxford Series on Cognitive Models and 

Architectures and is an editorial board member of Human 

Factors, AISBQ, and the Journal of Educational 

Psychology. 

STEVEN HAYNES is a Professor of Practice in the 

College of IST at Penn State. His research focuses on 

explanation facilities for intelligent systems, and design 

rationale. 

 


