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ABSTRACT 
We present autonomous agents that are designed without 
encoding strategies or knowledge of the environment in the agent. 
The design approach focuses on the notion of sensorimotor 
patterns of interaction between the agent and the environment 
rather than separating perception from action. The agent’s 
motivational system is also interaction-centered in that the agent 
has inborn proclivities to enact certain sensorimotor patterns and 
to avoid others. Such motivations result in the agent 
autonomously discovering, learning, and exploiting regularities of 
interaction afforded by the environment, and constructing 
operative knowledge of the environment. Because such agents 
have no predefined goals, we propose a set of behavioral criteria 
to both judge and demonstrate the agents’ capacities, rather than 
performance measurement. A design platform based on NetLogo 
is presented. Results show that these agents demonstrate 
interesting behavioral properties such as hedonistic temperance, 
active perception, and individuation. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning. I.2.11 [Artificial 
Intelligence]: Distributed Artificial Intelligence – Intelligent 
agents.  

General Terms 
Algorithms, Measurement, Design, Experimentation. 

Keywords 
Intrinsic motivation; Autonomous learning; Cognitive 
development; Enactive cognition; Affordances; Constructivism. 

1. INTRODUCTION 
This paper presents an argumentation in favor of the concept of 
environmental agnosticism as an original and useful concept to 
think about autonomous agents. We introduce this concept to 
capture the idea that we do not encode our knowledge of the 
environment in the agent’s decisional mechanism. A typical 
example of such encoded knowledge would consist of a set of 
logical rules that specify the agent’s behavior in response to 
specific information received from the environment (sensory 
input). Another example would consist of modeling the agent’s 
environment as a predefined problem space in which reward 
values would be associated with predefined problem states and 
such values propagated across states [15]1. Instead, we expect 
environment-agnostic agents to learn the semantics of 
sensorimotor information and the ontological structure of their 

world by themselves.1  

Our motivation for studying environment-agnostic agents is both 
theoretical and practical. On the theoretical level, we believe that 
this study can shed some light on how knowledge emerges in 
artificial agents and becomes meaningful to them. This question 
relates to the symbol grounding problem [13] and the study of 
developmental cognition (e.g., [28]). On the practical level, 
environment-agnostic agents will facilitate the development of 
agent-based simulations by unburdening the modeler from 
encoding knowledge in the agent.  

As we intend to show, designing an environment-agnostic agent 
raises the crucial question of defining the agent’s drives. We 
employ the term drive to emphasize the difference from 
traditional approaches that employ the terms task or goal. Indeed, 
we argue that programming an agent to perform a given task or to 
reach a given goal generally implies specifying how the agent 
interprets its world. For example, behavioral rules presuppose the 
semantics of input data, and traditional reward values presuppose 
goal assessment criteria. Such presuppositions conflict with the 
environment-agnosticism principle because environment-agnostic 
agents are precisely expected to learn by themselves how to 
interpret their world.  

An intuitive distinction between drives and goals may be 
expressed by the fact that drives enforce a bottom-up approach 
starting from inborn behavioral tendencies toward the possible 
construction of higher-level goals, while goals follow a top-down 
approach through the decomposition of a problem into sub-goals. 
This conception of drives can also be related to the concept of 
intrinsic motivation (e.g., [2, 19]) in that the motivation does not 
come from an external reward. Yet, we acknowledge that the 
nuance may still seem vague and better pertaining to the domain 
of philosophy than computer science. At a philosophical level, let 
us only note here that we find some resonance with Dennett’s 
inversion of reasoning argument [6]. The purpose of this paper is 
not to pursue this philosophical discussion any further but to show 
that this shift of viewpoint is not mere jargon and rhetoric but can 
have a strong impact on the way we develop autonomous agents. 

Our intuition in developing environment-agnostic agents is to put 
the focus on the interaction between the agent and the 
environment rather than only on the agent. When designing 

                                                                    
1 The Soar architecture offers an emblematic illustration of these 
two types of examples as a rule-based system extended with 
reinforcement learning (Soar-RL). We credit the Soar team for 
acknowledging this knowledge-oriented bias in both cases. 



autonomous agents, we, indeed, must presuppose the possible 
range of interactions between the agent and the environment. For 
example, in the case of robots, engineers define the robot’s 
interactions when designing sensors and effectors. In the case of 
natural organisms, phylogenetic evolution selected the organism’s 
sensorimotor system. In a similar manner, we predefine 
environment-agnostic agents’ interactions in a given environment. 
We, however, neither presuppose nor specify how the agent 
should interpret such interactions. Instead, the agent has 
behavioral drives that define preferred courses of action in the 
world. The agent learns regularities of interactions and exploits 
such regularities in turn to better fulfill its drives. This mechanism 
is explained in more detail in Section 2. 

The fact that the agent has no predefined goals raises the question 
of how to assess its behavior. This question is discussed in Section 
3, and illustrated by experiments in Section 4. Section 5 presents 
the design/simulation platform employed for implementing 
environment-agnostic agents. Finally, the conclusion discusses the 
implications and limitations of the concept of environmental 
agnosticism for future work. 

2. ENVIRONMENTAL AGNOSTICISM 
Fundamentally, we believe designing environment-agnostic 
agents entails considering individual sensorimotor patterns as the 
atomic elements of cognition, without making an initial 
distinction between perception and action. This assumption is 
supported by many theories in cognitive science that argue that 
perception, cognition, and motion are entangled (e.g., [5, 14, 18, 
21]). Specifically, Piaget [22], proposed the term scheme to refer 
to sensorimotor patterns. In the rest of this paper, we simply refer 
to sensorimotor patterns by the term elementary interactions.  

Figure 1 illustrates the elementary interactions along the 
interaction timeline. Elementary interactions are represented by 
letters (A, B, C, A, D, A …). As introduced in Section 1, these 

interactions have no associated semantics implemented in the 
agent. Because of the absence of implemented semantics, these 
interactions can correspond to anything in the environment, which 
is why we characterize the agent as environmentally agnostic. As 
opposed to traditional artificial agents, this agent has no channel 
by which it would directly “perceive” its environment, but can 
only discover the structure of the environment through the 
regularities experienced while enacting these interactions. 

2.1 Intrinsic drives 
In addition to focusing on elementary interactions, we propose 
implementing inborn proclivity values associated with such 
interactions (in parenthesis in Figure 1). Accordingly, we provide 
the agent with a mechanism that tends to seek interactions with 
positive proclivity values, and to avoid interactions with negative 
proclivity values. Such a mechanism results in the implementation 
of primitive intrinsic drives because, subjectively, the agent seems 
to simply enjoy interactions that have positive proclivity values, 
and to dislike interactions that have negative proclivity values. As 
we present later, the difficulty resides in that the agent needs to 
learn what interactions will result from its choices. 

Proclivity values are related to the notions of intrinsic reward 
(e.g., [25]) and value systems (e.g., [21, 26, 27]) in reinforcement 
learning. Because of this relation, our approach can be considered 
a form of discrete time decision process consisting of learning a 
policy function that tends to maximize a reward function over 
time. Traditional algorithms of discrete time decision processes, 
however, require assumptions incompatible with the agnosticism 
principle. For example, Markov Decision Process (MDP) 
algorithms require that the temporal dependency be known a 
priori, and that the environment be modeled in the form of states 
that the agent can directly recognize. Partially Observable Markov 
Decision Process (POMDP) [1] algorithms offer a way toward 
eliminating these hypotheses but they require a state evaluation 
function to assesses a believed state from observational data. The 
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Figure 1. Learning and decisional mechanism of an environment-agnostic agent.  
The agent’s activity is represented along the interaction timeline. Letters (A, B, C, etc.) represent primitive interactions. Primitive 
interactions are associated with proclivity values pre-defined by the designer (e.g., (0), (-1), (5), etc.). Through its activity, the 
agent learns hierarchical sequences of interactions (composite interactions) that capture hierarchical regularities of interaction 
with a given environment (e.g., (A(DA))(BC)). The agent represents its current situation in the form of these hierarchical 
composite interactions. Over time, learned composite interactions allow the agent to predict the consequences of its choices 
depending on the current situation, and, therefore to select interactions that have the best chance to maximize the agent’s 
proclivity in a given environment (e.g., BC). The agent can learn to enact unsatisfying interactions (e.g., B(-1)) to reach situations 
where it can enact even more satisfying interactions (e.g., C(5)).  
 



state evaluation function needs to be known a priori, which 
remains incompatible with the agnosticism principle.  

Here, we propose the term proclivity because this term conveys 
the idea that interactions are enacted for their own sake, while the 
term reward suggests that interactions are enacted for the sake of 
their outcome. Enacting interactions for their own sake removes 
the need for a pre-assumed model of the world. With proclivity, 
knowledge follows from action, while, with reward, action 
follows from knowledge. Our approach based on proclivity values 
relates more to continuous case-based reasoning [23] or trace-
based reasoning [17] (but unsupervised, with no presupposed 
knowledge) than to traditional reinforcement learning, as we will 
develop in Section 2.2. 

Notably, we consider this proclivity value mechanism only as an 
initial value system. In the future, we imagine implementing more 
elaborated drives, for example drives that may vary according to 
the agent’s internal status (e.g., simulating a form of hunger 
varying over time).  

2.2 Knowledge representation 
An agent’s stream of interaction with a given environment 
depends both on its decisions and on the unfolding of the 
environment. That is, the agent may well decide to try to enact an 
interaction with a high value, but this attempt may result in an 
actual interaction with a low value, due to unexpected 
environmental conditions (e.g., the agent may try to enact an 
interaction consisting of moving forward, but this attempt may 
result in bumping into a wall). This effect will be further 
explained in Section 4 and Figure 2. Because of this, the agent 
needs to learn to predict the interactions that result from its 
decisions. This raises the question of how to encode the 
knowledge that the agent learns. 

We recommend representing the agent’s knowledge as sequences 
of interactions. This view conforms with Gibson’s [11] notion of 
affordance. Gibson suggests that the world is not known 
“objectively” but is rather known in terms of possibilities of 
interaction, called affordances. Encoding the agent’s knowledge 
as sequences of interactions also follows from the fact that our 
agent has no other source of information about the environment 
anyway.  

We devised an algorithm in compliance with these principles, 
called the Intrinsically Motivated Schema mechanism (IMOS) 
[10]. A significant difference from most existing decision process 
algorithms is that IMOS does not require Markov’s hypothesis 
that the duration of the temporal dependency be known a priori. It 
can learn arbitrarily long episodes of interest by autonomously 
finding their beginning and end points. As opposed to partially 
observable Markov decision process (POMDP), IMOS does not 
require that the set of possible hidden states be defined a priori. 
IMOS recursively organizes episodes in a hierarchy of sub-
episodes, a higher-level episode being a sequence of lower-level 
episodes. The proclivity value of a higher-level episode is set 
equal to the sum of the proclivity values of its sub-episodes, all 
the way down to predefined primitive proclivity values. The 
ability to perform such learning stems from the fact that, in the 
environmentally agnostic approach, the criteria for selecting 
interesting episodes are incorporated within the learning 
mechanism in the form of proclivity values. The agent can test 
hypothetical episodes and progressively select the most satisfying 
episodes with regard to their value.  

Figure 1 illustrates this principle by representing learned 
hierarchical episodes of interaction in the agent’s memory 
((A(DA))(BC)). The activity at hand reactivates previously 
learned episodes that match the current situation (A(DA)) which 
in turn, triggers the subsequent interactions that are the most 
likely to result in satisfying interactions (as far as the agent can 
tell at this point in its development). This matching is possible 
because of the consistency between the representation of the 
situation and the representation of agent’s procedural experience 
(a form of homoiconicity).   

Again, we consider this mode of knowledge representation only as 
a starting point from which more elaborated representational 
structures can be derived. In particular, this mode of 
representation can be coupled with additional structures proposed 
by other researchers in Piagetian mechanisms, such as synthetic 
elements (e.g., [20]) or bare schemas (e.g., [12]). When 
implementing such structures, however, the assumptions these 
structures make about the environment should be explicitly stated. 
Notably, the purely sequential representations that we suggest 
here have the advantage of remaining compliant with the principle 
of environmental agnosticism because the agent has no a priori 
knowledge of how to represent the world “as such”. The agent 
only knows and learns interactions.  

3. EXPERIMENTAL PARADIGM 
As introduced in Section 1, environment-agnostic agents are not 
designed to improve their performance over time with regard to a 
predefined problem set, task, or goal. Performance, as 
traditionally defined, is, therefore, not a property that 
appropriately accounts for the expected qualities of such agents. 
Instead, environment-agnostic agents are developed for their 
qualitative behavioral properties or for their theoretical 
implications on the study of developmental cognition. To study 
these agents, researchers need to agree on such expected 
properties.  

This section proposes an initial list of expected properties based 
on our experience implementing environment-agnostic agents and 
on existing literature. In particular, Oudeyer, Kaplan, and Hafner 
[19] noted similar needs to characterize the properties of 
intrinsically motivated robots. These authors distinguished 
between three categories of criteria: (a) evolution of internal 
variables that account for the robot’s learning (e.g., accuracy of 
anticipation or level of detail of learned categories); (b) evolution 
of external variables that characterize the robot’s behavior (e.g., 
efficiency in the interaction with the environment); (c) evidence 
of reaching certain well-known developmental stages with regard 
to psychological or ethological theories. 

3.1 Internal evaluation criteria 
Category (a), the evolution of internal variables, has the advantage 
of objectivity because these criteria are based on variables 
implemented in the system. The drawback, however, is that each 
system has its specific variables, which complicates the 
comparison across systems. With these criteria, the authors need 
to clearly explain the significance of the variables.  

A typical internal criterion is the growth of the variable that 
represents the system’s satisfaction, as measured by its value 
system. We can formulate this criterion as: 

a.1 Principle of objective hedonism. 



For example, with the value system introduced in Section 2.1, the 
agent’s objective hedonism is demonstrated by the agent’s 
increasing ability to perform interactions with high values, and 
avoid interactions with negative values.   

Notably, the principle of objective hedonism does not require the 
agent to reach the optimum value but only good-enough values 
(notion of bounded rationality [24]). Because good-enough values 
cannot be precisely defined, this principle should be 
complemented with qualitative principles that reflect the agent’s 
decisional mechanisms more precisely. In particular, the agent 
should not simply react towards the highest immediate value. This 
can be expressed in the form of the corollary principle: 

a.2 Principle of hedonistic temperance. 

The agent should learn to enact negative interactions when such 
interactions can lead to even more positive interactions. 
Conversely, the agent should learn to refrain from enacting 
positive interactions when such interactions would lead to more 
negative interactions. 

3.2 Behavioral criteria 
Category (b), behavioral criteria, has the advantage of supporting 
comparisons across systems, because these criteria are based on 
the external observation of the system’s behavior. The expected 
behavior can, however, vary across studies, raising the need for 
defining general principles. Assessing the agent’s development 
with regard to general principles is the point of the third category 
listed by Oudeyer and coauthors (c). Yet, principles proposed by 
theories in psychology and ethology appear too vague, and out of 
reach for current artificial systems [12]. In the current state of the 
art, we need precise behavioral principles that account for the very 
beginning of the developmental process.  

Surveys in developmental robotics (e.g. [2, 16, 28]) suggest three 
widely acknowledged principles: 

b.1 Principle of situational categorization. 

The agent should exhibit the capacity to categorize aspects of its 
situation and to adjust its behavior according to such categories. 

b.2 Principle of situational disambiguation. 

The agent should distinguish between different situations that 
generate the same sensory stimuli (perceptual aliasing, [3]).  

b.3 Principle of graceful readaptation. 

The agent should readapt gracefully to novel situations rather than 
experiencing catastrophic forgetting [7]. 

Moreover, the interaction-centered approach inspires two 
additional principles: 

b.4 Principle of active perception. 

The agent should learn to enact interactions not only because of 
their direct proclivity but also to update its representation of the 
current situation so as to take better decisions.  

b.5 Principle of individuation. 

Different executions of the same system should possibly lead to 
individualized instances exhibiting different habits. This principle 
accounts for the intuitive distinction between drives and goals 
according to which drives should leave room to individual 

choices. Individuation can occur through an “en habitus 
deposition” (De Loor [4] citing Husserl). 

In summary, the criteria to assess environment-agnostic agents 
generally involve temporal analysis—either quantitative (category 
a) or qualitative (category b). This indicates a need for 
implementation platforms that generate activity traces and support 
activity trace analysis. The next section illustrates these principles 
by presenting example experiments.  

4. EXAMPLE IMPLEMENTATIONS 
When implementing an environment-agnostic agent in a specific 
environment, the designer chooses the meaning that he or she 
assigns to the primitive interactions. For example, he or she may 
design a two-dimensional grid where interactions may consist of 
moving, turning, bumping into obstacles, touching objects, etc. 
An agnostic agent, however, may even ignore that its world has 
two dimensions. The designer implements the execution of the 
interactions in an interface layer, as depicted in Figure 2.  

The designer also chooses the primitive interactions’ proclivity 
values to generate interesting behaviors. For instance, if a 
negative value is associated with the interaction turn, and a 
positive value with the interaction move forward, then the agent 
tends to move forward, and turns only to ensure even more 
moving forward or to avoid subsequent even more negative 
interactions (such as bumping a wall). Conversely, with positive 
values associated with turning, the agent would learn to spin in 
place.  

Interesting behaviors come from that an agent’s possibilities of 
interaction and their proclivity values are adapted to a specific 
environment. In the case of natural organism, we assume that such 
adaptation results from phylogenetic evolution. Notably, this 
motivational mechanism is neither purely extrinsic (as would be a 
reward associated with an object in the environment), neither 
purely intrinsic (as curiosity in [2, 19]). Instead, it is interaction-
centered and results from the pairing of an agent with an 
environment.  

4.1 Simple sequential environment 
We first demonstrated the intrinsically motivated schema 
mechanism in the experiment shown in Figure 3 [10]. In this case, 

AGENT 
Timeline B(-1) 

Action (e.g., move) Stimulus (e.g., bump) 

Intention: B Enacted: E 

… 

INTERFACE 

ENVIRONMENT 

A(0) 
E(-1) 

 
Figure 2. The interface agnostic agent/environment. 
The interface between the agent and the environment 
generates the actions in the environment (e.g., try to move) 
from the intended interactions (e.g., B: move), and either 
confirms the intended interaction (B) or generates a 
contradictory interaction (e.g., E: bump). The meaning of 
the interaction is not implemented in the agent’s decisional 
algorithm. 
 



The agent had 6 possible choices: try to move forward, turn left, 
turn right, touch in front, touch left, and touch right. The 
environment generated a single bit in return, which resulted in the 
12 possible primitive interactions listed in Figure 3 (center). 
Again, the agent had no other way of apprehending its 
environment than interaction (no traditional “perceptual system”). 
This experiment can be seen online2. 

An analysis of this experiment based on the criteria listed in 
Section 3 leads to the following findings. This agent met the 
principle of objective hedonism (a.1) by learning to enact 
interactions of higher value, in particular by learning to avoid 
bumping into walls. Yet, the agent demonstrated temperance (a.2) 
because it learned to enact turn and touch interactions to ensure 
safer moves. The agent also demonstrated its capacity to identify 
and discriminate between situations (b.1, b.2) by representing the 
situation in the form of sequences rather than with the current 
feedback received from the environment (a single bit at each 
single point in time). The agent showed active perception (b.4) by 
adopting the habit of touching ahead before moving forward, and 
not moving forward if it touched a wall. This result is original 
because nothing initially differentiated perceptive interactions 
from motion interaction from the agent’s viewpoint, except their 
cost (value). In essence, the agent learned to use cheap 
interactions to gain a better representation of the situation to 
ensure safer high-value interactions, which grounded the meaning 
of the constructed perception in the agent’s activity. 
This agent, however, had difficulties when the environment was 
not shaped as a linear route but was rather an open space, because 
the agent’s sequential mechanism had trouble capturing spatial 
regularities. To address this difficulty, we implemented the 
experiment reported next. 

4.2 Simple open space environment 
In the experiment reported in Figure 4, we implemented 
interactions that were sensitive to remote properties of the 
environment [8]. This implementation was inspired by the visual 
system of an archaic arthropod, the limulus (horseshoe crab). In 
particular, two notable properties of the limulus were reproduced: 
(a) sensitivity to movement: the limulus’s eye responds to 
                                                                    
2http://e-ernest.blogspot.com/2010/12/java-ernest-72-in-

vacuum.html 

movement, and the limulus has to move to “see” immobile things; 
(b) behavioral proclivity toward targets: male limulus move 
toward females, based on vision. 

To replicate these behaviors, we simply implemented an interface 
that sent dynamic visual features to the agent. In this case, the 
primitive interactions were generated from the agent’s action in 
the environment (move and turn), associated with the dynamic 
features resulting from the changes in the agent’s visual field 
(target appear, closer, reached, and disappear). The behavioral 
proclivity toward targets was implemented by giving positive 
values to interactions in which the target appeared or enlarged in 
the visual field, and negative values when the target disappeared 
from the visual field (Figure 4, center). Note that the agent had no 
way to accurately predict when the target would disappear from 
its visual field as it moved forward. 
This experiment demonstrated hedonist temperance (a.2) and 
active vision (b.4). In some instances, the agent learned to move 
forward until the target disappeared from its visual field as the 
agent passed it (active vision, b.4), then made a U-turn (hedonist 
temperance, a.2) and turned to realign itself with the target (in 
bold in Figure 4, right). In other instances, the agent learned to 
move toward the target in stair steps until it aligned itself with the 
target (trail shown in Figure 5). Once learned, an agent instance 
kept the same strategy when new targets were introduced in the 
board. This demonstrates the principle of individuation (b.5). 
Videos of these behaviors are available online3. These behaviors 
can also be reproduced in the simulation platform described in 
Section 5. 

In this experiment, the agent exhibited adaptation to a spatial 
environment by simply capturing sequential regularities, but 
without capturing spatial regularities. For example, the agent did 
not learn the persistence of objects in space: it stopped pursuing a 
target in configurations where the target became hidden behind 
walls. Additionally, this agent was unable to adapt its behavior to 
different objects in the environment, for example, seeking food 
when hungry and water when thirsty. Such issues of spatial 
regularity learning and object persistence learning constitute a 
topic of research that we are currently exploring [9]. 

                                                                    
3 http://e-ernest.blogspot.com/2011/01/tengential-strategy.html 

Primitive interactions  Val. 
Move forward ! 10 

Bump wall ! -10 
Turn 90° right toward empty square " 0 

Turn 90° right toward wall " -5 
Turn 90° left toward empty square # 0 

Turn 90° left toward wall # -5 
Touch wall ahead – 0 

Touch empty square ahead – -1 
Touch wall on the right \ 0 

Touch empty square on the right \ -1 
Touch wall on the left / 0 

Touch empty square on the left / -1 

 

Trace: 
1! 2\ 3!! 4\ 5\ 6/! 7\ 8/ 9/! 10"! 11#! 12!! 13/! 14/ 
15!! 16# 17"! 18"! 19!! 20/! 21/ 22" 23! 24"! 
25\! 26/ 27!! 28#! 29- 30!! 31!! 32- 33"! 34- 35#! 
36\ 37# 38-! 39! 40/ 41"! 42/! 43/ 44- 45/! 46/ 47/ 
48/ 49# 50\ 51-! 52! 53- 54/! 55\! 56#! 57# 58! 
59#! 60/! 61/ 62(//) 63/ 64(//) 65# 66! 67!! 68" 
69! 70- 71- 72(//) 73# 74! 75/ 76\! 77-! 78! 79\ 80- 
81\ 82- 83(//) 84# 85! 86/ 87#! 88/ 89# 90! 91\! 
92- 93/! 94- 95\! 96" 97! 98\ 99-! 100! 101- 102- 
103/ 104\! 105" 106! 107\ 108- 109(//) 110# 111! 
112-! 113! 114- 115/! 116/ 117- 118\! 119" 120! …  

Figure 3. Example environment-agnostic agent in a sequential environment (adapted from [10]). 
Left: The agent (triangle) in the environment. Filled cells are walls which the agent can bump into. Center: List of the 12 primitive 
interactions with their proclivity values. Right: Activity trace of an example run. Steps 116 through 120: the agent has learned how 
to recognize and deal with a corner: touch the wall on the left – touch the wall in front – touch the empty square on the right – turn 
right – move forward. 
 



5. DESIGN/SIMULATION PLATFORM 
Evaluating agnostic agents using the principles and criteria 
described in Sections 2 and 3 demands a flexible agent simulation 
platform to easily set up and run experiments. Such a platform 
should provide the means to parameterize experiments as well as 
offer mechanisms to detect patterns of agent behaviors in order to 
assess the agent's performance. We decided to use NetLogo [29] 

because we find it one of the simplest, most powerful, and most 
widely used agent simulation platforms available. 

In a typical NetLogo simulation, the world consists of patches, i.e. 
components of a grid, and turtles that are agents that “live” and 
interact in that world. Modeling complex agents and environments 
is greatly facilitated by the fact that each entity participating in the 
simulation can carry its own state, stored in a set of system and/or 

Primitive interactions Values 
Move forward (>) 0 

Bump wall [>] -8 
Turn 90° right to empty square (v) 0 
Turn 90° right to adjacent wall [v] -5 
Turn 90° left to empty square (^) 0 
Turn 90° left to adjacent wall [^] -5 

Additional value for each eye   
Appear   * 15 
Closer + 10 

Reached x 15 
Disappear o -15 

 

Trace: 
1 2(> |+) 3(> |+) 4(> |+) 5(> |+) 6(> |+) 7(> |o) 8(v |*) 
9(v*|o) 10(>+| ) 11(^ |*) 12(^o| ) 13(^ |o) 14(^*| ) 15(>o| ) 
16(>) 17(>) 18(^*| ) 19(vo| ) 20(v) 21(^) 22(>) 23(^*| ) 
24(^o|*) 25(^ |o) 26(^) 27(v) 28(v |*) 29(^ |o) 30(^) 31(>) 
32(^*| ) 33(^o|*) 34(v*|o) 35(>+| ) 36(^o|*) 37(v*|o) 
38(>+| ) 39(^ |*) 40(v |o) 41(>o| ) 42(>) 43(^*| ) 44(^o|*) 
45(> |+) 46(> |+) 47(> |o) 48(v |*) 49(v*|o) 50(>+| )  
51(^ |*) 52(>+|+) 53(v |o) 54(vo| ) 55(v |*) 56(v*| )  
57(v |o) 58(^ |*) 59(>+|+) 60(>+|+) 61(>+|+) 62(>x|x) 
63(>o|o) 64(v) 65(v) 66(v) 67[v] 68(^) 69[v] 70(v) 71(v) 
72(v) 73[v] 74[>] 75(^*| ) 76(^o|*) 77(> |+) 78(> |+)  
79(> |+) 80(> |+) 81(> |+) 82(> |o) 83(v |*) 84(v*|o) 
85(>+| ) 86(^ |*) 87(>+|+) 88(>x|x) 89(^o|o) ...  

Figure 4. Example environment-agnostic agent in an open space environment (adapted from [8]). 
Left: The agent in the environment. The agent’s visual system is made of two pixels that can only detect blue cells (targets). Each 
pixel covers a 90° span. Center: primitive interactions: move, or turn 90°, plus dynamic features possibly returned by each eye: 
appear, closer, reached, disappear. Right: Activity trace. An interaction consists of associating the agent’s action with the signal 
sent by the eyes, separated by the symbol “|”. Step 62: the agent finds and “eats” the first target. Step 75: a second target is 
inserted in the environment. Steps 77 to 88 (bold) demonstrate the learned behavior: Steps 77-81: the agent goes on a straight 
line with the target enlarging in its right eye’s field. Step 82: the target disappears from the agent’s right eye’s field as the agent 
passes it. Steps 83-86: the agent makes a U-turn, returns back one step, and turns left towards the target. Step 87: the agent is 
aligned with the target and moves forward. Step 88: the agent reaches the target. Once learned, this “strategy” is repeated to 
reach other targets that the experimenter randomly introduces in the environment.  
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Figure 5: The NetLogo implementation of the IMOS agnostic agent. The platform allows the user to easily draw qualitative 
results. In the image, the diagonal strategy is shown by the trail left behind by the agent. The user can also set up a series of 
experimental runs (batch experiments) to observe the agent’s long-term behavior.   



user defined variables, allowing great flexibility in the simulations 
that can be implemented. Moreover, a simulation domain specific 
programming language permits implementation of any “sensors” 
or “actuators” that the experiment requires. Thus, a large range of 
worlds and a variety of agents can be simulated in order to 
evaluate design choices and test ideas in agent systems. 

The intrinsically motivated schema mechanism [10] was 
integrated in NetLogo through an appropriate Java module, that 
we called the IMOS extension (Interaction MOtivation System). 
Thus, the environment and the interface (as defined in Section 4 
and illustrated in Figure 2) are implemented in standard NetLogo, 
whereas the agents’ decision/learning mechanism is handled by 
the IMOS extension. This architecture facilitates implementation 
of an unlimited number of different experimental settings by 
simply encoding the agent/environment related models, as well as 
effortlessly changing the agent parameters (e.g. proclivity values) 
in order to see how these parameters affect the agent’s behavior. 
Finally, the NetLogo primitives offer an easy visualization of the 
agent's motion in the world (trails) that leads to a clear detection 
of patterns of interaction in the agent's behavior (Figure 5). 
Although, all the above could be implemented in any 
programming language, the simulation Domain Specific 
Language (DSL) that NetLogo offers makes the task of encoding 
simulation environments including controls, monitors etc., simple. 
The implementation of the open space environment described in 
Section 4.2 is depicted in figure 5. Through the interface, the user 
can change the full set of experimental parameters in order to 
investigate their impact on the learned behavior. Such 
experimentation can lead to rather interesting observations. For 
example, using the platform, we were able to investigate how 
proclivity values affect the agent's interaction with the 
environment and also to investigate the impact of initial 
conditions, i.e. the initial locations of the agent and the target, on 
the different “strategies” learned by the agent in order to approach 
the target. 

In the experiment in Section 4.2, the agent had a rather limited 
way of navigating through the environment, simply by moving 
between grid positions and turning by 90 degrees each time. In 
order to assess the algorithm's robustness and performance in a 
higher resolution environment, we simply changed some of the 
sensors and effectors (turning angle, cone of vision and movement 
capabilities) of the agent in the NetLogo part of the simulation, 

with proclivity values and the learning algorithm remaining the 
same as in the original experiment. As seen in figure 6, the agent 
managed to learn a similar strategy to approach the target, 
supporting further the argument regarding the robustness of the 
learning algorithm and the approach. 

Thus, in more than one respect, NetLogo proved to be an 
excellent platform for evaluation and testing of the agnostic agent 
approach presented in this paper. The whole experimental 
platform, together with the Java library module, is available 
online4. 

6. CONCLUSION 
We propose an approach to designing autonomous agents with 
minimal preconception of their environment. We characterize 
such agents as environmentally agnostic. This approach focuses 
on the notion of sensorimotor patterns of interaction between the 
agent and the environment rather than on the usual notions of 
perception and action.  

The sensorimotor approach allows the implementation of an 
interaction-centered motivational mechanism. With this 
mechanism, the agent has inborn proclivities to enact 
sensorimotor patterns with high values and to avoid sensorimotor 
patterns with negative values. To do so, the agent needs to 
discover, learn, and exploit regularities of interaction afforded by 
the environment, which results in the autonomous construction of 
operative knowledge.  

The interaction-centered motivational mechanism contrasts with 
traditional problem-solving or reinforcement-learning approaches 
in that it implements drives rather than goals. We argue that the 
fulfillment of drives should be assessed through activity analysis 
rather than performance measurement. We propose a list of 
developmental principles that should be observed in the agent’s 
activity, in particular: objective hedonism, hedonistic temperance, 
active perception, and individuation.  

Experiments show agents that meet the developmental principles 
in rudimentary settings. We provide the algorithm as a NetLogo 
extension to demonstrate that the agent’s decisional process is 
independent from the environment that the designer chooses to 
implement. These experiments constitute an initial investigation 
of the principles of environment-agnosticism but the resulting 
behaviors are still rudimentary and many issues remain. In 
particular, we are now studying how environment-agnostic agents 
can learn spatial regularities and knowledge of persistent objects 
in the environment.  
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