Implementing Spatial Awareness in an Environment-Agnostic Agent

Simon Gay
Olivier Georgeon
Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMRS5205, F-69622, France
simon.gay@liris.cnrs.ft, olivier.georgeon@liris.cnrs. fr

Jong Wook Kim
University of Central Florida
Orlando, FL 32816
Jong. Kim@ucf.edu

Keywords:
autonomous learning, cognitive development, spatial awareness, object persistence.

ABSTRACT: We designed an autonomous agent that discovers, learns, and exploits basic spatial regularities of
interaction with its environment. To do so, we propose implementing a persistence memory system that records bundles
of “possibilities of interaction” afforded by objects in the environment, coupled with a local space memory system that
represents the agent’s surrounding local space (inspired by the vertebrate’s tectum). An experiment in a simple
simulated environment demonstrates how the agent performs multimodal integration of sensory stimuli, and allocates
the origin of such stimuli to “phenomena’ located in the external spatial environment. Such mechanisms open the way
to implementing agents with minimal preconception of their environment, and to modeling intrinsic motivation in

autonomous agents.
1. Introduction

We address the question of implementing agents with
minimal initial preconception of their environment. We
define such agents as environmentally agnostic. An
environmentally agnostic agent has to autonomously learn
to extract relevant information about the environment, and
simultaneously organize such information in exploitable
knowledge (Georgeon & Ritter, 2011). Environment-
agnostic agents are useful to facilitate the development of
agent-based models and simulations by reducing the
amount of knowledge that must be encoded in the agent.
More broadly, studying such agents opens the way to
modeling the emergence of new behaviors in autonomous
agents.

In previous studies, we started to address this question by
implementing an agent that learned hierarchical sequences
of behaviors in a bottom-up fashion. To do so, we
developed a novel algorithm that we called the
intrinsically motivated schema mechanism (Georgeon,
Ritter, & Haynes, 2009; Georgeon & Ritter, 2011). With
this algorithm, the agent was able to autonomously
capture and exploit hierarchical sequential regularities
afforded by the environment. This mechanism
implemented intrinsic motivation in that the agent’s
behavior was driven by predefined low-level behavioral
proclivities that gave rise to higher-level behavior. This
approach stands in contrast from goal or task-directed
navigation algorithms (e.g., Batalin, Sukhatme, & Hattig,

2004; Frommberger, 2008). It also differs from classical
reinforcement learning techniques (e.g., Sutton & Barto,
1998) in that it addresses the question of developmental
learning (i.e., fast learning during the agent's
development) (e.g., Lungarella, Metta, Pfeifer, & Sandini,
2003) rather than learning over many trials (often
thousands in classical reinforcement learning). In
particular, our agent received no predefined reward when
a final goal was achieved and we did not implement
backward propagation of a reward value.

A subsequent study (Georgeon, Cohen, & Cordier, 2011)
showed that an agent equipped with such a sequential
learning mechanism was able to acquire basic navigation
skills in an open space environment. This study, however,
also showed the limits of this purely sequential approach
when applied to spatial regularity learning. For example,
the agent was unable to notice that two different
sequences of movement may lead to the same point in
space. Moreover, the agent was unable to discover the
persistence of objects. The agent stopped pursuing a
target of interest when the target was lost by the sensors
(hidden or out of span). To overcome these kinds of limits
and to move on toward higher-level learning, we now
address the question of the autonomous discovery of
spatial regularities. We refer to this issue as implementing
mechanisms of spatial awareness in an environmentally
agnostic agent.

Our mechanism, a spatial awareness mechanism in an



environment-agnostic agent, was inspired by the brain
structure most natural organisms have, whose activation
maintains some geometrical correspondence with the
animal’s local surrounding environment. We refer to the
mushroom body in the case of insects, and the tectum in
the case of vertebrates, also called the colliculus in the
case of mammals (e.g., Cotterill, 2001).

In this study, we advocate implementing two initial
mechanisms: the persistence memory and the local space
memory. The persistence memory is a long-term memory
that memorizes associations of interactions and stimuli
based on their co-occurrence. We name such associations
by the term bundle. This term refers to pragmatic
epistemology (e.g., Hume, 1739) that postulates that the
knowledge of objects is constructed through usage rather
than given a priori. In this framework, Hume proposed
the bundle theory of objects. This theory posits that
objects consist only of the collection of their properties
observed through interaction. Accordingly, we expect our
agent’s bundles to represent objects in the environment in
the form of possibilities of interaction. The second
mechanism, the local space memory, is inspired by the
tectum in the vertebrate’s brain, and consists in an internal
geometrical counterpart of the surrounding environment.
These two mechanisms constitute the agent’s spatial
system. The spatial system has two objectives: it allows
the agent to perform a spatially-organized multimodal
integration of sensory stimuli, and it makes the agent able
to project the consequences of its actions in an egocentric
referential, possibly beyond the range of the agent’s
perception.

We propose a design methodology that begins by
indulging some hard-coded preconceptions to get the
spatial system running. In this first step, we setup and
demonstrate the coupling between the intrinsically
motivated sequential system and the spatial system. The
second step consists of progressively removing the
preconceptions from the spatial system in order to move
toward an agent as much agnostic as possible. Following
this approach, we organized the paper in two parts. The
first part (Section 2) presents the initial experiment made
with the hard-coded spatial system. This experiment
illustrates how the agent works. From the lessons learned
in this initial experiment, we list the infringements of the
principle of agnosticism that need to be addressed. The
second part (Sections 3 and 4) reports our algorithms that
start addressing these infringements. Finally, the paper
discusses our results and draws recommendations for
future work.

2. Initial experiment

We implemented an autonomous agent in the environment
shown in Figure 1. The agent is represented as a shark.

Both the agent mechanism and the environment are
implemented in Java. We use the grid unmit as distance
unit. A grid unit correspond to the length of a side of an
elementary block object. So far, the environment is static:
the agent is the only thing that moves. The agent has four
primitive possibilities of action: (a) move forward
(approximately one grid unit), (b) turn approximately /4
to the left, (¢) turn approximately m/4 to the right, and (d)
eat fish. The agent moves freely in a continuous space and
gets uneven from the grid. The agent has a visual system
of 12 pixels covering a total span of & radian. Each pixel
reports the dominant color seen in its 7t/12 corresponding
span. The filled cells and the surrounding perimeter
represent walls where the agent would bump if it tries to
move through them. The agent cannot see through objects
(wall, alga or fish). The agent also has a “9-pixels” tactile
system (a 3x3 matrix) that detects adjacent objects or
objects below the agent (alga or fish). Fish and alga feel
soft. Walls feel hard.

Figure 1: The agent in the environment.

The agent’s behavior is generated by the intrinsically
motivated sequence learning mechanism described in our
previous work (Georgeon & Ritter, 2011). We
implemented the local space memory with a radius of 2
grid units. When a co-occurrence of two or more stimuli
is detected, the bundle formed by these stimuli is
constructed in persistence memory and a pointer is placed
in the local space memory to follow the relative
displacement of this bundle when the agent moves.

2.1 Analysis of an example run

A representative run can be seen online (Georgeon, 2011).
The first two hundred steps of this run are represented in
Figure 2, using a technique of activity trace representation
developed in a previous study (Georgeon, Mille, Bellet,
Mathern & Ritter, 2011). The various tapes show the
sensory and internal state of the agent at each step, as
described next. A step is a cycle of interaction between
the agent and the environment.
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In Figure 2, Tape 1 represents the agent’s tactile system
(light gray: touching nothing, intermediary gray: touching
soft, black: touching hard). The touching in front of the
agent is represented in the center of the tape. The
touching to the agent’s left side in the upper part, and to
the right side in the lower part. The touchings below and
behind the agent are not represented. Additionally, red
circles represent bumping walls, and yellow circles
represent eating fish. The agent experiments bumping on
dark green walls on steps 9 through 13, and then
significantly reduces bumping on such walls. Similarly,
the agent learns bumping on light green walls on steps 59
and 60.

Tape 2 represents the agent’s visual perception. The
twelve visual pixels are represented vertically as
rectangles when the agent moves forward, and as
trapezoids when the agent turns. This tape shows colored
object traversing the visual field as the agent moves and
turns.

Tape 3 represents the co-occurrences of interactions from
different sensory modalities. For example, on step 55, the
gray square associated with the blue square represents the
co-occurrence of touching and seeing a fish. On step 56,
the gray square associated with the yellow square
represents the co-occurrence of touching a fish and eating
a fish. Co-occurrences trigger the construction of bundles,
or either confirm or infirm existing bundles.

Tape 4 represents the construction of bundles from co-
occurrences. For example, on step 9, the agent constructs
a bundle made of the association of touching, seeing, and
bumping a wall (green, black, and red cube). On step 55,
the agent constructs the bundle of seeing and touching a
fish (gray and blue cube). On step 56, the interaction of
eating is added to this bundle (gray, blue, and yellow
cube).
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Figure 2: Example activity trace (upper part: steps 0-100, lower part: steps 100-200).

Tape 5 shows a bar-graph whose color represents the
focus of the agent’s current atfention, and whose value
represents the associated attractiveness (positive or
negative). For example, during steps 1 through 8§, the
agent focuses on the dark green color just because it is the
preeminent color in its visual field. This colors has a mild
attractiveness because the agent has not yet learned how
to interact with it. On step 9, the agent associates this
color with bumping, which makes this color become
repulsive. Conversely, on step 56, the blue color becomes
highly attractive when it gets associated with eating a fish.
At any point in time, the most attractive or most repulsive
bundle in the surrounding space wins the agent’s
attention. The agent has a proclivity to move toward the
object of current attention if it has a positive
attractiveness, or to turn away from the object of current
attention if it has a negative attractiveness.

Tape 6 represents the agent’s local space memory, that is,
the memory of bundles surrounding the agent. The agent’s
surrounding space is represented as an ellipse, with the
front of the agent being on the right. For example, on step
9, the green area in the ellipse represents the agent being
aware of the wall in front of it. On steps 188 and 189, the
trace shows that the agent does not see nor touch any fish,
but it is still aware of a fish on its rear-right side (blue
area in the ellipse). This awareness causes the agent to
turn back towards that fish and eat it on step 196.

In summary, this experiment illustrates how we envision
implementing spatial awareness in an intrinsically
motivated agent. The agent was able to gradually learn the
associations of possibilities of interaction afforded by
persistent objects in the environment. Such associations
were memorized internally in the form of bundles.
Bundles have a value (attractiveness) related to the
possibilities of interaction that they afford. The agent
maintains a memory of the position of bundles in local
space memory. This memory, in turn, impacts the agent’s
sequential behavior.



2.2 Infringements of the principle of agnosticism

When implementing this agent, we had to hard code some
presuppositions about the coupling between the agent and
the environment. We hard coded what co-occurrences
were possibly interesting:

a.l Bumping while touching something with the frontal
tactile sensor.

a.2 Eating while touching something with the tactile
sensor below the agent.

a.3 Touching something with the frontal tactile sensor
while seeing a specific color within the two central visual
pixels.

a.4 Eating while seeing a specific color within the two
central visual pixels.

We hard coded the agent’s knowledge of its basic
geometry:

b.1 The position of the tactile sensors in the egocentric
reference.

b.2 The maximum radius of the local space memory (2
grid units).

We hard coded the consequences of the agent’s actions in
the local space memory:

c.1 The move forward action generates a translation of
one grid unit in the local space memory.

¢.2 The turn action generates a rotation of w/4 in the local
space memory.

To move towards agnostic agents, such hard coded
presuppositions should be replaced with autonomous
learning mechanisms. To address this concern, we
implemented the autonomous learning algorithms
described in the next section.

3. Learning correspondence between sensors,
actuators, and space

By implementing an algorithm that autonomously learns
the correspondence between the values returned by
sensors, the agent’s actions, and the surrounding local
space, we aim at developing a general space-aware
system as independent as possible from its sensory and
motor configuration. To do so, we first address
presupposition b.1 by implementing an algorithm to learn
the correspondence between sensors and local space
(Section 3.1). Then, we address presuppositions c.1 and
c.2 by implementing an algorithm to learn the geometrical
transformations that apply to the local space memory
depending on each possible action (Section 3.2).

3.1 Correspondence between sensors and local space

This first step consists in learning the structure of the
sensory system. This point has a paramount importance as
it allows the agent to determine the provenance of stimuli
in the surrounding space. The agent can then generate an
internal image of the environment that it can manipulate.
As our agent is supposed to be agnostic, the algorithm
described next is designed to use uninterpreted values
returned by sensors.

We called this algorithm the sensor mapping algorithm
that learns the correspondence between the values
returned by sensors and the agent’s surrounding local
space. This algorithm relates to existing algorithms that
allow robots to exploit uninterpreted sensors (e.g., Pierce
& Kuipers, 1997). Its specificity, however, is that it
constructs a representation of how the sensors cover the
surrounding space. We call this representation the sensory
space structure.

The sensor mapping algorithm uses sensors for which
each returned value can be related to the presence of a
certain property, for example, an object, on a unique point
of the surrounding local space. Specifically, it is intended
to work with sensors that return rough information on the
distance of the first detected object. Examples of such
sensory systems are a stereoscopic visual system that
returns approximate distance and color for each pixel, a
sonar system that returns distance and echoic property,
and a whiskers system (vibrissa) that returns approximate
distance and tactile property. We formalize such a
requirement as follows:

Each sensory modality consists of a set of directional
probes (e.g., a single whisker, or a “light cone” generating
a “pixel” in a visual system). The positions and directions
of probes are initially unknown. The probes may not be
straight but they must be fixed with regard to the agent (if
not, the algorithm must be run for each configuration of
the probes). Each probe returns two numerical values:
A (abscissa) and S (stimulus). The value A reflects the
position of the first object detected along the probe (the
object’s abscissa along the probe). The only condition on
this abscissa is of being a monotonic function of the
distance of the object from the agent. This condition
needs to consider the fact that objects may mask other
objects behind them. The metrics of the abscissa is,
however, unknown and may not be linear. These metrics
may not be consistent across probes and modalities. The
value S reflects a physical property of the detected object
(e.g., the color for vision, the tactile feeling for touch), or
absence of object (e.g., touch nothing).

This set of assumptions indicates that each tuple [probe,
abscissa] corresponds to a single Point of detection (Pq) in



the agent’s surrounding space. Each Pq in the environment
is represented by a Point of sensation (Ps) in the sensory
space structure. A point of sensation is said active if the
value A returned by the corresponding probe is greater
than the point's abscissa. This means that every sensor
used by the sensor mapping algorithm is considered as an
array of binary sensors, represented by a set of points of
sensation. The sensor mapping algorithm gradually
adjusts the positions of Pss in the sensory space structure
to reflect the actual positions of Pss in the environment,
starting from any arbitrary configuration (random or
implementing an inborn assumption). It relies upon the
assumption that the distance between two points is
proportional to the average delay between changes of
activity or S value of the corresponding probe at each of
these two points. The Pss are placed to optimize the
consistency between the delays in the changes of values
and Pss’ distance in the sensory space structure.

Once the sensory space structure is learned, the agent can
localize a place in the environment as the origin of the
stimulus. Because the metrics of the sensory space
structure does not rely on the metrics of the abscissa of
the probes, the localization of the origin is consistent
across modalities. Therefore, the sensor mapping
algorithm supports a spatially-organized multimodal
integration of stimuli. For example, the agent can
determine that the origin of a specific tactile stimulus soft
and the origin of a specific visual stimulus green are
located at the same place in the environment. Allocating
an origin to stimuli implies assuming that stimuli have a
cause in the environment. Such cause can be called a
phenomenon, typically defined as any observable
occurrence. To external observers, these phenomena
correspond to physical objects in the environment (e.g.,
walls, alga, fish). The agent, however, does not see these
objects as we see them, nor does it allocate them the same
utility as we do, which is why we refer to the objects as
phenomena from the agent’s viewpoint.

The agent can construct an origin map that represents the
location of the phenomena in the environment. Such an
origin map is, however, not enough to have an operational
representation of the environment. Additionally, the agent
needs to learn the relation between its motor actions and
the origin map. This question is addressed next.

3.2 Correspondence between actions and local space

This algorithm is called the motion mapping algorithm,
which learns the correspondence between the actions of
the agent and the geometrical transformations in the
agent’s origin map. This algorithm addresses
presuppositions c.1 and c¢.2 introduced in Section 2.2.

The motion mapping algorithm consists first of

computing a vector field that describes the relative
movements of the origins in the origin map when the
agent moves. This vector field can be thought of as an
“optic flow” (Figure 4) in the image made of the points of
sensation of the sensory space structure. Because the
resolution of this image may be low, we used an
algorithm inspired by the insect eye algorithm developed
by Franceschini, Pichon and Blane (1992). This algorithm
estimates the movement by measuring the time between
variations of values in a point of sensation and its
neighbors. Note that the goal of the motion mapping
algorithm is not to anticipate complex consequences of
actions in the environment (such as the trajectory of
objects in motion) nor to allow complex navigation and
localization in space (e.g., Mataric, Meyer, & Wilson,
2009; Meyer, Guillot, Khamassi, Pirim, & Berthoz, 2005),
but only to learn the relation between primitive actions
and the local space.

We assume that the agent cannot move its body parts but
can only move as a whole block in a two-dimensional
environment. With this assumption, the agent’s actions
can be expressed as the sum of a translation and a
rotation. Consequently, the resulting geometrical
transformations in the local space memory consist of the
sum of a translation and a rotation in the opposite
direction. The algorithm computes the value of this
translation and this rotation by measuring the average
translation and rotation in the vector field.

Once the translation and rotation values are known, the
agent can apply them to the origin map to follow up the
relative positions of phenomena when the agent moves.
This approach is related to map learning algorithms based
on occupancy grids (Elfes, 1989). For example, if a wall
is on the agent’s left side, and the agent makes a rotation
step to right, then the agent knows that the wall moved
behind, even though the agent cannot see the wall
anymore. Moreover, the origin map is now related to the
agent’s possibilities of actions. For example, the agent can
estimate the distance of phenomena in terms of the
actions needed to reach them.

3.3 Bundle construction

As noted in Section 3.1, origin maps are consistent across
sensory modalities because they are based on delays
during movements rather than on the metrics of sensors.
Therefore, the agent can infer that different stimuli from
different sensory modalities are “caused” by the same
phenomenon when the origins of such stimuli overlap.
The agent creates a bundle to represent the set of the
different interactions afforded by this phenomenon. Once
learned, the bundles are memorized in persistence
memory, and can be subsequently recognized. For
example, the agent creates the bundle of touching hard



from the tactile map, and seeing dark green, from the
visual map to represent the phenomenon “wall”. This
mechanism eliminates presupposition a.3. The agent can
then subsequently enrich the “wall bundle” by adding the
interaction “bump”. Then, the sequence learning
mechanism will cause the agent to avoid walls when it
recognizes them, as reported in Section 2.

4. Second experiment

We implemented these algorithms in a similar agent as
presented in Section 2, in the same environment as in
Figure 1. We, however, modified the visual and the tactile
system to provide more precise input to the algorithms.
The visual system now has a resolution of 5° over a total
span of 180° (36 “pixels”). Each pixel returns the color
and the distance of the first detected object, with a
maximum range of 20 grid units. The tactile system is
composed of 18 whiskers distributed all around the agent.
Each whiskers return the distance and a tactile property of
the closest object, with a maximum range of 1.5 grid unit.

4.1 Sensor mapping

The sensor mapping algorithm was tested with the tactile
system, with a resolution of 3 points of detection on each
whisker at a distance of 0.5, 1, and 1.5 grid units from the
center of the agent. Figure 3 allows a comparison of the
actual points of detection (Figure 3.a) with the learned
points of sensation in the tactile sensory space structure
(Figure 3.b). This result was obtained after 1000 steps
starting from an initial condition where the individual
points of sensation were placed randomly (independently
from the whisker to which they belong). This result shows
that the agent was able to approximately learn the
configuration of its whiskers. The whiskers, however,
appear “shrinked”. We believe that the precision on the
whiskers’ length could be improved by considering the
movement of the agent learned from the motion mapping
algorithm. This would involve interweaving the sensor
mapping algorithm with the motion mapping algorithm in
the future developments.

(a) (b)

Figure 3: the real tactile system (a) and the sensory
space structure (b) given after 1000 steps. Black
radial lines represent whiskers and the black circle
line represents the whiskers' basis.

Figure 3b also provides a representation of an instance of
the tactile origin map when the agent is sensing a “wall
phenomenon” on its left side (dark green) and a “fish
phenomenon” on its front (blue).

4.2 Motion mapping

Figure 4 reports examples of vector fields computed by
the motion mapping algorithm applied to the visual
system. To obtain these results, we, however, hard coded
the visual sensory space structure rather than learning it
with the sensor mapping algorithm. As noted in Section
4.1, merging these two algorithms remains a challenge
that we plan to address in future studies.

Figure 4: average movement flow given by the visual
system, for a rotation (a) and a translation (b).

The average translation and rotation vectors are then
computed for each action. The Table 1 summarizes the
coefficients measured after 100 steps. Coefficients are the
ratio between the linear or angular speed and the distance
(in grid unit) or angle (in radius) covered in one
simulation step. Even though there is a non negligible
error, translation and rotation actions are recognizable.

Table 1 : real and measured translation (Tx and Ty) and
rotation (Rz) coefficients.

action Real coefficients Measured
coefficients
Move forward| Tx =0 Tx =0.022
Ty =0.333 Ty =0.376
Rz=0 Rz=1.19.10*
Turn right Tx=0 Tx =0.058
Ty=0 Ty =0.017
Rz=1.75.103 Rz=1.53.107
Turn left Tx=0 Tx =0.061
Ty=0 Ty =-0.015
Rz=-1.75.103 Rz=-1.51.10°




Figure 5.b shows an instance of the origin map for the
tactile system, using whiskers with 15 points of detection
each. In this figure, colored areas represent the origin of
tactile stimuli: touching soft (light gray), touching edible
(middle gray), touching hard (dark gray), empty (white),
and black areas indicate untouched areas.

(a)

tactile cartesian wisual cartesian

(b) (©

Figure 5: figure (a) shows the actual position of the agent
in the environment. (b) map represents the tactile origin
map, (c) the visual origin map. The red point shows the
position of the agent in its own egocentric reference, the
front of the agent is on the top.

Figure 5.c shows the instance of the origin map for the
visual system in the same situation. In both of these
figures, the agent’s location is represented by a red point
and the agent’s front is oriented upwards. More precisely,
the agent keeps track of the probabilities of different
phenomena at each location but the colors in the figures
only represent the most likely phenomenon at each
location. Figure 5.a represents the corresponding situation
of the agent in the environment. Figure 5 shows that this
mechanism provides the agent with a sense of persistence
of phenomena: in the lower part of the visual map, the
yellow and blue phenomena are still present in the visual
origin map while being outside of the agent’s visual span.

4.3 Bundle construction

As introduced in Section 3.3, bundles are constructed
when different sensory stimuli have overlapping origins.
Figure 6 illustrates this mechanism. Figure 6.a
summarizes the bundles constructed in this instance by
associating visual stimuli (x axis) with tactile stimuli
(y axis): empty, hard, soft, and edible.

Figure 6.b shows the agent’s local space memory in the
same instance as presented in Figure 5. In Figure 6.b,
bundles are represented by their colors but actually are
multimodal representations of phenomena that are
spatially localized in the agent’s surrounding local space.

These bundles are also used to recognize and localize
phenomena according to partial perceptions, by
completing missing sensory modalities. For example, in
the instance shown in Figure 5.a, the agent can see green
object in front of it, but cannot touch them. The agent can
determine the missing tactile stimulus according to the
learned bundles. In this case, there is one bundle which
include the visual green stimulus: the “wall” bundle. The
phenomena corresponding to green walls are then added
to the local space memory. Figure 6.c shows the local
space memory completed by such a recognition system.

stimuli connections

(b) (©)

Figure 6: Bundle construction. (a) composition of
bundles, y axis: empty, hard, soft, edible, x axis: color.
(b) local space memory containing bundles represented
by their color. (c) local space memory completed with
most probable bundles according to partial perception.

5. Discussion and Conclusion

We propose the implementation of a spatial system to
enable an autonomous agent to keep track of objects in its
environment. Such system improves the agent’s ability to
construct increasingly elaborated behaviors. This
implementation is part of an ongoing study of how an
intrinsically motivated agent becomes aware of the world
in which it exists. We believe that the algorithms
presented here shed some light on this question by
illustrating the relations between the capacity of an agent
to orient itself in space and its capacity to allocate a
“cause” to its perceptions in the world (phenomena). In
particular, this work confirms the importance of time,



delays, and sequences in a cognitive system, as many
recent studies tend to show (e.g., Nicolelis, 2011). All our
algorithms involve time: the sensor mapping algorithm
constructs  spatial  dependencies  from temporal
dependencies, the motion mapping algorithm learns
relations between actions and space, and the agent’s
decision process is based on sequence learning. We argue
for a methodology relying on techniques of activity trace
analysis to study temporal dependencies in a cognitive
system.

More practically, this work opens the way to modeling
agent’s behavior without having to program specific
behavioral rules and predefined sensors. This will
facilitate agent modeling in the future, and will facilitate
studies on the emergence of complex behaviors.

Our current implementation, however, still has
limitations. One limitation is that the sensor mapping
algorithm and the motion mapping algorithm remain to be
merged together. The agent should simultaneously learn
the consequences of its actions and the structure of its
sensory system. We believe that the separation of these
algorithms causes imprecision in the whole process that
still prevented us from being able to set up a
comprehensive experiment to demonstrate the overall
improvement of the agent’s behavior. Another limitation
is that some hard-coded presuppositions still remain.
Specifically, presuppositions a.1 and a.2 require creating
bundles by associating tactile or visual stimulations with
active interactions such as bumping or eating. Addressing
this limitation requires taking vision and touch as active
processes and merging the control of these processes with
the intrinsically motivated sequence learning mechanism.
We plan on addressing these questions in future work.
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