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Figure 1: Reference and distorted models from our dataset (stimulus #9) along with human-perceived distortions (color-coded probabilities
of artifact detection) and distortion maps from different metrics (colors mapped in the min-max range). The distortion prediction performance

of each metric is given in term of Area Under ROC Curve (AUC).

Abstract

Several perceptually-based quality metrics have been introduced to
predict the global impact of geometric artifacts on the visual appear-
ance of a 3D model. They usually produce a single score that re-
flects the global level of annoyance caused by the distortions. How-
ever, beside this global information, it is also important in many ap-
plications to obtain information about the local visibility of the ar-
tifacts (i.e. estimating a localized distortion measure). In this work
we present a psychophysical experiment where observers are asked
to mark areas of 3D meshes that contain noticeable distortions. The
collected per-vertex distortion maps are first used to illustrate sev-
eral perceptual mechanisms of the human visual system. They then
serve as ground-truth to evaluate the performance of well-known
geometric attributes and metrics for predicting the visibility of ar-
tifacts. Results show that curvature-based attributes demonstrate
excellent performance. As expected, the Hausdorff distance is a
poor predictor of the perceived local distortion while the recent
perceptually-based metrics provide the best results.
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1 Introduction

3D meshes are subject to a wide range of processes which in-
clude compression, simplification, filtering, watermarking and so
on. These processes inevitably introduce distortions which alter the
geometry of these 3D data and thus their final rendered appearance.
Classical metrics such as Hausdorff distance and root mean square
error have proven to be very poor predictor of the perceptual annoy-
ance caused by geometric artifacts [Lavoué and Corsini 2010]. As
a consequence, mesh visual quality (MVQ) metrics have been re-
cently introduced by the scientific community [VaSa and Rus 2012;
Wang et al. 2012; Lavoué 2011], mostly inherited from image qual-
ity assessment metrics [Wang and Bovik 2006]. Their objective
is to evaluate the visual impact of graphics artifacts (e.g. geometric
quantization noise, smooth deformations due to watermarking, sim-
plification artifacts and so on). A comprehensive review has been
recently published about 3D mesh quality assessment [Corsini et al.
2013]. These quality metrics provide good results in term of corre-
lation with the human opinion, however they are mostly specialized
in outputting one global quality score which predicts a global level
of annoyance caused by all artifacts present in the 3D model. Such
global quality index is relevant for many computer graphics appli-
cations, for instance, to evaluate the rate-distortion performance or
to reduce/augment the quantization precision in the case of a com-
pression algorithm. However, beside this global information, it is
also important in many cases to obtain an information about the
local visibility of the artifacts (i.e. a per-vertex measure of the per-
ceived distortion). Such local information is useful to drive locally
any geometry processing algorithms (e.g. simplification, remesh-
ing, filtering and so forth). While some metrics [Lavoué 2011;
Wang et al. 2012] do produce such local distortion maps, they have
never been evaluated quantitatively with regards to this task.

In that context we propose a new ground-truth dataset of localized
distortion maps, obtained through a subjective experiment. For
this purpose we gather a set of 3D models associated with sev-
eral types of distortions (watermarking, quantization, non-uniform
noise, smoothing and simplification). In the experiment, we ask the
observers to mark vertices of the distorted models where they per-
ceive noticeable differences as compared with the reference ones
(using a brush painting interface). After an analysis of the inter-
observer agreement, we show that the obtained results illustrate



some perceptual mechanisms of the human visual system (mask-
ing effect and frequency sensitivity). We then use this dataset to
perform quantitative analysis and comparison of the performance
of several geometric attributes, as well as recent perceptual metrics,
for the task of local visible difference prediction.

The rest of this paper is organized as follows: section 2 describes
the related work about visual quality assessment of 3D graphics and
local artifact visibility metrics. Then, section 3 presents our subjec-
tive experiment. Finally, section 4 details the tested attributes and
metrics while section 5 presents the results of our study.

2 Related work

In this section, we provide a brief survey of existing 3D mesh vi-
sual quality metrics; for more details we refer the reader to [Corsini
et al. 2013]. We also present image quality metrics that focus on
localized distortion prediction.

2.1 3D mesh visual quality metrics

Existing perceptually-motivated metrics are all full reference, i.e.
they compare the distorted and original 3D models to compute a
global quality score. The first authors who tried to incorporate
some perceptual insights to improve the reliability of geometric dis-
tortion measures were Karni and Gotsman [2000] who proposed
combining the Root Mean Square (RMS) distance between corre-
sponding vertices with the RMS distance of their Laplacian coordi-
nates (which reflect a degree of smoothness of the surface). Lavoué
[2011] proposed a metric based on local differences of curvature
statistics, while Vasa and Rus [2012] considered the dihedral an-
gle differences. These metrics consider local variations of attribute
values at vertex or edge level, which are then pooled into a global
score. In contrast, Corsini et al. [2007] and Wang et al. [2012]
compute global roughness values per model and then derive a sim-
ple global roughness difference. Similarly to recent image quality
metrics, some of these latter algorithms [Vé4sa and Rus 2012; Wang
et al. 2012] integrate perceptually motivated mechanisms such as
visual masking. While these methods have been primarily designed
for global quality prediction, some of them [Lavoué 2011; Wang
et al. 2012] are also able to output a localized distortion map of
which accuracy has, however, never been evaluated objectively.

As can be seen above, existing metrics are based on different geo-
metric attributes: pure geometric distance, Laplacian coordinates,
different kinds of curvatures, dihedral angles and so forth, which
are then subject to filtering, weighting and local or global com-
parisons. There is actually no consensus on the most perceptually
important attributes. One of the contribution of the proposed work
is precisely to determine the best set of attributes and filters for the
task of visible difference prediction.

2.2 Image quality metrics for artifact localization

The idea of predicting localized artifacts has been already studied
for 2D images. One of the pioneer works is the Visible Difference
Predictor (VDP) from Daly [1993] which outputs a probability-of-
detection map. This complex metric includes a number of process-
ing stages related to the mechanisms of the human visual system
(such as the contrast sensitivity function). This metric has been ex-
tended for high dynamic range images by Mantiuk et al. [2011].
The well known SSIM (Structural SIMilarity) index, introduced by
Wang and Bovik [2004], also outputs a distortion map. Recently,
several authors [Herzog et al. 2012; Cadik et al. 2013] have fo-
cused on detecting the visibility of rendering artifacts in synthetic
images (e.g. structured noise from approximate global illumina-
tion or halo artifacts from tone mapping) after having observed
than general-purpose metrics (VDP, HDR-VDP-2, SSIM) fail for

this task [Cadik et al. 2012]. The subjective experiments of Cadik
et al. [2012] are quite related to the proposed work. They con-
ducted experiments where they ask observers to mark image pixels
with noticeable/objectionable distortions in the presence/absence of
a reference image. This study was inspiring for us and we elabo-
rate on the same idea. However, we tackle the problem of 3D mesh
quality at the vertex level, while they consider image quality at the
pixel level. Note that we did not consider the no-reference task,
since it would have been too difficult in the case of 3D models (as
explained in the next section).

3 Localized distortion experiment

The objective of this experiment is to study the visibility and annoy-
ance of geometric artifacts localized on the surface of 3D objects.
More specifically, we ask observers to mark areas of 3D objects that
contain noticeable distortions, regarding a reference. Results of this
study provide insights on the perceptibility of certain artifacts and
will be used as well to evaluate the performance of existing metrics
and geometric features to predict this visibility.

3.1 Experimental design

As raised in [Corsini et al. 2007], the design of subjective quality
evaluation experiment involving 3D content requires the choice of
many parameters (e.g. lighting, material, background, level of in-
teraction). Several authors have made such 3D subjective quality
experiments [Vasa and Rus 2012; Corsini et al. 2007; Watson et al.
2001; Rogowitz and Rushmeier 2001]; whereas none of them tack-
led the task of local artifact marking, we inspired from these works
to design our protocol as follows:

e We consider a full-reference experiment, i.e. the observers see
the distorted 3D model to mark, together with the reference not-
distorted one. A no-reference task would have been too difficult
since an observer, even expert, cannot have a sufficient a pri-
ori on a 3D shape to be able to notice that a region presents an
artifact without knowing the reference.

e We consider a full interaction scenario (the use of static view-
points is not recommended [Rogowitz and Rushmeier 2001]).

e To minimize the influence of the light and the camera positions
on the perception of artifacts, we simply consider a front direc-
tional lighting without specular reflections.

e Asin [Corsini et al. 2007], we chose a non-uniform background
in order to minimize the influence of the silhouette.

e We provide to the user a mesh painting tool, with a customizable
brush size.

Our interface is built upon MeshLab [Cignoni et al. 2008].

3.2 Stimuli creation

The choice of an appropriate set of stimuli for a subjective quality
experiment is critical. The objective of our study is to challenge the
ability of existing metrics to detect complex artifacts (e.g. smooth
structured patterns) in complex scenarios (e.g. near the visibility
threshold). Indeed, even a basic Euclidean geometric distance is
able to predict the visibility of a too obvious artifact like a sharp ge-
ometric crease added on a sphere. Besides this need of complexity,
our dataset must also present a sufficient degree of diversity to allow
us to draw significant conclusions regarding the performance of the
metrics. Finally, given the time necessary for the painting task, the
dataset has to remain of limited size. Indeed, it is not realistic to ask
people to paint 80 models, which is the typical size of datasets used



for global quality assessment [V4Sa and Rus 2012; Lavoué 2011].
For all these reasons, we selected a small set of surface models ex-
hibiting very different shapes, containing both smooth and rough
parts, and associated with different sampling densities (see table 1
for details). For the distortions, we have considered several realistic
processing operations:

e Watermarking - Three different algorithms are used, they re-
spectively modify the volume moments [Wang et al. 2011], the
low frequency spectral coefficients [Wang et al. 2009] and the
vertex norms [Cho et al. 2007] (i.e. their distance to the centroid
of the model). The distortions are respectively smooth deforma-
tions and structured ring patterns.

o Compression - We consider uniform geometric quantization, the
most common lossy process of compression algorithms.

e Simplification - We use the QEM algorithm [Garland and Heck-
bert 1997].

On top of these realistic distortions we also consider noise addition
and smoothing [Taubin 1995], in order to emulate further complex
processes. These distortions are applied in a local manner on se-
lected regions of the object, either rough or semi-rough (see objects
#4 to #8). As stated above, the idea is to create a compact set of
challenging and diversified stimuli (11 in total). We still have in-
troduced a certain amount of consistency: we conducted the same
attack (noise addition) on different models and different attacks on
the same model (Egea), in order to be able to draw conclusions
about these factors.

3.3 Participants and procedure

The participants were shown each distorted object next to its ref-
erence version, side by side on the same screen and with the same
size. They were able to fully interact with the models (rotation,
zoom and translation) and to change the size of the painting brush.
They were instructed to mark the regions (on the distorted model)
were they could see any visible difference with respect to the ref-
erence one, and were given no time limit. The 11 pairs of models
were presented in random order to prevent any order bias. Before
starting the test session, each participant was subject to a training
phase to make him familiar with 3D object manipulation and with
the mesh painting tool.

Three different sizes of screen were used: 14, 19 and 22 inches.
Given the fact that each pair of stimuli (distorted and reference)
spanned the full screen, each stimuli thus subtended at least 15 de-
gree of visual angle horizontally. 20 participants took part to the
experiment (3 females and 17 males), they were aged from 16 to 27
years and had normal or corrected vision. They were students and
staffs from the university of Lyon in France and from the North-
western Polytechnical University of Xi’an in China, with no exper-
tise in geometry processing. No differences were observed due to
gender or screen size.

The time to mark all 11 objects was 90 minutes on average (with
a standard deviation of 30 minutes). This may seem long (e.g.
30 minutes is usually recommended for a rating experiment [Rec-
ommendation ITU-R BT. 500-11 2002]), however observing and
painting a small number of models is far less tiring that rating hun-
dreds of stimuli. It is interesting to observe that these painting times
highly depend on the objects: 5 minutes on average were necessary
to mark each simplified Bunny object (#10 and #11) while an av-
erage of 12 minutes was taken for the Vase Lion (#9). These times
seem to depend both on the object shape and attack complexity, but
interestingly these values remain consistent among the observers.
An example of distortion map obtained from the human subjects is
shown in figure 2 (object #8). It results from averaging the 20 ob-
server’s binary maps and reflects the local probabilities of artifact

detection. In this example, more than 50% of the observers have
detected the geometric noise added on the neck and the ribs of the
dinosaur.

i
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Figure 2: Example reference and distorted models from our
dataset (object #8), along with human-perceived distortions (color-
coded probabilities of artifact detection).

3.4 Analysis
3.4.1 Observer agreement

Before exploiting the results of our experiment, it is critical to
analyze the agreement between participants. To assess this inter-
observer agreement we first consider the Kendall’s coefficient of
agreement [Kendall and Babington Smith 1940]. This coefficient,
noted as u, is usually used for assessing the consistency of votes
in paired comparison studies. It ranges from 1 (perfect agreement)
to —1/(n — 1), if n is even, and —1/n, if n is odd, where n is
the number of observers. In their experiment related to image local
distortion assessment, Cadik et al. [2012] computed this coefficient
per pixel; following this idea we compute it per vertex by consider-
ing the number of participants that have chosen the distorted choice
over the not-distorted one and vice versa. We can then derive an av-
erage coefficient w per object. Still as in [Cadik et al. 2012], and
considering the fact that the high number of unmarked vertices will
push the coefficient toward high values, we also compute Upmask
for which we average only vertices marked as distorted by at least
5% of the observers. Results are detailed in table 2. The values
of U and Uqsk averaged over all the objects are respectively 0.60
and 0.43. That constitute good agreement values very close to those
from Cadik et al. [2012] (0.78 and 0.41).

We could consider that these values sufficiently assess the agree-
ment of the observers and thus the reliability of our experimental
results. However, computing the agreement for each vertex sepa-
rately may lose some important information about the randomness
of the observer’s choices. As an illustration, imagine that each ob-
server votes for a different subset of the mesh vertices, then u (as
well as Umaqsk) Will be high since all the vertices will be chosen
as unmarked by n or n — 1 observers. This high © value may be
considered as correct because observers mostly agree on the fact
that no vertex seems distorted. However, in that case we could
also consider that their votes are random and thus that their agree-
ment should be low. To face this issue we also computed a more
global statistical agreement indicator: the Krippendorff’s o coef-
ficient [Krippendorff 2004]. This indicator is able to measure the
agreement among an arbitrary number of observers assigning val-
ues to unstructured phenomena. It ranges from O (observers agree
as if chance had produced the results) to 1 (observers agree per-
fectly). For each object, we do not compute a single « value but the
distribution of « by bootstrapping (as recommended by the author



ID Original Model Distortion type =~ Method & ref. Settings MRMS
(vertex number) (1073
#1 Egea (100K) Watermarking ~ Volume moment [Wang et al. 2011] 75 bits inserted, a=0.7 0.85
#2 Egea (100K) Watermarking ~ Spectral [Wang et al. 2009] 16 bits inserted 0.59
#3 Egea (100K) Watermarking  Vertex norms [Cho et al. 2007] 64 bits inserted, method I 0.08
#4 Egea (50K) Smoothing Taubin [Taubin 1995] 30 iterations, on rough areas 0.33
#5 Egea (50K) Noise Uniform a = 0.9%, on rough areas 0.16
#6 Egea (50K) Noise Uniform a = 0.9%, on intermediate areas. 0.16
#7 Egea (50K) Smoothing Taubin [Taubin 1995] 30 iterations, on intermediate areas 0.26
#8 Dinosaur (42K) Noise Uniform a = 0.75%, on intermediate areas 0.17
#9 Vase Lion (39K)  Quantization Uniform 9 bits 0.33
#10  Bunny (25K) Simplification Garland & Eckbert [1997] 50% removed 0.15
#11  Bunny (25K) Simplification Garland & Eckbert [1997] 80% removed 0.29

Table 1: Details of our dataset. MRMS stands for Maximum Root Mean Square error, calculated using the Metro tool [Cignoni et al. 1998].

[Krippendorff 2004]) and thus we obtain a mean value and the asso-
ciated confidence interval. Table 2 details these mean values as well
as the 5'" and 95" percentiles. The o averaged over all the object
is 0.102. This is a relatively low value suggesting that the task was
indeed difficult. However, the percentiles show that these values
are significant so there really exists an agreement among the ob-
servers, assessing that their task has been reliably performed. Local
distortion marking is still a very unusual task in subjective qual-
ity assessment, hence it is hard to judge what can be considered as
a typical « value for this kind of data. Even if two observers to-
tally agree, they will not exactly mark the same vertices. Hence,
agreement values cannot meet the level of classical rating or paired
comparison experiments. What we can assert is that our observer
agreement is very similar to the one observed in the image localized
distortion experiment from Cadik et al. [2012] (this is assessed by
the similar ¥ and U,,qs% values and illustrated, in the supplemen-
tary material, by the similarity in the obtained maps). We argue that
the Krippendorff’s o should become a gold standard to evaluate the
observer agreement for localized distortion experiments.

When looking at the per-object agreement in table 2, we can ob-
serve that it varies from 0.011 to 0.218 (Krippendorff’s ). These
values directly reflect the difficulty for the observers to perceive the
artifacts. For instance, the noise added on the Egea model (#5 and
#6) is quite easy to detect (o > 0.20). On the contrary, a smooth
deformation due to watermarking (#1) is far more difficult to per-
ceive (o = 0.029). These agreement values allow us to detect two
problematic cases: object #2 owns a very high @ and a very low «,
and object #11 owns both low uw and « values. The artifacts of ob-
ject #2 are of very low frequency (see figure 3) and almost invisible,
thus observers have marked very few and almost random vertices.
On the contrary object #11 is too much simplified, hence observers
have painted almost all vertices. These two special cases will thus
be removed in some of our evaluation experiments.

3.4.2 Observations

The subjective distortion maps constitute great data for further stud-
ies about the perceptual mechanisms involved in the visualization
of 3D graphical content. While this investigation is not in the scope
of this paper, we provide here a quick illustration of two well known
features of the human visual system: the visual masking effect and
the frequency sensitivity.

Visual masking defines the reduction in the visibility of one stimu-
lus due to the simultaneous presence of another. For 3D surfaces,
this phenomenon points out the maximized visibility of geometric
distortions on smooth regions rather than on rough ones. This ef-
fect is perfectly illustrated by object #9: whereas the same uniform
9-bits quantization is applied for all vertices, we can observe that
the subjective artifact probability is much higher on the face of the

Kripp. o [57",95°"]
0.029 [0.029;0.030]
0.011 [0.010;0.012]
0.057 [0.056;0.058]
0.127 [0.126;0.128]
0.218 [0.217;0.220]
0.206 [0.205;0.208]
0.177 [0.175:0.178]
0.162 [0.161;0.164]
0.082 [0.081:0.083]
0.032 [0.030;0.034]
0.022 [0.020:0.025]
0.102 [0.101;0.104]

ID u Umask
#1 0.901 0.719
#2 0.952 0.761
#3 0.806 0.604
#4 0.705 0.435
#5 0.546 0.292
#6 0.537 0.282
#7 0.649 0.366
#8 0.483 0.337
#9 0.320 0.310
#10 0.537 0.498
#11 0.181 0.132
Mean 0.602 0.430

Table 2: Inter-observer agreement statistics, in terms of Kendall’s
u and Krippendorff’s a coefficients.

Lion which is rather smooth, than on the mane which is rough (see
figure 1).

The human visual system is also sensitive to the frequency of a
visual stimulus. Studies of this phenomenon have led to define
the contrast sensitivity function (CSF), characterized by a band-
pass filter with a peak frequency between 4 and 6 cpd (cycles
by degree) and a quick drop on each side of this peak. For 3D
shapes, this generally leads to observe that high-frequency distor-
tions have a much higher probability to be visually noticeable than
low-frequency ones. This frequency sensitivity is particularly well
illustrated when looking at objects #2 and #3. Their distortions are
respectively of very low and very high frequency (see figure 3).
Whereas the power of the distortion is much higher in object #2 (as
reflected by the MRMS values - 0.59 against 0.08), the number of
vertices marked as distorted is much lower: on average observers
have marked 1.2% of the vertices against 5.4% for object #3. This
is also illustrated by the observer maps in figure 3.

4 Selection of geometric attributes and met-
rics

Our subjective dataset provides the opportunity to analyze the per-
formance of existing metrics and well-known geometric attributes
for the task of visual difference prediction. We implemented the 12
features detailed below.

e Curvatures - We compute the minimum (X ), maximum (K32),
mean (K1 4+ K32)/2) and Gaussian (K1 x K3) curvatures. To
ensure the stability of the four curvature fields, as in [Lavoué
2011], we evaluate the curvature tensor using the method from
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Figure 3: Distorted models #2 (low frequency watermark) and
#3 (high frequency watermark). We present their Hausdorff and
observer maps. High frequency distortions have been much more

perceived by the observers.

[Cohen-Steiner and Morvan 2003] on a fixed-size neighborhood
around each vertex, i.e. a geodesic disk approximated by the
intersection of the surface with a sphere centered at the vertex.

e Shape Index and Curvedness introduced by Koenderink and
van Doorn [1992] - These fields are computed as follows:
SI =2/7 *xarctan[(K2 + K1)/(K2 — K1)]

Curv = +/(K? + K2)/2.
e Geometric position.

e Dihedral angle - It is computed for each edge and corresponds
to the angle between the normals of its adjacent faces. The com-
puted values are then averaged for each vertex. This attribute
was used in the perceptual metric from Véasa and Rus [2012].

e Normal - This attribute was considered in several simplification
algorithms such as VSA [Cohen-Steiner et al. 2004].

e Mesh Saliency - We have implemented the method from Lee et
al. [2005], based on a difference of Gaussian operator applied on
the mean curvature field.

e Geometric Laplacian - The relevance of the geometric Lapla-
cian regarding the perceived artifact visibility was raised by
Karni and Gotsman [2000]. As the authors, we consider the
graph Laplacian operator.

e Laplacian of Gaussian curvature - It corresponds to the Lapla-
cian operator applied on the Gaussian curvature field. This
attribute was used in the perceptual metric from Wang et al.
[2012]. As the authors, we consider here the cotangent weights
discretization of the Laplace operator.

Geometric positions, normals and geometric Laplacian are 3D vec-
tors, while the others are scalar values. Besides most simple geo-
metric features (positions and normals), we selected attributes ei-
ther commonly used in mesh quality metrics [V4Sa and Rus 2012;
Wang et al. 2012; Lavoué 2011], mesh analysis tools [Silva et al.
2009] or pointed as relevant by previous works related to percep-
tion [Lee et al. 2005; Chen et al. 2012].

Our objective is to predict the local visual distortion in a full refer-
ence scenario. Hence, for this task, we do not consider the attributes
themselves but differences of attributes. To compute these differ-
ences, we first establish a correspondence between the distorted
mesh D and the reference one R. For that purpose, we simply
perform a fast projection of the vertices from D onto the surface of
‘R. For each vertex v of the distorted mesh D (associated with given
attribute a,), we compute its nearest 3D point ¢ on the surface of
the reference model R using an efficient AABB tree structure. For
each 3D point 9, its attribute ay is interpolated from the triangle it
belongs to using barycentric coordinates. The features that we con-
sider are thus the local per-vertex differences of each attributes and

are computed as follows:
fv:‘av_aﬁl (1)

where |-| is the L2 norm in case of vector attributes. Additionally
to this simple difference, we also consider a normalized difference,
defined as follows:
N lav — as|

fo = maz(av,as) + K’ 2)
where K is a constant to avoid instability when denominators are
close to zero. The denominator has two goals, (1) it normalizes the
features f, (between 0 and 1), which may be necessary for further
machine learning algorithms and (2) it acts as a visual masking fil-
ter (e.g. it gives more weight to a same curvature variation in a flat
region than in rough or highly curved ones). Of course, for vec-
tor attributes (geometric position, normal and geometric Laplacian)
this denominator is discarded. The geometric position difference is
normalized by the maximum length R of the bounding box.
To strengthen the robustness of the attribute differences, we con-
sider each attribute at several scales; indeed on top of each per ver-
tex attribute values a.,, we consider also Gaussian-weighted aver-
ages a computed as follow:

>
A, =

v, EN(v,h)

wh (v;) aw, 3)

N (v, h) is the connected set of vertices belonging to the sphere
with center v and radius h (including the intersections of edges
with the sphere) and wﬁ() is a Gaussian weighting function
centered on v with standard deviation of h/2 (i.e. the radius
size h of the neighborhood is twice the standard deviation of
the Gaussian filter). For each attribute, we consider two scales
h = {0.012R,0.036R} on top of the per vertex version (with
R the maximum length of the bounding box). These scales
correspond to those used in [Lee et al. 2005].

Apart from these attribute differences, we also consider three other
metrics which produce distortion maps:

e The Hausdorff distance - Each vertex of the distorted mesh is
associated with its Hausdorff distance to the reference surface. It
actually corresponds to the geometric position attribute without
averaging and normalization. This measure is commonly used to
drive or evaluate geometry processing operations.

e MSDM?2 [Lavoué 2011] - This metric computes differences of
curvature statistics between the vertices of the distorted mesh
and their projections on the reference one, at multiple scales.
These local differences are then pooled into a single global score.
Hence, this metric natively produces a distortion map. However,
while it has shown to provide excellent results for global quality
prediction, this metric has never been evaluated for the task of
localized distortion visibility prediction.

o FMPD [Wang et al. 2012] - Like MSDM2, this perceptual met-
ric has proven to be an excellent predictor of the global quality
of 3D meshes but has never been evaluated for the task of visi-
ble difference prediction. The original FMPD computes a single
difference of global roughness value between the meshes to com-
pare. Here, we consider local differences of their local roughness
estimator, based on the Laplacian of Gaussian curvature modu-
lated by filters modeling the masking effect. This local roughness
difference is also subject to normalization and averaging (see eq.
2 and 3).

The whole set of tested features thus includes 12 attributes x 2
kinds of differences (simple and normalized) x 3 averaging filters



(no averaging, small scale and large scale) + 3 metrics (including
FMPD also subject to normalization and averaging), leading to 77
features.

5 Evaluation of geometric attributes and met-
rics

5.1 Performance measure

As in [Cadik et al. 2012], we measure the performance of the
attributes and metrics using the receiver-operator-characteristic
(ROC) that represents the relation between probability of false pos-
itives (vertices classified as distorted while they are not) and proba-
bility of true positives (vertices correctly classified as distorted) by
varying a decision threshold on the metric output (resp. attribute
difference). Binary ground-truth data are obtained by considering
as distorted vertices marked by more than 25% of the observers
(this threshold was also used in [Cadik et al. 2012]). The area un-
der the ROC curve (AUC) can then be used as a direct indicator of
the performance (1 corresponds to a perfect classification while 0.5
corresponds to a random one).

For each attribute/metric we compute the ROC performance sepa-
rately for each object; the AUC values are then averaged over the
11 models. To test how the features can adapt to several objects and
distortion types together, we also compute the ROC curve for all the
objects together. For this latter experiment, we duplicate vertices of
smallest models in order to balance the respective importance of
each object in this global ROC calculation.

5.2 Results and comparisons
5.2.1 Performance of the attributes and metrics

Figures 1 and 4 illustrate some visual results, while table 3 details
the quantitative performance in terms of AUC values for each fea-
ture and for each model from the dataset. Average values are pre-
sented in figure 5 (according to agreement statistics we excluded
models #2 and #11 from this averaging). Additional results, in-
cluding #2 and #11, are available in the supplementary materials.
For each attribute, we present the results obtained by the best filter:
(¢,5) and (¢, N) respectively refer to simple (eq. 1) and normal-
ized (eq. 2) attribute difference, while ¢ refers to the averaging (eq.
3): 0 means per-vertex attribute and 1, 2 respectively refer to small
and large averaging.

Table 3 shows that curvature-based features (including MSDM2
and FMPD) significantly outperform other ones (position, normal,
dihedral angle, saliency, geometric Laplacian), whatever the type
of distortion. In particular, curvedness produces among the best
results on every models, however the best performing filters may
be different depending on the model (e.g. (2,N) for #3 and (1,S)
for #8). As expected, recent metrics MSDM2 and FMPD pro-
vide also excellent results, and the Hausdorff distance provides the
worst ones. These results are confirmed in figure 5-fop row which
presents the average performances and standard deviations for all
the features (excluding objects #2 and #11). Note that for this anal-
ysis, the filters are fixed for all the dataset (the best performing one
is selected for each attribute). MSDM2 provides the best perfor-
mance, as well as the smallest standard deviation which reflects an
excellent stability whatever the model and/or the distortion. This
stability is due to the fact that this metric is multi-scale and thus
able to integrate artifacts at different levels of details. Curvedness
and maximum curvature also provide very good results but a higher
standard deviation.

When computing the classification performance on the whole
dataset (all objects together, excluding #2 and #11), we obtain the

#1 #2  #3  #4 #5  #6  #7 #8 #9  #10 #11

0.88 092 0.71 0.83 0.87 0.84 0.79 0.77 0.58 0.60 0.54

MinCurv [ N\) 2.8) @N) (1S) (LS) (ON) (0.8) ON) (1S) (0.S) (LS)

095 097 0.86 0.90 091 0.89 0.86 0.74 0.77 0.73 0.7

MaxCurv 2,5 25 2N) 2,5 25 2N) 2.5 (0,5 (2N) 2N) (2,N)

MeanCury 093 096 0.85 0.89 090 0.87 0.86 0.78 0.77 0.70 0.56
(LN) 28 @N) 28) 28 2N) 28) (1.S) 2N) 2N) (LN)

GaussCury 036 091 0.68 0.84 090 087 081 079 054 0.62 0.58
‘ (1,8) (2,8 (I,N) (2,8) (2,8) (I1,N) (2,8) (1,8) (1,S) (2N) (0,S)

0.87 0.88 0.74 0.79 0.86 0.82 0.78 0.75 0.71 0.63 0.53

Shapelnd | \) 2.8) 2.9) (0.8) (1S) (1LS) (1LS) (1) (1S) (LS) (LS)
Curveq, 095 0.97 087 0.89 091 0.90 035 0.80 078 073 058
25 28 N 2.8) (28 25) 28 (1,S) 2N) 2N) 2N)
posiion 090 083 068 083 088 086 081 079 059 050 056
eN) 28 @N) (ILN) 2N) 2N (1,N) (ILN) (IN) (O.N) (O.N)
Dbl 089 059 068 082 086 084 079 076 058 065 057
(LN) 2,N) (O,N) (1,N) (1,N) (O,N) (1,N) (O,N) (2,N) (2,N) (O,N)
Nomal 091 093 061 087 088 085 084 0.77 061 058 060
eN) 2N) ON) 2N) (1,N) (LN) (LN) (1,N) (IN) (LN) (2,N)
Salioney 0 091 064 079 083 079 076 067 056 063 057
eN) @N) (ILN) (1,S) (1,S) (LS) (1S) @N) (1S) (IN) (2.8)
Laplacian 00 065 060 082 087 085 078 077 054 069 063
2.8 ON) ON) (1,N) (ILN) (ON) (1,N) (O,N) (I,N) 2.N) 2,N)
LapGawss 088 089 071 086 092 091 083 078 072 056 0.66
28 (1,5 25 2,5 25 2N (LN) (ILN) 2N) (0.8) (0.S)
vpp | 096 095 087 083 083 082 079 074 082 063 0.6

(2,5) (2,5) (2.5 (2.S) (1,S) (0,S) (0,S) (0,S) (2,N) (O,N) (O,N)

MSDM2 097 097 085 084 090 088 081 0.77 0.79 0.71 0.54

Hausdorff 0.76 0.83 0.60 0.79 0.83 0.80 0.76 0.73 0.50 0.50 0.56

Table 3: AUC values for all the tested features (higher is better).
For each attribute, we present the best filter: (i,S) and (i, N) re-
spectively refer to simple (eq. 1) and normalized (eq. 2) attribute
difference, while i refers to the averaging (0 means per-vertex at-
tribute and 1, 2 respectively refer to small and large averaging).
Best features are highlighted. Details about each model are given
in table 1.

AUC values detailed in figure 5-bottom row. For this particular
scenario the FMPD metric as well as its raw attribute (Laplacian of
Gaussian curvature) are ranked first, then MSDM2 and curvedness.
This means that in scenarii where one single threshold has to be de-
termined for detecting artifacts for several objects and/or distortion
types, then the FMPD metric is the most suited. This may be due
to the fact that this metric explicitly incorporates global and local
normalization pre-processes (linked to the masking effect).

5.2.2 Influence of the filters

Table 4 illustrates the AUC values averaged over all features and ob-
jects, for each filter separately. We run paired t-test with confidence
level 0.95 to evaluate the effect of each filter. The normalization
does not have a significant impact (p-value = 0.11). However Scale
1 is significantly better than Scale 0 (p-value = 6 x 10~%) and Scale
2 is significantly better than Scale 1 (p-value = 0.02). The con-
clusion to draw here is that averaging the features has a significant
impact on their ability to predict the visible distortion. The main
reason is that such averaging (on geodesic neighborhoods) makes
the computation reasonably independent of the sampling density.

Scale0 Scalel Scale2
Attr. dif. S 0.70 0.73 0.75
Attr. dif. N 0.71 0.74 0.74

Table 4: AUC values averaged over all features, for each filter
separately.
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Figure 4: Reference and distorted models from our dataset (object #3), observer data and distortion maps from different attributes and

metrics (colors are mapped in the min-max range).
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Figure 5: Top: Mean AUC values for all the tested features. Er-
ror bars denote standard deviations. Bottom: AUC values when
computing ROC curves over the whole dataset.

5.3 Discussion

Several conclusions can be drawn from the results presented above:

e Previous studies [Lavoué and Corsini 2010; Corsini et al. 2013]
showed that geometric distances (e.g. Hausdorff and root mean
square error) are not good predictors of the perceived global vi-
sual quality. Our study completes this analysis by demonstrat-
ing that the geometric distance (Hausdorff as well as averaged
position difference) is not a good predictor of the local visible
difference.

e Recent metrics like MSDM2 [Lavoué 2011] and FMPD [Wang
et al. 2012] provide the best results for this task of visible dif-
ference prediction; these good performances are mainly due to
two key features: (1) being multi-scale does improve the robust-
ness, and (2) smart masking filters improve the stability across
different models and distortions.

e Simple curvature measures (e.g. the curvedness difference) may
produce excellent results. However, we noted unstable perfor-
mance with a high and unpredictable effect of the normalization.
For instance, AUC values for model #9 are respectively 0.78

and 0.67 for curvedness (2,N) and curvedness (2,S) (see supple-
mentary materials).

e Predicting the perceived local distortions on the surface of a 3D
mesh appears to be a very challenging task. Figures 1 and 4
illustrate the fact that even best metrics are still far from perfectly
predicting the ground-truth distortion maps. Hence, much works
remain to be done in this area and our dataset is an excellent basis
for that.

The provided insights into the visual perception of local artifacts
are of broad interest for the computer graphics community. The at-
tributes and metrics detected as good predictors by our study (i.e.
MSDM?2, FMPD and curvedness) may be used to design quality
metrics as well as Just Noticeable Difference (JND) models. These
features may also be useful to guide geometry processing algo-
rithms.

6 Conclusion and future work

In this work, we have designed a novel subjective experiment to ob-
tain information about the local visibility of complex artifacts on a
set of 3D objects. We use the obtained distortion probability maps
to (1) illustrate some properties of the human visual system and to
(2) quantitatively evaluate a large set of 3D mesh attributes as well
as recent perceptual metrics for the task of predicting perceived lo-
cal distortions. From the results, we observe that curvature-based
attributes (in particular curvedness) demonstrate a much better per-
formance than others (e.g. dihedral angles, normals, Laplacian,
saliency). As expected, Hausdorff geometric distance is a poor pre-
dictor of the perceived local distortion. Another interesting result is
that recent perceptual metrics, originally designed for global qual-
ity evaluation, also provide the best and most stable results for this
local task. We also introduce some recommendations highlighting
the influence of attribute averaging and normalization for the design
of new metrics.

These publicly available dataset and results' constitute the very first
steps toward the efficient prediction of the perceivability of geomet-
ric artifacts, and more broadly toward the understanding of local
perceptual mechanisms involving 3D geometry. In particular, this
dataset will be very useful to evaluate and/or to train future met-
rics. Machine-learning is appearing as a powerful tool to design
full reference image quality metrics [Cadik et al. 2013; Narwaria
and Lin 2012; Charrier et al. 2012] and could indeed provide good
results for 3D mesh artifact localization. However, we believe that
such top-down approach should also integrate low-level human vi-
sion processes (such as a model of contrast sensitivity function) to
be really efficient.

Our study focused on the geometry and thus considered a simple
rendering style. We now plan to investigate how complex textures

Thttp://liris.cnrs.fr/guillaume.lavoue/data/datasets.html



and shaders, used in modern rendering pipelines, influence the vis-
ibility of artifacts. Recent studies about the influence of material
[Fleming 2014] and lighting [Faisman and Langer 2013] on the
shape perception, should bring highly relevant cues for this goal.
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