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Abstract This paper presents a 3D shape retrieval al-

gorithm based on the Bag of Words (BoW) paradigm.

For a given 3D shape, the proposed approach considers

a set of feature points uniformly sampled on the sur-

face and associated with local Fourier descriptors; this

descriptor is computed in the neighborhood of each fea-

ture point by projecting the geometry onto the eigen-

vectors of the Laplace-Beltrami operator, it is very in-

formative, robust to connectivity and geometry changes

and also fast to compute. In a preliminary step, a vi-

sual dictionary is built by clustering a large set of fea-

ture descriptors, then each 3D shape is described by an

histogram of occurrences of these visual words, hence

discarding any spatial information. A spatially-sensitive

algorithm is also presented where the 3D shape is de-

scribed by an histogram of pairs of visual words. We
show that these two approaches are complementary and

can be combined to improve the performance and the

robustness of the retrieval. The performances have been

compared against very recent state-of-the-art methods

on several different datasets. For global shape retrieval

our combined approach is comparable to these recent

works, however it clearly outperforms them in the case

of partial shape retrieval.

Keywords Shape Retrieval · 3D model · Bag of

Words

1 Introduction

After Image and Video in the 90s, three-dimensional

data (mostly represented by polygonal meshes) consti-
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tute the emerging multimedia content; large collections

of 3D models are now available and thus the need for

efficient tools to filter, search, and retrieve this 3D con-

tent becomes more acute. Hence in recent years, the

problem of content-based shape retrieval (CBIR) has

attracted the interest of scientists. The objective of such

system is to retrieve, from a given 3D query, the most

similar 3D models from a given database; a similar is-

sue consists in classifying a given shape into the correct

category.

This problem is not easy since, to be really efficient,

such retrieval/classification system has to be robust to

common 3D shape variations like connectivity change,

non-rigid deformation, local deformation or cropping.

In that context we introduce a new combined Bag of

Words approach for 3D shape recognition; our algo-

rithm relies on a uniform sampling of the feature points

based on Lloyd relaxations; each feature point is de-

scribed using a rich spectral descriptor. Our approach is

highly robust to connectivity change, non-rigid or local

deformations and cropping, due to four main reasons:

– The regular sampling of the feature points is mostly

independent of the connectivity, geometry or topol-

ogy of the model (on the contrary, with a protrusion

detector or a segmentation algorithm some feature

points or regions may disappear after even a small

topological change).

– The descriptor associated with each feature point is

the local Fourier spectrum computed over a large

neighborhood of the point (after projection of the

geometry onto the spectral bases). This descriptor

is very discriminative and moreover is quite robust

to noise or connectivity change.

– Our approach discards most of the structural infor-

mation of the feature points, hence it is intrinsically
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invariant to isometric deformations or topological

changes.

– Our approach combines a standard Bag-of-Words

descriptor with a spatially-sensitive one, hence rein-

forcing the robustness.

The proposed approach is particularly robust to crop-

ping or local deformations and thus is particularly effi-

cient for partial shape similarity which is a particularly

difficult task, still tackled by few methods [40,39,11,9,

16].

A preliminary version of this work, describing only the

standard BoW descriptor has been presented at the

3DOR 2011 conference [19].

The paper is organized as follows, section 2 presents

the related state of the art on 3D shape retrieval. Sec-

tion 3 provides a recall on the Bag of Words princi-

ples and an overview of our approach. Section 4 de-

scribes our feature point detector and descriptor while

section 5 presents our indexing/retrieval methods us-

ing BoW. Finally, section 6 presents some experiments,

which evaluate the robustness of our method and pro-

vide a comparison with state of the art methods.

2 State of the art

In this section we review the existing works on 3D shape

retrieval; starting with methods based on global descrip-

tors we then present local frameworks usually based on

salient feature point detection and description. Finally

we detail the Bag of Words approaches, which consti-

tute the most recent class of techniques for 3D shape

retrieval.

2.1 Global methods

The earliest techniques introduced to tackle the prob-

lem of 3D shape retrieval were based on global descrip-

tors; the first were only robust to rigid deformations [6,

13], while more recent ones are also invariant to non

rigid deformations, like isometry or skeletal articula-

tion. Except the work of Gal et al. [15] which relies on

histograms of local shape diameter values, most of these

recent invariant descriptors are based on some spectral

embeddings: Reuter et al. [31] and Marini et al. [26]

describe the shape by the eigenvalues of the Laplace-

Beltrami operator while Rustamov [33] considers the

eigenvectors of this operator, similarly, the approach

from Jain and Zhang [17] relies on the eigenvectors of

the affinity matrix; besides, the conformal factor de-

scriptor from Ben-Chen et al. [2] and the diffusion dis-

tances introduced by Bronstein et al. [5] are also based

on the Laplace-Beltrami operator (eigendecomposition

for [5] and integration into a sparse linear system for

[2]). Even if these global descriptors provide a good in-

variance to non-rigid, quasi-isometric transforms, most

of them are not adapted to deal with partial similar-

ity and, by extension, local deformation or cropping.

Moreover only few of them can deal with topological

changes.

2.2 Local detectors and descriptors

To face the hard robustness issues not handled by global

methods, some researchers turned their attention to lo-

cal descriptors associated with salient feature points (or

keypoints), following successful approaches in 2D im-

age recognition like SIFT [25]. In such keypoint-based

2D image recognition techniques [28], the object to rec-

ognize is represented by a set of salient local features

(usually sparse) associated with local descriptors, then

the recognition consists in finding a correspondence be-

tween the sets of feature points from the model and the

scene objects respectively, using techniques like RANSAC

(rigid matching) or some graph-matching algorithms.

For 3D recognition, Funkhouser and Shilane [14] intro-

duced such a local approach, their descriptor is based

on Spherical Harmonics, while the matching is derived

from RANSAC; to select a minimal set of distinctive

features a quite complex process computes their respec-

tive predicted retrieval performances using a training

set of classified 3D models. Li and Guskov introduced

feature point detector and descriptor inspired by SIFT

and applied them for rigid alignement of point sets.

Their feature points, combined with RANSAC were re-

cently applied for rigid partial matching of archaeolog-

ical objects by Itskovich and Tal [16]. Sun et al. [37]

introduced a multi-scale local descriptor, the Heat Ker-

nel Signature (HKS), computed via an eigendecompo-

sition of the Laplace Beltrami operator. Basically the

HKS is defined for each vertex x as a function of t and

intuitively relates to the amount of heat that remains

at point x after time t; the HKS also allows to select

salient feature points since its extrema correspond to

protrusions on the surface. This signature is quite re-

lated to the diffusion distance also used by Bronstein et

al. [5] as a global descriptor. Very recently Sun et al. [36]

combined the HKS-based feature points with a match-

ing framework based on fuzzy geodesics while Dey et

al. [9] filter them according to their persistence to ob-

tain a more robust set of feature points which is then

integrated into a region matching algorithm. Similarly

Agathos et al. [1] introduce a feature point detector also

related to surface protrusions to create regions and then

match them using a graph matching technique based on



Combination of Bag-of-Words Descriptors for Robust Partial Shape Retrieval 3

the Earth Mover’s Distance. Tabia et al. [38] also cre-

ate regions related to surface protrusions (detector from

Tierny et al. [39]) and then describe them using a set

of curves. Ruggeri et al. [32] introduced another key-

point detector also based on an eigendecomposition of

the Laplace-Beltrami operator, as well as an associated

local descriptor consisting of the geodesic shape distri-

bution around the point; these feature points are then

used to smartly sample the object before applying a bi-

partite graph matching for recognition. Lastly, Sipiran

et al. [35] generalize the Harris point detector for 3D

meshes.

There exist two main problems with these approaches

based on 3D feature points and direct matching: 1) the

repeatability (i.e. the invariance in location) of salient

feature points, regarding connectivity or topological changes

is not so obvious and 2) the graph matching is often a

quite complex process (inexact graph isomorphism is

NP-complete) particularly when a high level of invari-

ance is required (i.e. isometry, local deformation, crop-

ping). Sub-graph isomorphism (i.e. for partial shape

similarity) is even more difficult.

2.3 Bag of Words approaches

The fact is that the intra-class variation involved in 3D

model recognition is much higher than for specific 2D

object recognition in images; hence existing 2D recog-

nition techniques are difficult to directly transpose into

the 3D world. However another kind of techniques also

based on feature points was introduced in computer

vision, specifically designed for higher intra-class vari-

ations (used in the case of object-category recognition

rather than specific-object recognition): the Bag of Words

(BoW) framework. In this kind of approaches [8,10],

each feature point from a given image is associated to

the nearest visual word in a given visual dictionary (we

assume that the dictionary has been preliminary built

using clustering techniques in the descriptor space); the

image is then represented as an histogram (i.e. the bag)

of occurrences of the visual words.

Few works based on Bag of Words (BoW) have been

introduced for 3D object recognition. Ohbuchi et al.

[29] and Lian et al. [22] present similar approaches, the

3D model is represented by a set of 2D views which

are indexed using bags of 2D SIFT features. Liu et al.

[23] and Li and Godil [21] introduce BoW algorithms

based on Spin Image descriptors computed on a dense

set of feature points (uniformly sampled on the sur-

face). Bronstein et al. [4] also consider a dense set of

feature points (every vertex of the mesh) and describe

them using the Heat Kernel Signature from Sun et al.

[37]. Differently, Toldo et al. [40] do not sample fea-

ture points on the 3D model but segment it into re-

gions; then each region is associated with several de-

scriptors and thus several visual words. These existing

3D BoW methods provide quite good results however

in our opinion they still suffer from some drawbacks:

first, the descriptors which are used in these works are

quite poor regarding their equivalent in computer vi-

sion; this makes necessary the addition of spatial infor-

mation between feature points like in [4,21]. A second

problem comes from the sampling of the feature points,

two possibilities exist like for 2D images: either you se-

lect a sparse set of points (or regions) like Toldo et al.

[40], or you consider a dense collection like [4]; in case

of a sparse set, keypoints have to be stable regarding

connectivity or topological changes and that is a very

difficult problem; for instance the segmentation used in

[40] seems quite dependent of the topology. In case of

a dense set of keypoints, you have to insure that they

are evenly distributed over the whole surface even in

case of very irregular connectivity and that is not the

case if you consider each vertex as a keypoint like in [4].

To resolve these issues, our algorithm relies on a connectivity-

independent uniform sampling of the feature points based

on Lloyd relaxations and on a very discriminative spec-

tral descriptor.

3 Overview of our method

Figure 1 illustrates our approach. Basically we model

a 3D object as a collection of local feature points; each

point is associated with a local patch on which we com-

pute a descriptor. According to its descriptor, each patch

is then associated with the nearest visual word from

a given visual dictionary (i.e. the codebook). Hence,

the object is finally described by the corresponding dis-

tribution of codewords (an histogram of occurrences).

The visual dictionary is preliminary built by clustering

a huge set of feature point descriptors computed over

a large collection of 3D models. The centroids of the

clusters represent the codewords of the dictionary.

Note that in the following technical sections, scalars

are represented by lower case letters, vectors are repre-

sented as bold lower case letters and matrices are rep-

resented as capital letters.
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Fig. 1 Flow chart of our Bag of Words approach.

4 Feature point detection and description

4.1 Detection

We consider a uniform sampling of the feature points on

the mesh surface; the reason is that such uniform sam-

pling gave very good results in the field of 2D image

recognition (see results from [10] for instance). More-

over most of existing 3D salient point detectors provide

collections of points which are either too sparse (i.e.

protrusion detectors) or not so stable under complex

geometrical or topological changes).

To create the uniform sampling, we consider a random

set of np vertices on the mesh as an initial set of seeds

(see figure 2 on the left) and then we apply Lloyd relax-

ation iterations. Lloyd’s algorithm [24] is a fixed-point

iteration that simply consists of iteratively moving the

seeds to the centroids of their Voronoi cells; this algo-

rithm was used by many authors to construct random

and uniform sampling (i.e. blue noise sampling) on sur-

faces [12]. Our algorithm is as follows:

1. Each vertex of the mesh is associated to the nearest

seed; this creates a partitioning of the model into

np regions, basically corresponding to the Voronoi

regions associated to the np seeds.

2. The centroids of the np Voronoi regions are com-

puted and become the new seeds.

3. Steps (1) and (2) are repeated until convergence.

The metric used is simply the 3D Euclidian distance.

This simple algorithm converges quickly and provides a

uniform sampling of the seeds (i.e. the feature points)

over the surface. Figure 2 illustrates the set of feature

points before and after the Lloyd’s relaxation.

Fig. 2 Illustration of the Lloyd’s relaxation algorithm. Left:
200 seeds randomly sampled. Right: result after 50 Lloyd’s
iterations

This distribution has the benefit to cover uniformly

the whole surface of the object, even in the case of ir-

regular connectivity. Of course this uniformity is lim-

ited by the fact that our feature points are necessarily

on existing vertex positions. This constraint was not a

problem in our experiment. Moreover it can be easily

avoided by using some very recent blue noise sampling

methods like [3].

Each feature point pi is then associated with a local

patch Pi on which we will compute a descriptor; we

could have taken Pi as the Voronoi region associated to

each point. However we prefer to extract larger overlap-

ping regions. Hence, for each feature point we extract

this local patch Pi by considering the connected set of

facets belonging to a given sphere of center pi and of

a given radius r. We construct it by a region growing

approach. Figure 3 illustrates a local patch for r = 10%

of the length of the bounding box of the object.

Fig. 3 A feature point (black sphere) and its associated
patch (in red).
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4.2 Description

Each feature point is associated to a descriptor com-

puted on its patch. Our objective is to propose a rich

(i.e. informative) descriptor which is also fast to com-

pute. Our idea is to use the Fourier spectra of the patch,

computed by projecting the geometry onto the eigen-

vectors of the Laplace-Beltrami operator. The use of

spectral tools for 3D shape retrieval has proven its effi-

ciency (see section 1), however the proposed descriptor

owns some original properties regarding the state-of-

the-art:

– A lot of methods consider directly eigenvalues or

eigenvectors of the Laplace operator for retrieval

(e.g. [31,33,17,26]), while we consider the spectral

transform coefficients (after projection of the 3D

signal onto the eigenvectors). Surprisingly this has

never done before whereas these spectral coefficients

are particularly discriminative and also robust to

noise and connectivity changes like pointed in [42].

– While all other methods uses spectral descriptors

computed over the whole mesh, we compute our

spectral transform locally, i.e. patch-by-patch. Since

the eigendecomposition is a very costly process, this

saves a lot of computation time.

The Laplace-Beltrami operator ∆ is the counterpart of

the Laplace operator in Euclidian space. It is defined

as the divergence of the gradient for functions defined

over manifolds. The eigenfunction and eigenvalue pairs

(Hk, λk) of this operator satisfy the following relation-

ships:

−∆Hk = λkH
k (1)

In the case of a 2-manifold triangular mesh the above

eigen-problem can be discretized and simplified within

the finite element modeling framework [20]:

−Qhk = λkDhk (2)

hk denotes the vector [Hk
1 , ...H

k
m] where m is the num-

ber of vertices of the patch. D is the Lumped Mass

matrix, it is a m ×m diagonal matrix defined by D =

diag(
∑

t∈ℵ(vi) |t|) with ℵ(vi) the set of neighboring tri-

angles from vertex vi. Q is the Stiffness matrix defined

as:

Qi,j = (cotan(βi,j) + cotan(β′
i,j))/2 (3)

Qi,i = −
∑

j Qi,j (4)

βi,j and β′
i,j are the two angles opposite to the edge

between vertices vi and vj .

To resolve this discrete eigenproblem we use the fast

algorithm from Vallet and Lévy [41], based on a band-

by-band approach and an efficient eigen-solver. Hence

we obtain the eigenvectors (i.e. the manifold harmonic

bases) and the associated eigenvalues. The spectral co-

efficients are then calculated as the inner product be-

tween the geometry of the surface and the sorted eigen-

vectors. Let x, y, z be the m-dimensional vectors con-

taining respectively the x, y and z values of the m ver-

tices. For x (resp. y,z):

x̃k =< x,hk >=

m∑
i=1

xiDi,iH
k
i (5)

The kth (k = 1..m) spectral coefficient amplitude is

then defined as the norm of [x̃k, ỹk, z̃k]:

ck =
√

(x̃k)2 + (ỹk)2 + (z̃k)2 (6)

Hence, for a given patch Pi around a feature point pi,

our descriptor is the spectral amplitude vector ci =

[ci1, ...c
i
nc

], with cik, the kth spectral coefficient ampli-

tude of the patch Pi. We consider only the nc first spec-

tral coefficients to limit the descriptor to low/medium

frequencies hence bringing more robustness.

This descriptor owns some interesting theoretical ro-

bustness properties [42]: under a translation, only the

first coefficient c0 is modified, hence we do not consider

c0 in our descriptor and thus obtain translation robust-

ness. Meanwhile, it can be easily proven that the mani-

fold harmonics bases are kept unchanged under isomet-

ric transformations. Therefore, a rotation in the spatial

domain x,y,z yields the same rotation in the spectral

domain x̃,ỹ,z̃, without any influence on the coefficient

amplitudes ck. It can also be demonstrated that un-

der a uniform scaling with a factor s, all the spectral

coefficients will be scaled by s2. Hence this descriptor

is not robust to scaling but that does not constitute a

problem since the whole 3D object is normalized before

processing.

We have also studied experimentally the discriminative

power and the robustness of the descriptor: we have

considered one arbitrary surface patch from the Stan-

ford bunny and applied several strong distortions on

it (noise addition and simplification). Figure 4 illus-

trates the first 30 spectral amplitudes ck of the resulting

patches. We can observe the very high stability of the

descriptor regarding these distortions. On the contrary

when considering other patches with different shapes

(see figure 5) then the descriptors are very different,

hence implying a very good discriminative power.

5 3D object representation and matching

5.1 Codebook construction

Given a 3D object containing a set of patches Pi asso-

ciated with descriptors ci, the next step is to represent
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Fig. 4 Spectral amplitudes of a surface patch (in black) and
distorted versions (dotted lines) under strong noise addition
and simplification.

Fig. 5 Spectral amplitudes of several different surface
patches, including the patch from figure 4 (in black).

it as a distribution of visual words from a given dictio-

nary. To create the visual dictionary Γ = (c̄1, ...c̄nw),

we apply a simple k-means clustering (nw clusters) on

a huge dataset of descriptors and keep the nw centroids

c̄k of the clusters as visual words. Each visual word c̄k

is a nc-dimensional vector.

5.2 BoW representation and matching

5.2.1 Standard BoW

For a given model M , each patch Pi is associated with

its closest visual word; practically we associate each

patch Pi with a vector bi, of size nw, such as:

bij = 1 if j = argmink∈[1..nw]||ci − c̄k|| (7)

bij = 0 otherwise (8)

Then the bag of words bM of the whole model M is

a nw-dimensional vector containing the distribution of

the visual words over all its patches:

bM =

np∑
i=1

bi (9)

Some examples of bag of words are presented in figure

6, for np = 200 patches, nw = 30 clusters and nc = 40

spectral coefficients. We can observe that whereas the

two armadillo models have strong differences of pose

their BoWs are very similar; even a strong simplifica-

tion (from 22K vertices to 6K vertices) does not signif-

icantly change the BoW. On the contrary the BoW of

the cup model is significantly different.

The distance between two shapes is thus computed

using a simple L1 distance between their bag of words.

Fig. 6 Bag of Words examples.

5.2.2 Spatially-sensitive BoW

Like Bronstein et al. [4], we introduce here a spatially-

sensitive version of our BoW descriptor. In this version,

instead of a histogram of visual words, we construct a

histogram of pairs of spatially-close visual words. The

objective is to slightly take into account the spatial re-

lations between the features. Our spatial bag of words

BM is a (nw × nw)-dimensional matrix defined as fol-

lows:

BM =

np∑
u=1

np∑
v=1

δuvb
u(bv)T (10)
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where δuv defines the following proximity rule:

δuv = 1 if Pu and Pv are direct neighbors. (11)

δuv = 0 otherwise (12)

The neighborhoods of the patches are extracted from

the Voronoi regions associated to their seeds (see figure

7). Since the Voronoi diagram is centroidal, each patch

owns 6 direct neighbors on average.

As for the 1-dimensional standard Bag of Words,

the distance between two shapes represented by these

2-dimensional spatial BoWs is computed using a simple

L1 distance between the matrices.

Fig. 7 Voronoi cells of the seeds, used to compute the neigh-
borhood of the patches.

5.2.3 Hybrid BoW

We believe that the standard and spatial BoW descrip-

tors presented in sections above could be complemen-

tary; indeed the standard BoW gives its best results

with a quite high number of visual words nw (200 as

shown in the experimental section), while the spatial

BoW provides optimal results for a much lower number

of visual words (a typical value is 30); this low value

appears logical, indeed for nw = 30 then the real size

of the vocabulary of pairs of words is n2w = 900 which

is already a high value. Hence the standard BoW re-

ally focuses on the discriminative power of the patches

while the spatial one rather considers a coarser level of

accuracy but associates it with a piece of spatial infor-

mation.

Hence we have chosen to combine these standard and

spatial BoWs into an hybrid one. This hybrid represen-

tation is simply the combination of both BoWs; then

the distance between two models M1 and M2 using this

hybrid representation is the combination of the L1 dis-

tances between both BoWs:

d(M1,M2) = 6×
∣∣∣bM1 − bM2

∣∣∣+
∣∣BM1 −BM2

∣∣ (13)

The factor 6 is introduced to balance the masses be-

tween both BoWs. Indeed since the typical neighbor-

hood size of the patches is 6 then the mass of a spatial

BoW BM is 6× np while the mass of a standard BoW

bM is np.

6 Experiments

We have conducted a set of experiments to evaluate

the complementarity of our methods and their perfor-

mances regarding the state of the art. The first experi-

ment studies the influence of the parameters; a second

experiment evaluate the performance of our methods

in term of global shape retrieval while the last one con-

siders a partial shape retrieval scenario. In all these ex-

periments we compare our standard, spatial and hybrid

BoW algorithms as well as several recent state-of-the-

art methods. The next section describes the databases

which were used in these experiments.

6.1 Databases and measures

To test our algorithms we have considered three existing

databases:

– The McGill Database 1. It contains 255 objects di-

vided into ten classes (Ant, Crabs, Hands, Humans,

Octopuses, Pliers, Snakes, spectacles, Spiders and

Teddy); the intra-class variations consist in non-

rigid transforms applied to the models.

– The SHREC 2007 Watertight dataset 2. It contains

20 categories each composed of 20 meshes. The intra-

class variations are higher than for the McGill cor-

pus. For instance the FourLeg category contains dif-

ferent animals (horse, dog, cow, ...).

– The SHREC 2007 Partial retrieval dataset 3. It is

composed of the SHREC 2007 Watertight dataset

and a query set of 30 models, each one obtained

by merging or removing several subparts of models

belonging to the Watertight dataset.

To assess the efficiency of the methods we use the fol-

lowing measures, using the tools from [34]:

– Nearest Neighbor (NN): The percentage of queries

for which the closest match belongs to the query’s

class.

1 http://www.cim.mcgill.ca/s̃hape/benchMark/
2 http://watertight.ge.imati.cnr.it/
3 http://partial.ge.imati.cnr.it/
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– First Tier (FT): The recall for the (C − 1) closest

matches, where C is the cardinality of the query’s

class.

– The Second Tier (ST): The recall for the 2(C − 1)

closest matches. It is similar to the Bulls Eye Score

(recall for the 2C closest matches).

– The Discounted Cumulative Gain (DGC): This statis-

tic gives more importance to correct detections near

the front of the list; the objective is to reflect how

well the overall retrieval would be viewed by a hu-

man.

6.2 Influence of the parameters

Our algorithms are based on three parameters: the num-

ber of patches np, the number of coefficients nc of the

spectral descriptor and the number of codewords nw.

We have studied the influence of these parameters on

the results by carrying out several retrieval tests on the

McGill Database each time varying one of the parame-

ters. Table 1 presents the corresponding performances

in term of the First Tier measure, for our standard al-

gorithm. Several points are interesting to raise:

– When the number of spectral coefficients nc increases

from 30 to 40, the discriminative power of the Fourier

descriptor increases hence the performances are bet-

ter. However for nc = 50 the FT measure is lower,

the reason is that adding too high frequencies to the

spectral descriptor removes a part of its robustness.

– Increasing the size nw of the dictionary leads to an

improvement of the performances. However a satu-

ration effect appears, indeed the FT difference be-

tween nw = 200 and nw = 300 is very small.

– Increasing the number of patches np also leads to

an improvement of the results however once again

we can observe a saturation effect.

According to these observations and regarding the fact

that higher are the values and higher are the index-

ing/retrieval times, we fix these parameters to : nc =

40, nw = 200 and np = 200. For the spatial version, we

use the same values, except for the size of the dictionary

which has to be smaller; indeed in that case we build

histograms of word pairs hence the practical size of the

vocabulary is n2w. We have conducted experiments sim-

ilar to the McGill tests above and found that a size

nw = 30 provides the best results (actually results were

very similar for a range nw ∈ [20, 40]).

6.3 Global Shape Retrieval

Firstly we have compared the performance of our own

methods on the McGill and Shrec 2007 Databases. Ta-

Table 1 First Tier measure of our standard method for
different parameter settings.

nc 30 40 50
np = 200‖nw = 200 0.621 0.629 0.624

nw 100 200 300
np = 200‖nc = 40 0.619 0.629 0.630

np 100 200 300
nw = 200‖nc = 40 0.611 0.629 0.634

bles 2 and 3 show the comparisons between the stan-

dard, spatial and hybrid Bag of Words algorithms. Two

main conclusions can be drawn from these two tables:

(1) the standard and spatial approaches provide sim-

ilar results on both databases, with a little advantage

for the standard one and (2) these two approaches seem

complementary. Indeed the hybrid algorithm always pro-

vides the best results (in bold in the tables). Actually

the spatial version is more efficient when the topology

of the 3D models is more discriminative than their local

geometry patterns, hence the complementarity between

them. For instance the spatial version produces better

results than the standard one for the crabs, octopuses,

spiders and snakes classes of the McGill database and

the chairs, octopuses, springs and tables classes of the

Shrec 2007 database; all these classes own a rather poor

local geometric information but can be discriminated

using higher level topological notions such as the fact

that a tubular surface is linked to a planar surface in

the case of the tables class for instance.

Table 2 Average retrieval statistics of our BoW algorithms
for the McGill database.

Method NN FT ST DGC

Standard BoW 95.7 62.9 77.5 87.9
Spatial BoW 93.3 62.5 78.3 87.9
Hybrid BoW 95.7 63.5 79.0 88.6

Table 3 Average retrieval statistics of our BoW algorithms
for the Shrec 2007 database.

Method NN FT ST DGC

Standard BoW 90.2 59.0 73.4 84.1
Spatial BoW 89.7 56.7 71.5 83.3
Hybrid BoW 91.8 60.0 74.0 84.7

We have then compared the performance of our hy-

brid BoW method with two recent algorithms on the

McGill Database: the graph-based approach from Agathos

et al. [1] and the hybrid 2D/3D approach from Pa-

padakis et al. [30]. Table 4 presents the results; for
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each row, the algorithms are positioned according to

their respective performances. The first remark is that

Table 4 Retrieval statistics for the McGill database.

Class Method NN FT ST DGC

[1] 97.6 74.1 91.1 93.3
Whole Hybrid BoW 95.7 63.5 79.0 88.6

[30] 92.5 55.7 69.8 85.0
[30] 100 73.6 89.2 94.8

Ants Hybrid BoW 96.7 57.7 86.2 88.7
[1] 96.7 54.9 79.7 88.4
[1] 100 98.2 99.8 99.9

Crabs Hybrid BoW 100 60.7 81.0 92.3
[30] 100 55.2 71.8 88.7
[1] 95.0 83.9 88.9 95.2

hands Hybrid BoW 100 51.1 68.9 85.8
[30] 90.0 43.4 57.6 77.8
[1] 96.6 93.5 96.4 98.1

humans Hybrid BoW 100 70.8 90.6 93.8
[30] 100 47.0 63.8 83.1
[1] 88.0 58.8 81.8 88.1

Octopuses [30] 56.0 29.5 45.0 68.9
Hybrid BoW 68.0 26.8 39.3 67.5

[1] 100 100 100 100
Pliers Hybrid BoW 100 88.7 97.6 98.6

[30] 100 71.6 87.9 94.6
[1] 100 43.2 95.2 84.7

Snakes Hybrid BoW 92.0 24.7 27.0 66.2
[30] 80.0 23.7 28.7 62.4

Hybrid BoW 100 86.7 97.5 98.4
Spectacles [1] 100 70.3 99.8 94.0

[30] 96.0 53.5 63.3 85.9
[1] 100 87.2 100 98.4

Spiders Hybrid BoW 100 77.7 98.7 95.2
[30] 100 71.5 91.0 93.7

Hybrid BoW 100 96.1 100 99.8
Teddy [30] 100 90.3 98.4 99.1

[1] 100 45.3 63.2 83.9

the graph-based algorithm [1] provides the best results,

that is logical since the database considers only skele-

tal articulation deformations without topology changes

hence it is particularly suited for graph-based represen-

tation. However we can notice that our method, whereas

considering almost no structural information, provides

quite good results, almost always better than [30].

We have also compared our hybrid method on the

Shrec 2007 Watertight dataset. Figure 8 presents the

Precision vs Recall plots of our method and the recent

method from Toldo et al. [40] which is also based on Bag

of Words. The two algorithms present quite comparable

performances, however our algorithm is slightly better,

indeed its precision is higher for low and high recall

values.

Fig. 8 Precision vs Recall curves, for the Shrec 2007
database, of the proposed hybrid approach and the BoW al-
gorithm from Toldo et al. [40]

6.4 Partial shape similarity

Partial shape similarity is a quite complex problem

tackled by few methods. We have tested and compared

the performance of our algorithms on the SHREC 2007

Partial retrieval dataset. This dataset contains a query

set of 30 shapes which are compared against a test-

ing set of 400 models (the SHREC 2007 Watertight

dataset). Each of the query models is composed of sub-

parts from two or three models from the testing set ; for

each query object, a ground-truth classification of each

model of the testing set is provided (highly relevant,

marginally relevant or non relevant).

Figure 9 illustrates some query models and the top-8

results returned by our hybrid algorithm; we can ob-

serve that despite the difficulty of the task, almost all

the retrieved objects are relevant. In particular, in the

bottom row, despite an important cropping, the giraffe

model is well recognized by our system, as well as the

plane.

We conducted a quantitative performance evalua-

tion using the Normalized Discounted Cumulated Gain

vector (NDCG) [18]. For a given query, the value NDCG[i]

represents basically the relevance of the top-i results, it

is recursively defined as:

DCG[i] = G[i] if i = 1 (14)

DCG[i] = DCG[i− 1] +G[i]log2(i) otherwise (15)

where G[i] is a gain value depending on the relevance

of the ith retrieved model (2 for highly relevant, 1 for

marginally relevant and 0 otherwise). The Normalized

Discounted Cumulated Gain vector (NDCG) is then ob-

tained by dividing the DCG by the ideal cumulated

gain vector.

Figure 10 illustrates the respective performances of our

algorithms. It is interesting to notice that the standard
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Fig. 9 Some examples of query objects from the SHREC 2007 Partial retrieval dataset and the top-8 retrieved models.

method provides clearly better results than the spa-

tial one. This is consistent with the theory, indeed the

query objects have been constructed by cropping and

pasting parts of the original ones, hence several spatial
constraints over the objects have been broken and/or

modified. However these methods remain complemen-

tary since the hybrid method is still the best one.

Fig. 10 NDCG curves of our methods, for the SHREC 2007
Partial retrieval dataset

Figure 11 illustrates the NDCG plot for our hybrid

method and several methods from the state of the art:

– The BoW method from Toldo et al. [40]

– The graph-based technique from Tierny et al. [39]

– The best runs of the two methods from the SHREC

2007 Partial retrieval contest: the extended reeb graphs

(ERG) [27] and the curve-skeleton based many-to-

many matching (CORNEA) [7].

Our method clearly outperforms the other algorithms,

even most recent ones [40,39]. This is probably due to

the fact that our method discards most of the structural

information, hence the topological changes due to the

sub-part merging do not affect very much the bags of

words. Moreover the descriptive power of our spectral

descriptor efficiently discriminates the relevant regions

of each model.

6.5 Robustness

The robustness of a shape retrieval method is a critical

issue for its practical use, we evaluate in this section

the robustness of our algorithm against noise addition
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Fig. 11 NDCG curves of several methods, for the SHREC
2007 Partial retrieval dataset.

and simplification. For this purpose, we have distorted

the query models and evaluated their partial shape re-

trieval performance (same protocol than the previous

section). Figure 12 illustrates the distortions: Gaussian

noise addition (two amplitudes) and canonical simplifi-

cation (one to three iterations).

Fig. 12 Examples of distortions on a query model. Top from
left to right: Original, results after 0.5% Gaussian noise and
1% Gaussian noise (in percentage of the bounding box). Bot-
tom from left to right: Original (12728 vertices), results after
one iteration (8435 vertices), two iterations (5464 vertices)
and three iterations (3509 vertices).

Figures 13 and 14 illustrate the retrieval perfor-

mances of our hybrid algorithm according to the dis-

tortions. We can observe that for smallest distortions

(0.5% noise and 1 iteration of simplification) there are

almost no performance loss; moreover a very interesting

point is that even for strong distortions (1% noise and

3 iterations of simplification), although there is a sig-

nificant loss of performance, results remain better than

state-of-the-art methods (see figure 11). Providing such

a high robustness against both connectivity and geom-

etry distortions is a very good point, especially in such

a partial retrieval scenario.

Fig. 13 NDCG curves of our hybrid method for different
level of noise applied to the query objects.

Fig. 14 NDCG curves of our hybrid method for different
level of simplification applied to the query objects.

Figure 15 illustrates the retrieved results from dis-

torted queries. It can be observed that even if the re-

trieved models vary according to the distortion of the

query, in each case they are relevant.

6.6 Timing

Our is computationally efficient; for instance, for the

Partial retrieval dataset where the average model size

is 18K vertices, the whole indexing of a model (uni-

form point sampling, local spectral descriptor calcula-

tion, Bag of Word construction) takes an average of 25

seconds per model. Our implementation is based on the

CGAL library (C++) and runs on a 2GHz laptop.
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Fig. 15 Distorted query objects (highest noise and simplification) and top-8 retrieved models.

7 Conclusion

We have presented a new robust 3D shape retrieval

method which combines standard and spatially-sensitive

Bag of Words; the proposed approach relies on a uni-

form sampling of feature points associated with a new

local Fourier descriptor both fast to compute and dis-

criminative. Our algorithm is particularly suited for

partial similarity scenarios where it clearly outperforms

the state-of-the-art. We have also shown that standard

and spatially-sensitive methods are complementary since

their combination provides a significant gain with re-

gards to their individual performances.

It would be interesting to conduct a quantitative eval-

uation of our local Fourier descriptor on the TOSCA

database, particularly on the SHREC 2010/2011 corre-

spondence benchmarks 4.

A weakness of our method is that, whereas it correctly

retrieves a model from a partial query, it does not per-

fom the precise matching between the corresponding

sub-parts. A solution to perform this matching would

be to construct a graphical structure over the set of fea-

ture points and to apply some kind of fast approximate

sub-graph isomorphism, robust to non rigid deforma-

tions.
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