
Vis Comput
DOI 10.1007/s00371-010-0494-2

O R I G I NA L A RT I C L E

A comparative study of existing metrics for 3D-mesh segmentation
evaluation

Halim Benhabiles · Jean-Philippe Vandeborre ·
Guillaume Lavoué · Mohamed Daoudi

© Springer-Verlag 2010

Abstract In this paper, we present an extensive experimen-
tal comparison of existing similarity metrics addressing the
quality assessment problem of mesh segmentation. We in-
troduce a new metric, named the 3D Normalized Probabilis-
tic Rand Index (3D-NPRI), which outperforms the others
in terms of properties and discriminative power. This com-
parative study includes a subjective experiment with human
observers and is based on a corpus of manually segmented
models. This corpus is an improved version of our previ-
ous one (Benhabiles et al. in IEEE International Confer-
ence on Shape Modeling and Application (SMI), 2009). It
is composed of a set of 3D-mesh models grouped in dif-
ferent classes associated with several manual ground-truth
segmentations. Finally the 3D-NPRI is applied to evaluate
six recent segmentation algorithms using our corpus and
the Chen et al.’s (ACM Trans. Graph. (SIGGRAPH), 28(3),
2009) corpus.
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1 Introduction

3D-mesh segmentation is a fundamental process in many ap-
plications such as shape retrieval [1, 29], compression [29],
deformation [17], texture mapping [26], etc. It consists in
decomposing a polygonal surface into different regions (i.e.
connected set of vertices or facets) of uniform properties,
either from a geometric point of view or from a semantic
point of view. It is a critical step toward content analysis
and mesh understanding. Although some supervised meth-
ods exist [12, 16], most existing techniques are fully auto-
matic.

According to recent states-of-the-art [3, 24], mesh seg-
mentation techniques can be classified into two categories:
surface-type (or geometric) methods and part-type (or se-
mantic) methods. In the first case, the algorithms are based
on low level geometric information (e.g. curvature [20])
in order to define segments (i.e. regions) with respect to
geometric homogeneity, while in the latter case, the algo-
rithms aim at distinguishing segments that correspond to
relevant features of the shape, by following higher level no-
tions such as defined in human perception theory [6]. This
kind of approach is particularly suited for object anima-
tion/deformation and indexing applications, where the de-
composition has to be meaningful.

Although development of mesh segmentation algorithms
for both approaches has drawn extensive and consistent
attention, relatively little research has been done on seg-
mentation evaluation. For the first approach (surface-type),
some tools exist depending on the end application as texture
mapping [23] or medical imaging [13]. Recently, two main
works, Benhabiles et al. [4] (our previous work) and Chen et
al. [7], have been proposed to study the quality assessment
problem of part-type 3D-mesh segmentation. Both works
propose a benchmark for segmentation evaluation which is
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based on a ground-truth corpus. The corpus is composed of
a set of 3D-models grouped in different classes and associ-
ated with several manual segmentations produced by human
observers. These two benchmarks comprise the ground-truth
corpus and a set of similarity metrics, then the evaluation of
a segmentation algorithm consists in measuring the similar-
ity between the reference segmentations from the corpus and
that obtained by this algorithm (on the same models). In this
kind of benchmark the quality of the evaluation depends on
the quality of the corpus but also on the quality of the seg-
mentation similarity measure. This leads to conclude that
the choice of an accurate measure is quite critical in order
to provide a strict evaluation and to reflect the real quality
of an automatic segmentation with comparison to a manual
one. In this context, less efforts were investigated to propose
a reliable measure of mesh segmentation similarity. Indeed,
the previous works [4, 7] focused their interests on the de-
sign of the ground-truth corpus and presented rather simple
metrics suffering from degeneracies and low discriminative
power.

In this context the objective of the present work is to eval-
uate the existing metrics and to propose a new one which is
more reliable. This paper introduces three main contribu-
tions. Firstly, we propose a thorough study and comparisons
of existing metrics addressing the assessment problem of
mesh segmentation, using a corpus of manually segmented
models. This corpus is an improved version of our previous
one [4] and is available on-line.1 Secondly, we propose a
new measure of segmentation similarity that allows one to
quantify the consistency between multiple segmentations of
a model. We show that this new metric outperforms exist-
ing ones in terms of properties and discriminative power. To
quantitatively compare the discriminative power of the met-
rics, we have conducted subjective tests using a set of human
observers. Thirdly, we apply this measure together with two
corpuses (our corpus and Chen et al.’s [7] corpus) to evaluate
six recent 3D-mesh segmentation algorithms.

This paper is organized as follows. In Sect. 2, we provide
a review of the state-of-the-art of segmentation evaluation
and an analytic study of the measures that have been pro-
posed in this context. In Sects. 3 and 4, we define a new
objective metric to perform a quantitative comparison be-
tween a segmentation algorithm and a set of ground-truth
segmentations (of the same model). In Sect. 5, we present
our corpus which will be used for the experimental compar-
ison of the metrics and for the evaluation of the segmentation
algorithms. In Sect. 6, we present an extensive experimen-
tal comparison between our new metric and existing ones,
then we analyze the discriminative power of this new metric
using subjective tests. In Sect. 7, we demonstrate the usabil-
ity of our whole evaluation protocol through the evaluation

1http://www-rech.telecom-lille1.eu/3dsegbenchmark/.

of six recent segmentation methods. Section 8 concludes the
paper.

2 Related work

In this section, we firstly provide a review of the state-of-
the-art of 2D-image and 3D-mesh segmentation evaluation.
Indeed, the most significant works for the 3D-mesh segmen-
tation evaluation [4, 7] are based on the same methodology
as that proposed in the 2D-image domain [21]. Secondly, we
review the measures that have been proposed in the context
of 3D-mesh segmentation evaluation, while analyzing their
properties.

2.1 State-of-the-art of 2D-image and 3D-mesh
segmentation evaluation

Several advanced works exist for the quality assessment
of 2D-image segmentation. Zhang et al. [30] offer a study
on the different methods proposed for this task. According
to them, the different methods can be classified into five
groups:

– Analytical methods. They directly treat the segmentation
algorithms themselves by taking into account principles,
requirements, utilities, complexity, etc. of algorithms. Us-
ing analytical methods to evaluate segmentation algo-
rithm avoids a concrete implementation of the algorithms.
However, the real quality of these algorithms cannot be
obtained by a simple analytical study.

– Subjective methods. They evaluate the segmentation al-
gorithms in a subjective way in which the segmentation
results are judged by a human operator. Therefore, the
evaluation scores can vary significantly from one human
evaluator to another since they do not have necessarily
the same standards for assessing the quality of a segmen-
tation. Furthermore, the results can depend on the order
in which the human operator observes them. To minimize
bias, such a method requires a large set of objects and a
large group of humans. Unfortunately, this kind of method
cannot be integrated in an automatic system.

– System level evaluation methods. This kind of methods
indicates if the characteristics of the results obtained by
a segmentation algorithm are suited for the over-all sys-
tem which uses this segmentation algorithm. However,
this evaluation method is indirect. If the process which
follows the segmentation generates better results, it does
not necessarily mean that the segmentation results were
superior, and vice versa.

– Empirical goodness or unsupervised methods. They eval-
uate the performance of the algorithms by judging the
quality of the segmented images themselves. To achieve
this task, a set of quality criteria has to be defined. These

http://www-rech.telecom-lille1.eu/3dsegbenchmark/
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criteria are established according to human intuition about
what conditions should be satisfied by an ideal segmenta-
tion. However, it seems difficult to establish quantitatively
the quality of a segmentation only by using such an a pri-
ori criteria.

– Empirical discrepancy or supervised methods. A set of
reference images presenting the ideal segmentation is first
of all built. This set of images, which can be manually
segmented by experts of the domain, constitutes a ground-
truth. The purpose is to measure the discrepancy between
these reference segmentations and that obtained by an al-
gorithm to evaluate. So, these methods try to determine
how far a segmented image obtained by an algorithm is
from one or several segmented images. A large discrep-
ancy involves a large segmentation error and thus this in-
dicates a low performance of the considered segmentation
algorithm.

The empirical discrepancy methods are the most popular
for 2D-image segmentation evaluation [21, 28]. Indeed they
seem to be the most suited for a quantitative evaluation as
the measures of quality can be numerically computed, and
for an objective evaluation thanks to the ground-truth.

Martin et al. [21] have proposed such a method to eval-
uate image segmentation algorithms. They built a public
corpus containing ground-truth segmentations produced by
human volunteers for images of a wide variety of natural
scenes. They also defined a measure of segmentation simi-
larity based on the computation of refinement error of a pixel
between two segments (i.e. regions) containing this pixel.

In the 3D-domain, there exist some works proposing the
quality assessment of segmentation in a specific context. In
the MRI (Magnetic Resonance Imaging) field for example,
Gerig et al. [13] propose a tool that quantifies the segmen-
tation quality of 3D-images (volumetric images) including
different shape distance metrics such as maximum Haus-
dorff distance, and mean/median absolute distance between
object surfaces. For texture mapping, Sander et al. [23] in-
troduce a metric based on the texture stretch induced by the
parametrization of the segmented regions and allowing for
the evaluation of the segmentation quality.

More recently, Attene et al. [3] have proposed some cri-
teria like the aspect of the boundaries (smoothness, length),
the hierarchical/multi-scale properties, the robustness, the
complexity and the number of parameters. However, these
criteria rather judge some technical points than the real qual-
ity of the techniques themselves, they rather fall in the em-
pirical goodness methods. As raised by the authors, the main
problem is that the objective quality of a segmentation of a
given model is quite difficult to define, since it depends on
the viewer’s point of view and knowledge.

Berretti et al. [5] have presented some experimental re-
sults which are based on a ground-truth to validate their
own segmentation algorithm. However, the ground-truth is

not available on-line and according to the authors it contains
very simple 3D-models (surfaces of revolution, vases, etc.).

Lastly, we proposed a framework to study the assess-
ment problem of 3D-mesh segmentation [4]. Another work
proposed by Chen et al. [7] addresses the same task. Both
of these works propose a benchmark which is based on
a ground-truth corpus of human segmented 3D-models, so
they both constitute empirical discrepancy methods; the
evaluation of a segmentation algorithm is realized by quan-
tifying the consistency between the reference segmentations
of the ground-truth corpus and those obtained by this algo-
rithm on the same models using a set of similarity metrics
that we will detail in the next subsection.

2.2 Review and analytic study of mesh segmentation
similarity metrics

In the following, we summarize the existing metrics used to
evaluate 3D-mesh segmentation and check if they are really
reliable in the context of 3D-mesh segmentation evaluation.
A reliable measure of mesh segmentation similarity has to
possess the following set of properties:

– No degenerative cases. The score’s measure must be pro-
portional to the similarity degree between an automatic
segmentation and the ground-truth segmentations of the
same model. For example, an over-segmentation where
each vertex (or face) is represented by a segment must
give a very low value of similarity, since no ground-truth
segmentation can be represented in such a way.

– Tolerance to refinement. The segmentation performed by
some human observers can be coarse while the segmen-
tation performed by others can be finer. However, they
basically remain consistent; the difference just lies in the
level of refinement. Hence, a reliable segmentation mea-
sure has to accommodate and to be invariant to these seg-
mentation granularity differences.

– Cardinality independence. The measure must neither as-
sume equal cardinality nor depend on this attribute. This
means that two segmentations to be compared can have
different numbers of segments and different sizes of seg-
ments.

– Tolerance to cut boundary imprecision. The segment
boundaries are defined in a subjective way. Indeed, it is
possible that two volunteers define the same segment on a
model with a slight difference between boundaries, how-
ever, from a semantic point of view, the segments remain
similar. Hence, a reliable measure has to accommodate
this imprecision of cut boundaries.

– Multiple ground-truth. The measure has to be able to
compare one automatic segmentation with multiple
ground-truth (reference segmentations) for a given model,
otherwise, providing multiple ground-truth in a bench-
mark is useless. An alternative solution is to simply aver-
age the similarity scores obtained between an automatic
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segmentation and each manual segmentation (reference
segmentation), however, this may bias the result and not
really reflect how much an automatic segmentation agrees
with the multiple ground-truth.

– Meaningful comparison. The scores obtained by the mea-
sure have to allow for a meaningful comparison between
different segmentations of the same model and between
segmentations of different models. For the first case (seg-
mentations of the same model), the scores have to vary
according to the segmentation quality, then, more the au-
tomatic segmentation is similar to the ground-truth seg-
mentations of the same model, and better the score is. For
the second case (segmentations of different models), the
scores have to indicate which kind of 3D-models is the
most convenient to segment by an automatic algorithm.

Essentially, the measures used to evaluate 3D-mesh seg-
mentation can be classified into three categories: bound-
ary matching, region differencing and non-parametric tests
based measures.

In order to be able to formulate the above measures, we
need to define what is a mesh segmentation. We will use
this definition (according to Shamir [24]) for the remainder
of this article.

Definition 1 Let M be a 3D-mesh, and R the set of mesh
elements which are the vertices vi or the faces fi of M .
A segmentation S of M is the set of sub-meshes S =
{M0, . . . ,Mk−1} induced by the partitioning of R into k dis-
joint sub-sets of vertices or faces.

The three categories of measure are:

1. Boundary matching. This kind of measures compute the
mapping degree between the extracted region bound-
aries of two segmentations. Chen et al. [7] proposed
to use such a measure called Cut discrepancy. It mea-
sures the distances between cuts, where each cut rep-
resents an extracted region boundary. Let S1 and S2 be
two segmentations of a 3D-mesh M and C1, C2, their re-
spective sets of points on the segment boundaries. Let
dG(p1,C2) = min{dG(p1,p2),∀p2 ∈ C2} be the geo-
desic distance from a point p1 ∈ C1 to a set of cuts C2.

The Cut discrepancy between S1 and S2 is then:

CD(S1, S2) = DCD(S1 ⇒ S2) + DCD(S2 ⇒ S1)

avgRadius

where, avgRadius is the average Euclidean distance from
a point on the surface to centroid of the mesh, and DCD
is a directional function defined as DCD(S1 ⇒ S2) =
mean{dG(p1,C2),∀p1 ∈ C1}.

A value of 0 will indicates a perfect matching between
S1 and S2. As observed by Chen et al. [7] the measure is
undefined when the model has no cuts and decreases to

zero as more cuts are added to a segmentation. Hence it
suffers from a degenerative case (see Sect. 2.2). In addi-
tion, it is not tolerant to refinement since for two segmen-
tations that are perfect mutual refinements of each other,
it can provide a large value. Moreover, for the unmatched
points, it is possible to change their locations randomly
and the measure will keep the same value. It is also not
tolerant to imprecision of cut boundaries since it is based
on a geodesic distance. Finally, it allows one to compare
an automatic segmentation to only one ground-truth seg-
mentation.

2. Region differencing. These measures compute the consis-
tency degree between the regions produced by two seg-
mentations S1 and S2. Berretti et al. [5] have proposed
an overlap index representing the extent to which a re-
gion Ri of an automatic segmentation overlaps to closest
region Rj of a ground-truth segmentation. The overlap
index Oindex of Ri is defined as:

Oindex = max
j

A(Ri ∩ Rj)

A(Ri)

with A(.) the operator that returns the area of a region. If
we suppose that S1 is the automatic segmentation and S2

is the ground-truth segmentation, then the distance be-
tween them is the average of the Overlap index over-
all regions of S1. This measure falls in a degenerative
case when Ri is represented by one face. Then the over-
partitioning is not captured and it also does not allow for
a comparison to multiple ground-truth.

We (Benhabiles et al. [4]) and Chen et al. [7] proposed
to use the consistency error measure. It is based on the
computing of a local refinement error L3D of a vertex (or
face) vi between S1 and S2 and is defined as:

L3D(S1, S2, vi) = |R(S1, vi)\R(S2, vi)|
|R(S1, vi)|

where the operator\denotes the set differencing, |x| the
cardinality of the set x, and R(S, vi) the region in seg-
mentation S that contains the vertex vi , i.e. the subset of
vertices corresponding to a sub-mesh Mj of S contain-
ing vi .

This local refinement error produces a positive real
valued output that presents the ratio of the number of ver-
tices not shared between the first segment and the second
one.

Given this L3D , there exist two ways to combine it
for all vertices into a global measure for the entire 3D-
mesh: the Global Consistency Error (GCE) and the Local
Consistency Error (LCE).
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The Global Consistency Error (GCE) forces all local
refinements to be in the same direction and is defined as:

GCE(S1, S2)

= 1

N
min

{∑
i

L3D(S1, S2, vi),
∑

i

L3D(S2, S1, vi)

}

The Local Consistency Error (LCE) allows for different
directions of refinement in different segments of the 3D-
mesh:

LCE(S1, S2)

= 1

N

∑
i

min
{
L3D(S1, S2, vi),L3D(S2, S1, vi)

}

where N is the number of vertices. For both the GCE
and the LCE, a value of 0 indicates a complete similar-
ity, whereas a value of 1 indicates a maximum deviation
between the two segmentations being compared. There
are two degenerative segmentations that achieve a GCE
and a LCE score of zero: one vertex per segment, and
one segment for the entire mesh. We can also notice that
the measure does not allow for a comparison to multiple
ground-truth.

Chen et al. [7] proposed to use another measure
namely Hamming distance. The Hamming distance be-
tween two segmentations S1 and S2 measures the region
differencing between their respective set of segments.
The directional Hamming distance is defined as:

DH (S1 ⇒ S2) =
∑

i

∥∥Ri
2\Rit

1

∥∥

where the operator\denotes the set differencing, ‖x‖ the
cardinality of the set x, and it = argmaxk‖Ri

2 ∩ Rk
1‖

which allows one to find the closest segment in S1 to the
region (or segment) Ri

2 in S2.
Given this DH , and considering S2 as the ground-

truth, the authors of [7] defined the missing rate Mr and
the false alarm rate Fr as follows:

Mr(S1, S2) = DH (S1 ⇒ S2)

‖S‖
Fr(S1, S2) = DH (S2 ⇒ S1)

‖S‖
and the Hamming distance as the average of missing rate
and false alarm rate:

HD(S1, S2) = 1

2

(
Mr(S1, S2) + Fr(S1, S2)

)

As observed by the authors [7] the measure has a good
behavior when the correspondences between segments
are correct but it fails when they are not. Another limit
is the comparison to only one ground-truth.

3. Non-parametric tests. In the statistical literature there ex-
ists a lot of non-parametric measures. We can cite for ex-
ample Cohen’s Kappa [8], Jaccard’s index [11], Fowlkes
and Mallow’s index [11]. The latter two are variants of
Rand index [22]. Chen et al. [7] proposed to use Rand
index for 3D-mesh segmentation evaluation. This index
converts the problem of comparing two segmentations S1

and S2 with different numbers of segments into a prob-
lem of computing pairwise label relationships. If we de-
note liS1

the corresponding label of all elements (vertices

or faces) contained in region Ri of S1 and similarly liS2
the corresponding label of all elements contained in re-
gion Ri of S2, the Rand index can be computed as the
ratio of the number of pairs of vertices or faces having
the compatible label relationship in S1 and S2 and can be
defined as:

RI(S1, S2) = 1(N

2

) ∑
i,j
i<j

I
(
liS1

= l
j
S1

)(
liS2

= l
j
S2

)

+ I
(
liS1

�= l
j
S1

)(
liS2

�= l
j
S2

)

where I is the identity function, and the denominator is
the number of possible unique pairs among N vertices or
faces. This gives a measure of similarity ranging from 1,
when the two segmentations are identical, to 0 otherwise.
This measure does not allow for comparison to multiple
ground-truth segmentations.

We can notice that all existing measures suffer from
either degenerative cases and/or sensitivity to refinement
and/or sensitivity to cut boundaries imprecision and/or lim-
itation in term of comparison to multiple reference (i.e.
ground-truth) segmentations. Therefore none of these mea-
sures satisfies the whole set of defined criteria.

3 The 3D probabilistic rand index (3D-PRI)

The goal of this measure is to perform a quantitative com-
parison between a mesh segmentation algorithm and a set of
ground-truth segmentations (of the same model). In the field
of 2D-image, Unnikrishnan et al. [28] proposed a probabilis-
tic interpretation of Rand Index to evaluate the performance
of 2D-image segmentation algorithms and shown the rele-
vance of the obtained results. Hence we have generalized
this measure for 3D-mesh segmentation evaluation.

Let Sa be the automatic segmentation to be compared to a
set of manual segmentations (ground-truth) {S1, S2, . . . , SK}
of a 3D-mesh M . We denote the corresponding label of a
vertex vi (label of the segment to which belongs vertex vi )
by liSa

in segmentation Sa and by liSk
in the ground-truth seg-

mentation Sk . It is assumed that the label liSk
takes a value

ranged between 1 and the number of segments of Sk and
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similarly liSa
takes a value ranged between 1 and the num-

ber of segments of Sa . The label relationships for each ver-
tex pair is modeled by an unknown underlying distribution.
This can be considered as a process where each human seg-
menter provides information about the segmentation Sk of
the 3D-mesh in the form of binary numbers I(lisk = l

j
sk ) for

each pair of vertices (xi, xj ). The set of all perceptually cor-
rect segmentations defines a Bernoulli distribution over this
number, giving a random variable with expected value de-
noted as pij . Hence, the set {pij } for all unordered pairs
(i, j) defines a generative model of correct segmentations
for the 3D-mesh M . The 3D Probabilistic Rand Index is then
defined as:

3DPRI
(
Sa, {Sk}

) = 1(N

2

) ∑
i,j
i<j

eijpij + (1 − eij )(1 − pij ) (1)

where eij denotes the event of a pair of vertices i and j

belonging to the same segment (or region) in the automatic
segmentation:

eij = I
(
liSa

= l
j
Sa

)

and pij denotes the probability of the vertices i and j be-
longing to the same segment in the ground-truth set {Sk} and
is given by the sample mean of the corresponding Bernoulli
distribution as suggested by Unnikrishnan et al. [28]:

pij = 1

K

∑
k

I
(
liSk

= l
j
Sk

)

The 3D-PRI takes a value ranged between 0 and 1, where
0 indicates no similarity between Sa and {S1, S2, . . . , Sk},
and 1 indicates a perfect similarity.

Note that with this formulation for pij , computing the
3D-PRI is equivalent to averaging the RI over the multiple
ground-truths. However, the 3D-PRI formulation is generic
and we can imagine a different and more efficient way to
compute the pij . The main advantage of the simple mean
estimator is its fast computation.

We have noticed in practice, however, that the 3D-PRI
suffers from lack of discriminative power in its values. In-
deed, the values obtained by the index do not allow one to
clearly decide if a segmentation obtained by an automatic al-
gorithm is relevant or not. This is due to the limited effective
range of 3D-PRI in term of maximum and minimum value.
To address this drawback, we present in the next section, the
3D normalized probabilistic Rand index (3D-NPRI).

4 3D normalized probabilistic rand index (3D-NPRI)

Our objective is to normalize the 3D-PRI, in order to in-
crease its dynamic range and thus its discriminative power.

Hence we need to define a baseline to which the index can
be expressed. For 3D-mesh segmentations, the baseline may
be interpreted as the expected value of the index under some
particular segmentations of the input 3D-model. A popular
strategy [11, 28] of index normalization with respect to its
baseline is:

Normalized index

= Index − Expected index

Maximum index − Expected index
(2)

As observed by Unnikrishnan et al. [28] there is a little
agreement in the statistics community regarding whether the
value of “Maximum index” should be estimated from the
data or set constant. We choose to follow what was done
by Unnikrishnan et al. [28] and set the value to be 1 (the
maximum possible value of the 3D-PRI). Thus, we avoid the
practical difficulty of estimating this quantity for complex
data sets.

Another parameter to define is the expected probabilistic
Rand index E(3D-PRI). One may draw an analogy between
the E(3D-PRI) and the 3D-PRI in equation 1 as follows:

E
[
3DPRI

(
Sa, {Sk}

)] = 1(N

2

) ∑
i,j
i<j

e′
ijpij + (1 − e′

ij )(1 − pij )

(3)

where e′
ij = E[I(liSa

= l
j
Sa

)]. This latter quantity has to be
computed in a meaningful way. Unnikrishnan et al. [28] pro-
posed to estimate it from segmentations of all images of the
database for all unordered pairs (i, j). Let Φ be a number
of images in a data set and Kφ the number of ground-truth
segmentations of image φ. Then, e′

ij is expressed as:

e′
ij = 1

Φ

∑
φ

1

Kφ

Kφ∑
k=1

I
(
li
Sk

φ

= l
j

Sk
φ

)

However, this estimation can only be used in a data-base
of 2D-images having equal sizes (where each pixel has its
correspondent over all the other segmented images). In the
3D case, it is not possible, since the different models of
the corpus have different number of vertices and different
connectivities. One possible way to compute the E(3D-PRI)
while keeping a correct baseline and without having any
constraint on the corpus, is to use random segmentations Sr :

E
[
3DPRI

(
Sa, {Sk}

)] = 1

N

N∑
r=1

3DPRI
(
Sr, {SKr }

)
(4)

where N is the number of 3D-models in our corpus and {Skr }
are ground-truths of the model concerned by Sr . We then
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Fig. 1 Random segmentations of some 3D-models of the corpus

define the 3D-NPRI of an automatic segmentation of a given
3D-model as follows:

3DNPRI(Sa) = 3DPRI(Sa, {SK}) − E[3DPRI(Sa, {Sk})]
1 − E[3DPRI(Sa, {Sk})]

(5)

The random segmentations were generated using a simple
algorithm: L seed vertices were randomly chosen on the ob-
ject, then L connected regions were obtained by a simple
region growing mechanism. The number of segments (or re-
gions) takes a value ranged between 2 and the number of
vertices of the concerned model. Figure 1 shows some 3D-
models of the corpus on which the random segmentation al-
gorithm was applied. We have to precise here that the 3D-
NPRI is not affected by the choice of these random segmen-
tations. Indeed we will show later (see Fig. 3) that the 3D-
PRI provides very stable values when comparing ground-
truth segmentations to random segmentations (even with
very different granularities) hence the normalization con-
stant E(3D-PRI) (see (4)) is almost invariant to the choice
of the random segmentations Sr .

Hence, the 3D-NPRI will take a value with a lower bound
of −1 and an upper bound of 1, where −1 indicates no sim-
ilarity between the automatic segmentation and the ground-
truth segmentations of the same model, and 1 indicates a
perfect match. The lower bound of −1 is explained by the
fact that the expected Index cannot exceed 0.5 since we com-
pare a set of random segmentations to a set of ground-truth
segmentations (see Sect. 6.1). Therefore, the worst case will
be:

3DNPRI(Sa) = 0 − 0.5

1 − 0.5
= −1

where the automatic segmentation has no similarity with its
corresponding ground-truths.

Note that the metric’s definition does not take into ac-
count model with different sampling. Moreover, the score of
the metric changes by changing the order of vertices on the
automatic segmentation and the ground-truths of the same
model. However, in our case, it is not really a drawback
since we compare segmentations of the same model while
keeping the same sampling and the same order of vertices.

5 Ground-truth corpus

The current version of our corpus is an improved ver-
sion of [4] in term of number of models and ground-truth
segmentations per model. The corpus is available on-line2

and contains twenty-eight 3D-models (as triangle meshes)
grouped in five classes, namely animal, furniture, hand, hu-
man and bust. Each 3D-model of the corpus is associated
with 4 manual segmentations which give a total of 112
ground-truth segmentations done by 36 volunteers. Figure 2
illustrates the models of the corpus with one manual seg-
mentation per model. We have selected a small number of
varied models with respect to a set of properties. All the
selected models are manifold, connected, and do not have
intersecting faces. Hence they are supported as an input by
any segmentation algorithm. In order to collect precise man-
ual segmentations, we have assisted the volunteers in trac-
ing the vertex-boundaries through the different models. Note
that the volunteers have freely segmented the models and no
condition was imposed on the manner with which they have
segmented them. For this task, we used MeshLab3 applica-
tion allowing for an explicit vertex-per-vertex segmentation
of models using colors.

Chen et al. [7] proposed another corpus that seems com-
plementary to ours: they present more objects (380 3D-
models of the Watertight Track of the 2007 SHREC Shape-
based Retrieval Contest [14]) when we selected a small
representative set (it allows one to rapidly evaluate a seg-
mentation algorithm without running it on 380 objects).
They chose to use the web application Amazon’s Me-
chanical Turk4 to collect the manual—i.e. ground-truth—
segmentations without any supervision when we chose to
supervise our volunteers to obtain more precise manual seg-
mentations. Finally, their ground-truth presents face-based
segmentations whereas ours contains vertex-based segmen-
tations.

6 Experimental comparison of properties of existing
segmentation similarity metrics

In what follows, we provide an experimental study of the
3D-PRI/3D-NPRI properties and we compare them to the
existing metrics for assessing 3D-mesh segmentation qual-
ity. For this end, we use our corpus models and their corre-
sponding ground-truths.

Most of the measures introduced in Sect. 2.2 quantify
dissimilarity (the lower is the number, the better is the seg-
mentation result) between segmentations rather than simi-
larity. In order to have a meaningful comparison between

2http://www-rech.telecom-lille1.eu/3dsegbenchmark/.
3http://meshlab.sourceforge.net/.
4http://www.mturk.com/.

http://www-rech.telecom-lille1.eu/3dsegbenchmark/.
http://meshlab.sourceforge.net/
http://www.mturk.com/.
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Fig. 2 Models of our corpus associated with one ground-truth

these measures and the 3D-PRI/3D-NPRI, we define the
quantities CDI(S1, S2) = 1 − CD(S1, S2), GCI(S1, S2) =
1 − GCE(S1, S2), LCI(S1, S2) = 1 − LCE(S1, S2), and
HDI(S1, S2) = 1 − HD(S1, S2). The “I” in the acronyms
stands for “Index”, complying with the popular usage of the
term in statistics when quantifying similarity. Hence, except
the CDI, all of the other indexes are in the range [0,1] with a
value of 0 indicating no similarity between segmentations of
the same model and a value of 1 indicating a perfect match.
The CDI is in the range ]−∞,1].

6.1 Sensitivity to degenerative cases

The first property to study is the sensitivity of each index re-
garding degenerative cases. For this end, we compare our
Probabilistic Rand Index (3D-PRI) with the Cut Discrep-
ancy Index (CDI), the Hamming Distance Index (HDI), the
Global and Local Consistency Index (GCI/LCI), and the
Overlap Index (OI) for three kinds of random segmentations
namely extreme-low segmentation (segmentation composed
of a 2 or 3 segments), middle-segmentation (segmentation
composed of a number of segments which is similar to that
of ground-truths of the corresponding model), and extreme-
high segmentation (segmentation composed of more than 50

Fig. 3 Comparison of three levels of random segmentation (ex-
treme-low, middle, and extreme-high) to the ground-truths for the
whole corpus using different indexes

segments). They were generated using a random segmen-
tation algorithm. Figure 3 presents the results obtained by
the comparison of these random segmentations to the set of
the ground-truths for each model of the corpus. Each index
of the figure is computed for the three kinds of segmenta-
tion (extreme-high segmentation, middle-segmentation, and
extreme-low segmentation) and averaged across the entire
data set. Since the segmentations are random, the scores ob-
tained by the metrics are expected to be low for the three
kinds of segmentation, and it is the case for the 3D-PRI.
We can notice, however, that although the random segmenta-
tions are totally different from the ground-truths, the scores
of the other metrics are very high (very good) for certain
segmentations with degenerative granularity (extreme-high
and/or extreme-low). Hence the 3D-PRI is the most stable
regarding degenerative cases considering its scores, which
are less than 0.32.

6.2 Tolerance to refinement

The second property to study is the tolerance of each in-
dex to refinement. For this end, we perform two kinds of
experiments. The first one uses segmentations with mutual
refinements, and the second one uses segmentations with hi-
erarchical refinements. The obtained results for the first ex-
periment are presented in Fig. 4.

It shows two segmentations of the dinopet model which
are perfect mutual refinements of each other, and a plot in
which is computed the similarity between the two segmen-
tations using different metrics. The plot of Fig. 4 clearly
shows that the CDI fails to capture the similarity between
the two segmentations (a) and (b). Although the two seg-
mentations are similar (the difference just lies in the level
of refinement). However, the other metrics have a good be-
havior toward this kind of refinement since all of them give
scores which are close to 1.
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Fig. 4 Tolerance to mutual refinement of different indexes, by com-
paring two segmentations (a), (b) with perfect mutual refinement for
the dinopet model

The second experiment was performed using the hierar-
chical segmentation algorithm of Attene et al. [2]. We gen-
erated several levels of segmentation (from 4 segments to 15
segments) on the horse model of our corpus then we com-
pared these 12 versions to the ground-truths. Figure 5 illus-
trates the obtained results using different indexes. The OI
and the GCI does not appear on the figure since they have
the same behavior as the LCI. The figure clearly shows that
the CDI is less stable toward hierarchical refinement than the
other indexes. The LCI seems completely invariant while the
3D-PRI and the HDI present a slight variation; they are not
fully invariant but present a good tolerance to refinement.

6.3 Independence from cardinality

The third property to study is the independence of each in-
dex toward segmentation cardinality. According to the pre-
vious performed experiments about the first two properties
(degenerative cases and refinement), the CDI seems to be
the only metric which depends on the cardinality, in a criti-
cal way. Indeed, the comparison between two segmentations
with different number of segments will give a bad score us-
ing this metric whatever the quality.

Fig. 5 Tolerance to hierarchical refinement of different indexes, by
comparing several levels of segmentation of the horse model to its cor-
responding ground-truths

6.4 Tolerance to imprecision of cut boundaries

The fourth property to study is the tolerance of each index
to the imprecision of cut boundaries. For this end, we manu-
ally segmented a simple model (bitorus) into 2 segments. We
proposed 5 segmentations (Fig. 6(a) to (e)) where each one
of them has a slight difference in the boundary position with
comparison to the others, then we computed the similarity
between segmentation (c) and the other segmentations. The
plot in Fig. 6 shows the obtained results using different in-
dexes. Contrary to the other indexes, the CDI gives low val-
ues of similarity between segmentations. Although the CDI
is not in the same range as the other metrics, the plot still al-
lows us to illustrate the qualitative behavior of this latter in-
dex toward the imprecision of cut boundaries. We can notice
also that except the 3D-PRI which presents a slight variation
but a good tolerance, the other indexes are almost invariant.

At this point, we have shown that the 3D-PRI satisfies the
five properties: ability to compare one automatic segmenta-
tion with multiple ground-truth segmentations, no degener-
ative cases, tolerance to refinement, independence from seg-
mentation cardinality, and tolerance to imprecision of cut
boundaries. We also have shown that the 3D-PRI outper-
forms the other indexes in terms of the first two properties.
We show in the next experiments that the normalization of
this index (into 3D-NPRI) improves its discriminative power
and give better results in term of meaningful comparison.

6.5 Meaningful comparison

The main advantage of the 3D-NPRI is the ability to provide
values that allow a meaningful comparison between seg-
mentations of different 3D-models. Figure 7 demonstrates
this behavior. The top two rows show different 3D-models
of our corpus segmented at different granularity using the
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Fig. 6 Tolerance to imprecision of cut boundaries of different indexes,
by comparing segmentation (c) to segmentations (a) to (e) for the
bitorus model

hierarchical algorithm of Tierny et al. [27]. These automatic
segmentations are compared to the ground-truth corpus (see
Fig. 2) using the previous indexes and our 3D-NPRI. Visu-
ally, regarding the ground-truth, segmentations (a) and (b)
(Fig. 7) seem very poor, segmentations (c), (d), and (f) are
correct, and segmentation e is perfect. One can notice that
the OI similarity is high for all of the 3D-models. Hence, it
cannot indicate which segmentation is the best. Note that al-
though the HDI gives lower scores than the OI, it also fails
to distinguish between correct and poor segmentations since
it gives high values for poor ones (Fig. 7(a) and (b) and low
values for correct ones (Fig. 7(c) and (d). The GCI/LCI does
not appear in the plot in order to keep a clear display. This
latter metric has the same behavior than HDI. The CDI has
slightly a better behavior than HDI but still to fail distin-
guishing between correct and poor segmentations. The 3D-
PRI reflects the correct relationship among the segmenta-
tions. However, its range is small, and the expected value is
unknown, hence it is difficult to determine which segmen-
tation is really good. The 3D-NPRI fixes all of these draw-
backs. It reflects the desired relationship among the segmen-
tations with no degenerate cases. Besides, any segmentation
which gives a score significantly above 0 can be considered
as relevant (since it provides results significantly better than
random segmentations).

Fig. 7 Example of comparing segmentations of different models:
From (a) to (f) segmentations using algorithm from [27]. The plot (g)
shows the scores of different indexes for each segmentation (a) to (f)

6.6 Discriminative power

The best way to attest the discriminative power of our 3D-
NPRI is to show that its values are well correlated with the
rates given by users for a set of segmentations.

In the following experiment, we study the correlation be-
tween the metrics’ values and the observers’ rates of a set
of segmentations obtained from our corpus models. For this
end, we used the following algorithms: Attene et al. [2],
Lavoué et al. [20], Shapira et al. [25], and Tierny et al [27].
We collected 250 segmentations including 28 ground-truth
segmentations and 28 random segmentations. Except for the
algorithm of Lavoué et al. [20], the others are hierarchical.
Hence, we generated for each one of them two levels of
segmentation, namely coarse and fine, which gives 28 × 2
segmentations per algorithm and 28 segmentations from
Lavoué et al.’s [20] algorithm. We computed the quality in-
dex of these 250 segmentations (using our ground-truth) us-
ing the different metrics. We then asked several observers to
give a rate reflecting the perceived quality of each segmen-
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Fig. 8 Subjective MOS vs metric values for the whole corpus models and for different metrics. Each circle represents a segmentation. The
Gaussian fitted curve is displayed in red

tation between 1 (bad segmentation) and 10 (perfect seg-
mentation). Hence each segmentation was associated with
quality index values from the different metrics and a sub-
jective Mean Opinion Score (MOS) from human observers.
This latter score reflects the opinion of observers toward the
quality of a segmentation. The MOS of the segmentation i

is computed as follows:

MOSi = 1

N

N∑
j=1

mij

where N is the number of observers (10 in our experiment),
and mij is the rate (in the range [1,10], 10 for a very good
segmentation) of the j th observer given to the ith segmenta-
tion. For the correlation, we considered a statistical indicator
namely the Pearson Product Moment Correlation [10]. This
indicator measures the linear dependence between two vari-
ables X and Y. In order to optimize the matching between the
values of the different metrics and the MOS of observers, we

Table 1 Pearson correlation values (%) between the Mean Opinion
Scores and the values of different metrics for each model category of
our corpus

CDI OI GCI LCI HDI 3D-NPRI

Animal 2.6 2.3 9.3 8.3 16.9 58.7

Bust 10.9 0 45.9 61.1 54.8 77.4

Furniture 5.8 14.8 49.9 50.5 63 73.2

Hand 21.2 1 54.1 54.4 57.5 70.2

Human 1.5 5.5 32.1 32.6 39 51.6

Whole 7.1 2.6 23.7 20.9 32.9 66.1

performed a psychometric curve fitting using the Gaussian
psychometric function (recommended by [9]).

Table 1 shows the results of correlation between the val-
ues of different metrics and the MOS of observers for Pear-
son indicator. The results in the table clearly shows that the
3D-NPRI outperforms the other metrics in term of correla-
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Table 2 Properties of existing
similarity metrics CDI OI GCI LCI HDI 3D-NPRI

Degenerative cases Yes Yes Yes Yes Yes No

Tolerance to refinement No Yes Yes Yes Yes Yes

Cardinality independence No Yes Yes Yes Yes Yes

Tolerance to cut imprecision No Yes Yes Yes Yes Yes

Multiple ground-truth No No No No No Yes

Meaningful comparison No No No No No Yes

Strong discriminative power No No No No No Yes

tion for each category and for the whole corpus. Moreover,
the Pearson correlation value of the 3D-NPRI for the whole
corpus is high (66.1%), when those of the other metrics are
quite bad (less than 33%). This means that except the 3D-
NPRI, the other metrics fail to distinguish between good
and bad segmentations. Figure 8 presents the psychomet-
ric curve fitting between the objective and subjective scores
for 3D-NPRI, HDI, LCI and CDI for 250 segmentations
of the corpus models. It visually illustrates the superiority
of the 3D-NPRI for predicting the subjective opinion, and
leads to conclude that the 3D-NPRI has the best discrim-
inative power. These results clearly validate the 3D-NPRI,
since they are in agreement with the human opinion.

The properties of each metric are summarized in Table 2
according to the performed experiments in this section.

7 Application for the evaluation of recent segmentation
algorithms

In this section, we apply the 3D-NPRI together with the
Chen et al.’s [7] corpus and our corpus (described in Sect. 5)
to evaluate a set of recent automatic segmentation algo-
rithms, then we compare the obtained results by the two
corpuses. We have considered the six recent automatic seg-
mentation algorithms used in Chen et al. [7]: Attene et
al. [2], Lai et al. [19], Golovinskiy et al. [15], Katz et
al. [18], and Shapira et al. [25]. The six algorithms are re-
spectively based on: fitting primitives, random walks, nor-
malized cuts/randomized cuts, core extraction, and shape di-
ameter function. The segmentations using these algorithms
for the Chen’s corpus are available on-line. On the other
hand, we used Attene et al.’s [2], and Shapira et al.’s [25]
algorithms (the only algorithms available on-line among the
previous six) to generate automatic segmentations on our
corpus models. The reader can refer to the original papers
for more details about the six algorithms.

Note that all the algorithms cited above are part-type
hierarchical segmentation methods. Hence for each one of
them we can generate several levels of segmentation. Chen
et al. [7] provided only one level of segmentation for each
algorithm applied on their corpus. For this end, they used

Fig. 9 Scores of 3D-NPRI sorted in increasing order over all the two
corpus models

the parameter settings recommended by the authors of the
algorithms. To keep a valid comparison between the two cor-
puses, we also used the parameter settings recommended by
the authors of the algorithms to generate segmentations on
our corpus models. Note that the level of segmentation will
not influence the evaluation results since we proved that the
3D-NPRI is tolerant to hierarchical refinement (see Fig. 5).
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Table 3 Algorithms ranking applied on respectively the Chen’s corpus
and our corpus

Algorithm 3D-NPRI mean Rank

Fitting primitives 0.49/0.49 5/2

Random walks 0.50/– 4/–

Normalized cuts 0.59/– 2/–

Randomized cuts 0.63/– 1/–

Core extraction 0.46/– 6/–

Shape diameter function 0.56/0.55 3/1

To ensure a relevant comparison between the algorithms,
we compute the 3D-NPRI for every 3D-model of the Chen’s
corpus and of our corpus. Figure 9 shows the 3D-NPRI for
each model of the two corpuses and for each algorithm.
The values are sorted in increasing order for each algorithm,
hence the j th model may not be the same across algorithms.
This kind of graph was already applied for segmentation
evaluation in the field of 2D-image [28].

Table 3 presents the rank of each algorithm together with
the 3D-NPRI mean value over all the two corpuses.

Table 3 and Fig. 9 demonstrate, as expected, that the seg-
mentations obtained by the six algorithms are relevant since
most of the values of the 3D-NPRI are greater than zero.
The Randomized Cut algorithm seems to provide the best
results. It is very interesting to notice that the Fitting Primi-
tives and Shape Diameter keep similar behavior for the two
corpuses although these two corpuses are very different: the
profiles of the 3D-NPRI distribution (see Fig. 9) and the
mean 3D-NPRI values (see Table 3) for these algorithms are
almost exactly the same for both corpuses. Hence it validates
the fact that our corpus, since it presents high quality manual
segmentation and heterogeneous models, is clearly efficient
for segmentation evaluation despite its small size. Another
interesting experiment is to see which category models the
algorithms fail to segment well. For this end, we average the
3D-NPRI for each category of the two corpuses. Figures 10
and 11 illustrate the obtained results for the six algorithms.
One can notice that whatever the corpus is, there is no algo-
rithm that is reaching the highest scores for all categories.
Moreover, each algorithm has at least one category inade-
quately segmented since its mean 3D-NPRI value is very
low (close to 0 or less). The core extraction algorithm for
instance fails to adequately segment the Bearing and Mech
categories (see Fig. 11(e)). This result is straight since the
concerned algorithm is a part-based one. Indeed, it tries to
detect the core of a model which from a semantic point of
view is hard to define in such categories. As observed by
Chen et al. [7], some algorithms do not necessarily segment
the best (with comparison to others) categories for which
they were designed. We can notice this behavior on our cor-
pus too. For instance, the algorithm based on Fitting Primi-

Fig. 10 Scores of 3D-NPRI averaged for each category models of our
corpus

tives gives greater 3D-NPRI score (better) for the hand cat-
egory than the algorithm based on Shape Diameter Function
and vice versa for the furniture category. As raised by Chen
et al. [7], this means that either the human observers do not
segment models in the expected way, or the part structures
of these models are revealed by other properties.

Our results and those of Chen et al. [7] are coherent. This
is straight since our metric is a probabilistic interpretation of
the Rand Index (metric used by Chen et al. [7] to analyze and
evaluate the algorithms) to which we added a normalization
allowing a better results analysis.

8 Conclusion

This paper presents a thorough comparison between exist-
ing similarity metrics and a new one addressing the assess-
ment problem of mesh segmentation. For this end we use
a corpus of manually segmented models. This corpus is an
improved version of our previous one [4] and is available on-
line. The new 3D-NPRI metric is a probabilistic interpreta-
tion of the Rand Index which allows to quantify the consis-
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Fig. 11 Scores of 3D-NPRI averaged for each category models of the Chen’s corpus

tency between multiple segmentations of a 3D-mesh model.
The paper shows that this new metric outperforms existing
ones in terms of properties and discriminative power. The re-
sults are validated by comparing subjective scores of human
observers to the objective metric scores. Finally, the mea-
sure is applied together with the Chen et al.’s [7] corpus and
our corpus to evaluate six recent 3D-mesh segmentation al-

gorithms. This evaluation allowed to compare the obtained
results depending on the corpus and showed their coherence.

For future work, we plan to explore other kind of esti-
mator to compute the pij (see (1) in Sect. 3) in order to
improve the correlation between metric’s scores and the ob-
serves’ scores, we also plan to enrich our subjective tests
by integrating more experiments allowing to compare algo-
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rithms. Finally, we plan to exploit our ground-truths to de-
sign a learning segmentation algorithm.
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