
Investigating the Rate-Distortion Performance of a 
Wavelet-Based Mesh Compression Algorithm by 

Perceptual and Geometric Distortion Metrics 
 

Maja Krivokuća
1
      Burkhard Wuensche

2
      Waleed Abdulla

3
      Guillaume Lavoué

4
 

1,2,3 
The University of Auckland, New Zealand 

4 
Université de Lyon, France 

1 
mkri012@aucklanduni.ac.nz  

2 
b.wuensche@auckland.ac.nz  

3 
w.abdulla@auckland.ac.nz   

4 
glavoue@liris.cnrs.fr 

 

ABSTRACT 
The rate-distortion performance of wavelet-based mesh compression algorithms is usually only evaluated in a 

purely geometric sense, by measures such as the Root Mean Square Error and the Hausdorff distance, which do 

not capture the human visual perception of distortion.  This lack of quantitative information about the perceptual 

effects of wavelet compression has prompted us to present a more complete evaluation of a classic wavelet-

based mesh compression algorithm, by measuring its rate-distortion performance both with geometric metrics 

(the Hausdorff distance and Root Mean Square Error) and perceptual metrics (the recently introduced Mesh 

Structural Distortion Measure 2 (MSDM2) and the Mean Opinion Scores (MOS) that we obtained by conducting 

a subjective experiment with human observers), where the rate is measured as the percentage of wavelet 

coefficients used in reconstruction.  The MSDM2 has already been proven to outperform other existing 

perceptual metrics for several different types of distortions, but this is the first time that it has been tested for this 

type of geometric distortion in a real-use case scenario.  We found that, in this context, the MSDM2 generally 

correlates well with the MOS but seems to under-estimate the perceptual error in cases of low-frequency (large 

scale) shape distortion.  Due to the disparities in the distortion values produced by the tested distortion metrics, 

we also conclude that a complete evaluation of any mesh compression algorithm should include several different 

distortion metrics, to allow the developers and users of these compression algorithms to make more informed 

decisions about the applicability of those algorithms in different application areas.    
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1. INTRODUCTION 
Since the influential work of Lounsbery [Lou94], 

who introduced the notion of multiresolution analysis 

on surfaces, wavelet-based mesh compression has 

been a topic of much interest in the research 

community.  This is reflected by the variety of 

wavelet-based mesh compression algorithms 

proposed in the literature, notably [HP05, KG02, 

KSS00, SS95, VP04].  The main idea in wavelet-

based mesh compression is to decompose a high-

resolution input mesh into a coarse representation 

called a base mesh and a set of detail coefficients 

termed wavelet coefficients, which can be used to 

refine the base mesh at multiple levels of detail 

[Lou94].  Geometry compression may then be 

obtained either by discarding small (unimportant) 

wavelet coefficients at each resolution level, and/or 

by quantizing and entropy coding the remaining 

coefficients that are to be transmitted.  The aim in 

wavelet-based mesh compression is to optimise the 

trade-off between data size and approximation 

accuracy, which is measured by the rate-distortion 

(R-D) curve.  The rate refers to the amount of 

information transmitted in a compressed mesh, and 

the distortion refers to a quantified measure of 

difference between the reconstructed and original 

meshes.  While the rate is a relatively straightforward 

measure to quantify (usually represented as the 

number of bits transmitted per vertex, or the number 

of wavelet coefficients transmitted), the term 

distortion still lacks a formal definition.  Without 

such a definition, it is difficult to claim that any lossy 

mesh compression algorithm developed to date 

(including wavelet-based algorithms) has been fully 

evaluated.  While wavelet-based mesh compression 

has shown some very promising results and is still an 

active area of research, the performance of existing 

algorithms has usually only been reported based on a 

single error metric.  In addition, the distortion metrics 
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that are currently used to evaluate these algorithms 

are normally purely geometric measures, such as the 

Root Mean Square Error and the Hausdorff Distance, 

which are not designed to capture the visual disparity 

between two 3D models.  Due to the previous lack of 

availability of an objective perceptual distortion 

metric, the visual distortion caused by discarding 

wavelet coefficients in a wavelet-based mesh 

compression system has not yet been documented in 

a quantitative manner.  However, this information is 

important for many graphics applications where the 

ultimate judge of the transmitted model is a human.  

The surge in recent years to design perceptually-

based distortion metrics (a survey and extensive 

comparison can be found in [LC10]) has produced 

some promising perceptual metrics, particularly the 

Mesh Structural Distortion Measure 2 (MSDM2) 

recently introduced by Lavoué [Lav11].  While the 

MSDM2 has been proven to outperform other 

existing perceptual metrics for several different types 

of classical distortions [LC10, Lav11], it has not been 

tested in a real-use case and has not been investigated 

for the type of geometric distortions that result from 

discarding wavelet coefficients in a wavelet-based 

mesh compression system.   

 

The objective of this paper, therefore, is twofold: (1) 

to evaluate how the MSDM2 metric compares to 

human perception of distortion, in the real-use case 

of wavelet-based mesh compression, where the 

distortion is caused by discarding different 

percentages of wavelet coefficients in mesh 

reconstruction; and (2) to offer a more complete 

evaluation of the effects of discarding wavelet 

coefficients in a wavelet-based mesh compression 

system.  The latter is achieved by measuring the rate-

distortion performance of a classic wavelet mesh 

compression algorithm with several different error 

metrics - two commonly used geometric measures 

(the Hausdorff distance (dH) and the Root Mean 

Square Error (RMSE)) and two perceptual metrics 

(the subjective Mean Opinion Score (MOS) from a 

group of human observers, and the objective visual 

distortion metric, MSDM2).  In this way, we also aim 

to demonstrate that, due to the disparities that exist 

between the performance results generated by these 

distortion metrics, a complete evaluation of a lossy 

mesh compression algorithm is not possible with 

only one distortion metric.  We use our investigation 

of the wavelet compression technique as a case study 

to suggest how an appropriate error metric may be 

chosen for evaluating a lossy mesh compression 

algorithm based on different application needs.   

Section 2 of this paper introduces the wavelet-based 

compression method that we have implemented and 

describes our evaluation procedure, Section 3 

discusses the basic concepts behind the distortion 

metrics that we have investigated, Section 4 

describes the perceptual distortion test that we carried 

out, Section 5 presents our results and discusses the 

insights gained in relation to our objectives, and the 

conclusion ties up the key messages of this paper. 

2. WAVELET COMPRESSION CASE 

STUDY 
The progressive compression algorithm that we have 

investigated is an own implementation of the 

fundamental Lounsbery subdivision wavelet method 

[Lou94].  We only cover here the basic concepts of 

this method that are necessary for an understanding 

of our investigation.  For further details, we refer the 

interested reader to the original thesis [Lou94].     

2.1  Background and Implementation 
The subdivision wavelet method applies the notion of 

multiresolution analysis to subdivision surfaces.  The 

basic idea is that we can take a high-resolution input 

mesh with subdivision connectivity and decompose it 

into a lower-resolution mesh, together with a set of 

detail coefficients that can be added to the lower-

resolution mesh to reconstruct the higher-resolution 

mesh.  This decomposition, or analysis, is done by 

two separate filtering operations on the original 

mesh: a low-pass filtering where we compute 

weighted averages of the vertices in the higher-

resolution mesh to obtain the (sparser) set of vertices 

in the resulting lower-resolution mesh (we call this 

lower-resolution mesh an approximation of the 

higher-resolution mesh that it was obtained from), 

and a high-pass filtering where we compute weighted 

differences of the higher-resolution mesh vertices to 

obtain the detail coefficients, called wavelet 

coefficients.  If we continue these filtering operations 

on each successive, lower-resolution mesh, we 

eventually obtain the coarsest possible mesh (called 

the base mesh), together with wavelet coefficients at 

multiple levels of detail.  If we add back the wavelet 

coefficients to the corresponding mesh at each level, 

we can progressively refine the base mesh and 

thereby obtain a multiresolution representation of the 

original mesh.  Figure 1 illustrates a simple example 

of this process, where the mesh on the left is the 

input mesh, the mesh on the right is the base mesh, 

and the middle mesh is the model at an intermediate 

resolution level.    

 

 

 

 

 

 

 

 

Figure 1: Illustration of wavelet decomposition. 

LPF=low-pass filter, HPF=high-pass filter. The 

reconstruction process proceeds in reverse. The 

purple and green circles represent vertices added at 

the midpoints of edges in the refinement process. 

LPF LPF 

HPF 

Wavelet coefficients 

HPF 

Wavelet coefficients 



The reconstruction, or synthesis, process involves 

two more filtering operations: a refining operation 

where each triangular face of a lower-resolution 

mesh is subdivided into four sub-triangles by 

introducing new vertices at edge midpoints, and a 

perturbing operation where the new vertices are 

perturbed (displaced) to their new positions 

according to the wavelet coefficients.  Figure 1 

highlights the refinement process of one face of the 

base mesh (outlined in red), by showing how the new 

vertices (purple) are added to the midpoints of that 

face and are connected together in the next higher 

resolution level (the middle mesh), in order to refine 

the one base mesh face into four smaller sub-faces.  

Similarly, in the middle mesh in Figure 1, the next 

set of vertices (green) is added at the midpoints of the 

edges of the new faces, and these vertices are 

connected together to produce 16 sub-faces in the 

next higher resolution level (leftmost mesh).  Each 

new set of vertices is, in this case, projected onto the 

surface of a sphere (perturbing operation), which is 

how we get from an octahedron base mesh with flat 

faces (rightmost mesh in Figure 1) to an n-sided 

figure (leftmost mesh in Figure 1) that begins to 

approximate the shape of a sphere.  Since the 

connectivity of the mesh at each resolution level is 

obtained by a common refinement process, we only 

need to transmit the base mesh and the set of wavelet 

coefficients in order to reconstruct the original mesh 

geometry.  Due to the orthogonality property of the 

wavelets (see [Lou94] for an in-depth explanation), 

the mesh approximation at each resolution level is 

guaranteed to be the approximation at that level that 

is the closest to the next, finer-level mesh in a least-

squares sense.  The orthogonality property also 

means that the wavelet coefficients are a good 

indicator of where the approximation is not close to 

the finer-level mesh that it is approximating.  For 

example, if a wavelet coefficient is zero, this means 

that the approximation is locally perfect as it 

indicates that there is no information (detail) missing 

in that region.  If the wavelet coefficient is large, 

however, then it indicates that there is a large amount 

of information missing at that position and scale.  

Since the approximation at each resolution level is 

guaranteed to be the best possible approximation for 

that level, however, most of the wavelet coefficients 

are usually distributed around zero (not much 

information missing), so we can discard many of the 

(small) coefficients (thereby achieving compression) 

and still be able to reconstruct a close approximation 

of the original mesh.   

In our implementation, we order the coefficients by 

magnitude and then select the largest wavelet 

coefficients at each level.  The percentage of chosen 

coefficients at each level constitutes our rate of 

transmission.  The wavelet coefficients are 

deliberately not quantized or entropy coded, in order 

to isolate the distortion effects (and compression) that 

are caused solely by eliminating wavelet coefficients.  

Our implementation also incorporates a naïve 

reconstruction, where every location on the mesh is 

refined in a uniform manner (every face is split into 4 

sub-faces), regardless of whether or not additional 

detail is ever added to that location.  This means that 

the reconstructed mesh always has the same number 

of triangles as the input mesh, but the quality of 

geometry reconstruction (the accuracy of the final 

vertex positions) depends on the number of wavelet 

coefficients that we use in the reconstruction.   

2.2  Experimental Procedure 
We tested the rate-distortion performance of the 

subdivision wavelet compression method on six 

different meshes with subdivision connectivity - 

shown in Figure 2, along with their associated base 

meshes.  The base meshes are presented in faceted 

form, to demonstrate their different levels of 

complexity. 

 

 

 

 

 

 

 

 

 

 

2.2.1  Choice and Preparation of Test Models 
The models were chosen based on the amount of 

complexity, in terms of visual detail, that they 

possessed.  We wished to investigate a range of 

models, from those that have very smooth surfaces 

(e.g., the Sphere) to those with quite a large amount 

of visual detail on the surface (e.g., Mannequin and 

Bunny).  We also chose the models so that they 

would possess different types of details (e.g., smooth 

corners in the Rounded Octahedron, sharp points in 

the Star, sharp curves on the Bunny‟s ears and 

thighs) because we wished to see how the wavelet 

method would handle these different features as 

measured by the different distortion metrics.  The 

associated base mesh for each model was chosen as 

the simplest (lowest-resolution) version of that mesh 

available in the model library.  Each base mesh is 

therefore considered resolution level 1 in our 

experiments, and the resolution level for the 

corresponding input model is always considered 

relative to its base mesh.  The resolution levels for 

each of the input models, relative to their base 

meshes, are stated in the caption of Figure 2. 

Figure 2: The subdivision models used for testing, 

and their associated base meshes (underneath each 

model). From left: Sphere (res. level 4), Rounded 

Octahedron (res. level 4), Torus (res. level 3), Star 

(res. level 4), Mannequin (res. level 3), and Bunny 

(res. level 6). 



2.2.2  Rate-Distortion Testing  
Each of these test meshes was first decomposed 

(similar to Figure 1) to obtain its corresponding base 

mesh and wavelet coefficients.  Then the 

reconstruction process was carried out at 11 different 

rates, where the rate is defined as the percentage of 

largest wavelet coefficients used at each resolution 

level, from 0% to 100% coefficients inclusive, in 

10% steps.  The mesh distortion at each of these rates 

was then measured separately with four different 

error metrics, which are discussed below. 

3. STUDIED DISTORTION METRICS 
We selected two traditional geometric error metrics - 

the Hausdorff distance (dH) and the Root Mean 

Square Error (RMSE) - and two perceptual error 

metrics - the MSDM2 metric and the subjective Mean 

Opinion Scores (MOS) obtained through a subjective 

experiment.  The basic concepts behind each metric 

are discussed below. 

3.1  Hausdorff Distance (dH) 
The Hausdorff distance represents the maximum 

distance between a point on one mesh and the surface 

of another mesh.  It is formulated as follows: 

The distance,       , between a point   in 3D space 

and a mesh surface  , is defined as:  

          
    

        

where         is the Euclidean distance between 

points   and     and    is a point on surface  .  Then 

the one-sided (asymmetric) distance between two 

surfaces (or meshes),    and   , is defined as:  

                
       . 

A two-sided (symmetric) distance, which is termed 

the Hausdorff distance,   , is defined as the 

maximum of          and         :  

                                 . 

We used the Metro tool [CRS98] with the default 

settings, to compute the symmetric Hausdorff 

distance in all our experiments.  The obtained dH 

values were then normalized to fit into the range 

[0,1], to enable a comparison between the rate-

distortion trends obtained from the different error 

metrics.  The normalized Hausdorff distance, dHNi 

for distorted model i, was computed as: 

     
           

            
   

           
            

  
 

Where Current dH
i is the current (un-normalized) dH 

value for mesh i, and Minimum dH
M and Maximum 

dH
M are, respectively, the smallest and largest 

Hausdorff values produced for any of the distorted 

versions of mesh M.  

3.2  Root Mean Square Error (RMSE) 
The Root Mean Square Error (RMSE) measures how 

far, on average, the difference between the original 

and reconstructed vertex positions is from 0.  The 

RMSE between two meshes,    and     is computed 

as:  

            √
∑    

     
     

   

 
  

where   is the number of vertices in the meshes (both 

meshes must have the same number of vertices), and 

  
   is the vertex in mesh    corresponding to vertex 

  
   in mesh   . 

The RMSE was also normalized in our experiments 

to fit into the range [0,1], in a similar way to the 

Hausdorff normalization.   

3.3  Mesh Structural Distortion Measure 

2 (MSDM2) 
The Mesh Structural Distortion Measure 2 (MSDM2), 

descendant of the earlier Mesh Structural Distortion 

Measure (MSDM) [LGDBE06], was recently 

introduced by Lavoué [Lav11] as a multiscale metric 

for objective visual quality assessment of a 3D mesh.  

The MSDM2 is based on the 2D image metric, SSIM 

(Structural SIMilarity index), from Zhou et al. 

[ZBSS04], and works by measuring the differences 

in curvature statistics between two meshes, which are 

computed on local corresponding spherical 

neighbourhoods.  These neighbourhoods vary in size 

according to the scale, h, which is related to the 

maximum length of the bounding box of the model.  

For example, for 3 scales,              , where 

       of the maximum length of the bounding 

box.   

The symmetric MSDM2 measure between a reference 

mesh,   , and a distorted mesh,   , is computed as 

the average of the two asymmetric global multiscale 

distortion (GMD) measures,         
 and 

        
, where         

 is defined as: 

        
 (
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∑        
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        is the multiscale local distortion measure 

defined as: 

       
∑         

   

 
 

which is the average of local distortion (LD) values 

at single scales.  The LD at a given scale h is defined 

for each vertex v from Md as: 

       
                    

     
 



where    and   are set to 1, 1 and 0.5, respectively, 

and Lh(v), Ch(v) and Sh(v) are, respectively, the 3D 

mesh equivalents of the luminance comparison 

function, the contrast comparison function, and the 

structure comparison function defined for images in 

[ZBSS04].  Lavoué defines these functions for 

meshes in [Lav11].  

In our experiments, we obtained the symmetric 

MSDM2 values and the associated distortion maps 

from the MEPP platform [LTD12], using 3 scales.  

These values are in the range [0,1], where 0 indicates 

that the reconstructed mesh is identical to the 

original, and values closer to 1 correspond to 

increasingly larger visual differences between the 

two meshes. 

3.4  Mean Opinion Score (MOS) 
The Mean Opinion Score (MOS) is a subjective 

measure of distortion, where a group of human 

observers is asked to give a score to some distorted 

objects, which reflects the observer‟s degree of 

perceived distortion on these objects, in relation to an 

original, undistorted object.  The MOS for a distorted 

model, i, is computed as: 

     
 

 
∑    

 

   
 

where      is the mean opinion score of the ith 

distorted model, n is the number of test observers, 

and mij is the distortion score given by the jth observer 

to the ith model. 

The next section describes the subjective experiment 

that we conducted to obtain these MOS values. 

4. SUBJECTIVE EXPERIMENT 
Due to a lack of information in the literature about 

the perceptual effects of discarding different 

percentages of wavelet coefficients, and from a 

desire to evaluate the MSDM2 in this context, we 

carried out our own perceptual distortion test on three 

of our test models.  The details of this test are 

explained below. 

4.1  Assessment Procedure 
A group of 13 human observers were shown 3 

different 3D models (the Torus, Star and Bunny – see 

Figure 2), where each original model was printed on 

paper together with its 11 distorted versions 

(reconstructions with 0%-100% wavelet 

coefficients), and the printouts were given to each 

individual observer.  The original model was 

labelled, but the 11 distorted versions were arranged 

in random order around the original.  The observers 

were asked to give a distortion score between 0 and 

10 to each distorted model (using whole numbers 

only), which would reflect the degree of perceived 

distortion on this model in relation to the original.  

Participants were told that a score of 0 meant that, in 

their opinion, the distorted model was identical to the 

original (i.e., they could not perceive any distortion 

on this model) and a score of 10 was the worst case 

scenario (i.e., the distorted model was “very 

different” to the original).  Participants were not told 

to assign a 10 to the worst model and then assign 

lower scores to all the other models; in fact, the 

observers were told that if they felt that no model 

“deserved” a 10, for example, they did not need to 

use the full range of distortion scores.  The observers 

were also told to consider the distorted models 

together and give them relative scores.  They were 

further asked, for all the models to which they gave a 

score greater than zero, to circle the area(s) on those 

models that they thought were the “worst distorted” 

areas.  There was no specific time limit for the test, 

but the task took approximately 20 minutes for the 

whole group. 

4.1.1  Choice and Preparation of Test Models 
The Torus, Star and Bunny were chosen for the 

subjective experiment because these models have a 

range of interesting surface details: the smooth 

curves on the Torus, the sharp points on the Star, and 

the curves of varying degrees of sharpness on the 

Bunny.  We wished to investigate how the MSDM2 

compares with the MOS for capturing such different 

types of surface detail.  The viewing angle for each 

model (same viewing angle as in Figure 2) was 

chosen so as to portray that model in what we 

subjectively judged to be both its most discriminative 

angle and the angle that offered the most familiar 

viewpoint of the object.  The lighting and surface 

reflectance conditions were also chosen specifically 

for each model, based on the selected viewpoint, so 

as to produce what we believed was the best visibility 

of the shape and surface detail of each model, for the 

test observers.  For all three models we used 

interpolated shading and Phong face lighting, but the 

strengths of diffusion, ambient lighting and specular 

highlights were chosen individually for each model 

so that, for the chosen viewpoint, no surface details 

(or, as little as possible) would be hidden by the 

specular highlights or shadows.  The printed models 

were made to be of similar size, so that 6 models 

could fit on one side of an A4 sheet of paper in 

landscape orientation, organized side by side in two 

rows and three columns.  While this use of a fixed 

viewpoint and fixed viewing distance for the test 

models does limit the generality of the obtained 

results, this step was an attempt at reducing the 

amount of variance between the test subjects.  If the 

observers were free to zoom in and out of the models 

and rotate them, it would have been difficult to 

ensure that all observers saw the same parts of each 

model; perhaps some people would have used more 

viewpoints than other people, or a wider range of 

viewpoints, to make their decision.  Having a fixed 



viewing angle and distance ensured that this type of 

variation between the subjects was eliminated and so, 

since everyone was looking at exactly the same 

images, this made it easier to isolate the features of 

each model which were responsible for the different 

distortion scores given.  This was ultimately the goal 

of the subjective experiment: to determine how the 

MOS compares to the MSDM2 for different models 

with different types of features, distorted in the same 

way. 

4.2  Normalizing the Distortion Scores 
Before computing the MOS for each distorted model, 

the individual distortion scores were normalized to be 

in the range [0,1].  This was simply done by dividing 

each score by 10.  Since the observers were 

instructed to only use the entire available scoring 

range (0-10) if they actually saw the need for it (i.e., 

if they could see enough difference between the 

different levels of distortion to require them to use 

the entire scoring range), they did not necessarily 

have to assign a 10 to the worst model and a 0 to the 

best model.  Rather than scaling all the scores to fit 

into the 0-10 range, we were interested in the 

differences in the actual range of values that would 

be assigned for each model (a discussion of this is 

provided with Table 1, opposite).  For this reason, it 

was not appropriate in our experiment to correct for 

the differences in gain and offset among the 

observers (as was done in [LC10], for example).  The 

suitability of our experimental protocol was assessed 

by computing three Intraclass Correlation 

Coefficients (ICC), each of which measures the 

variation between the different observers in their 

subjective ratings of all the distorted versions of one 

of three test models (Torus, Star, and Bunny), 

respectively.  The ICCs were computed from a two-

way ANOVA test with no repetitions, and using the 

ICC equation related to Model 2 in [SF79].  The ICC 

value for the Torus models was computed as 0.81, for 

the Star models as 0.79, and for the Bunny models as 

0.94.  Since ICC values close to 0 indicate poor 

agreement while values close to 1 indicate almost 

perfect agreement, the computed values show that 

there was strong agreement between the observers on 

the distortion scores they assigned to the Torus and 

Star models, and almost perfect agreement on the 

distortion values assigned to the Bunny models.  

These high levels of agreement indicate that our 

subjective experiment protocol was correct as it 

produced meaningful, consistent scores from the test 

observers.   

5. RESULTS AND ANALYSIS 
The rate-distortion curves for all six models were 

plotted and are displayed in Figure 3.   

5.1  Variability between the Observers 
While the ICC values reported above suggest strong 

agreement between the overall subjective distortion 

scores given to all three test models, looking at the 

distortion scores for the models at each rate of 

wavelet coefficients individually leads to some 

interesting observations.  In particular, for the Torus 

model, only 4 out of 13 observers used the full 

distortion scoring range (0-10), for the Star 5 out of 

13 used the full range, and for the Bunny 9 out of 13 

used the full range.  Table 1 shows the distortion 

scores provided by the 13 observers for the Torus, 

Star and Bunny, at a rate of 0% wavelet coefficients, 

which is where the highest distortion scores were 

given.   

Observer Distortion 

score for 

Torus 

Distortion 

score for 

Star 

Distortion 

score for 

Bunny 

1 6 7 10 

2 10 10 10 

3 10 10 10 

4 8 7 10 

5 7 8 10 

6 8 8 10 

7 8 9 9 

8 5 8 10 

9 7 6 10 

10 10 10 10 

11 10 10 10 

12 10 10 10 

13 9 10 10 

Table 1: Subjective distortion scores for the 

Torus, Star and Bunny models reconstructed with 

0% wavelet coefficients. 

At a rate of 0% wavelet coefficients, the mesh 

reconstruction just produces the base mesh shape 

(but with the same number of triangles as the input 

mesh, due to the naïve reconstruction).  Since the 

Bunny‟s base mesh is perceptually much more 

different to the input Bunny (see Figure 2) than the 

Torus and Star base meshes are to their respective 

originals, this explains why for a rate of 0%, the 

Bunny received the highest possible distortion score 

(10) from 12 out of 13 observers, whereas the Torus 

at this rate received a 10 from only 5 observers and 

the Star from 6 observers.  This observation indicates 

that the choice of base mesh is a critical factor in the 

perceptual quality of the reconstructed mesh, 

especially at low rates of wavelet coefficients.  

Furthermore, the table above shows that the range of 

distortion scores for the Torus model at a rate of 0% 

coefficients is the largest (10-5=5), the Bunny the 

smallest (10-9=1), and the Star in between the two 

(10-6=4).  A similar relationship holds for other low 

rates – from 10% to around 40% wavelet coefficients 

– but this is not shown in Table 1.  The wider ranges 

for the Torus and Star indicate that the observers 



found it more difficult to decide on appropriate 

distortion scores for these models, especially at the 

lower rates of wavelet coefficients.  The greater 

agreement between the scores for the Bunny in 

general (indicated by both the smaller range and the 

higher ICC value) implies that the different levels of 

distortion were perceptually more obvious on the 

Bunny than on the Torus or Star.  In fact, when the 

13 observers were asked which model they found it 

the easiest and hardest to judge different levels of 

distortions on, the Bunny was almost unanimously 

selected (by 12/13 observers) as the easiest, and the 

Torus and Star were both said to be equally difficult.  

The observers felt that this was because the Bunny is 

quite a familiar, natural object, and so it was easy to 

tell when the model looked „wrong‟.   

5.2  Comparison of MOS and MSDM2  
We were able to make several important comparisons 

between the MOS and MSDM2 distortion results for 

each tested model. 

5.2.1  Bunny  
The most significant difference between the MOS 

and the MSDM2 R-D curves for all three tested 

models is that the MSDM2 has a more stable, almost 

linear rate of decrease with increasing percentages of 

wavelet coefficients, whereas the MOS curves are 

more irregular.  The most obvious example of this is 

in the Bunny R-D plots, where the MOS curve 

indicates a sharp drop in perceived distortion 

between 40% and 50% wavelet coefficients, but the 

MSDM2 curve does not reflect this as a large change.  

Indeed, the MSDM2 curve seems to decrease at a 

nearly constant (slower) rate, from 0% right up to 

around 70% wavelet coefficients.  If we compare the 

Bunny reconstructions with 40% and 50% wavelet 

coefficients (see Figure 4) and compare these to the 

original Bunny model (see Figure 2), we notice that 

the Bunny at 50% looks much more similar to the 

original model than the Bunny at 40% does.  

Perceptually, the worst distortion in the 40% model 

(as judged by the majority of the test observers) is the 

area circled in Figure 4, and this distortion is not 

present in the 50% model.  The reason why the 

MSDM2 does not perceive this as a large difference 

between the two models may be because the MSDM2 

is designed to capture differences in curvature, but 

the circled area in the 40% Bunny and the 

corresponding area in the 50% Bunny have almost 

the same curvatures (i.e., the Bunny „bulges out‟ in 

nearly the same places).  The perceptual difference, 

as reflected by the MOS, is purely geometric – the 

circled area bulges out much further in the 40% 

model than in the 50% model, which makes the 

Bunny look out of proportion and unnatural, whereas 

the 50% Bunny looks much closer to what we might 

imagine a bunny to look like and it is much closer, 

visually, to the original Bunny model.  

 

 

 

Interestingly, the opposite result occurs for the 

Bunny at 50%-60% wavelet coefficients: the MOS 

curve in this range changes very little (it is nearly 

flat), while the MSDM2 has a sharper rate of 

decrease.  Looking at Figure 5, which shows the 

reconstructed Bunny models with 50% and 60% 

wavelet coefficients, we can see that the most 

noticeable difference between them is the area circled 

in red (almost all observers circled this area as 

looking the most distorted).  The MSDM2 indicates 

this as a large distortion (see the area circled in red in 

the MSDM2 distortion map in Figure 5, where 

“warmer colours” indicate higher distortion [Lav11]).  

This is because this „bump‟ consists of rather a sharp 

curve compared to the smooth corresponding area in 

the 60% model (notice the corresponding area in the 

MSDM2 distortion map for the 60% model, which 

indicates a considerably smaller error).  However, the 

human observers did not perceive the removal of this 

bump in the 60% model as a very significant 

improvement, presumably because this was only a 

small „glitch‟ on an otherwise good-looking bunny.   

 

 

 

 

 

 

 

 

 

 

 

5.2.2  Star 
In the case of the Star model, the MOS curve seems 

to follow the MSDM2 curve more closely than in the 

Bunny‟s case.  A good reason for this might be that 

the perceptual distortions in the Star are mainly due 

to the changes in curvature, which is what the 

MSDM2 is designed to capture.  For example, 

comparing the Star models reconstructed with 10%, 

20% and 50% wavelet coefficients (see Figure 6), it 

appears that the perceived distortions on all these 

models are due to the differences in the sharpness of 

the Star‟s points and in the concavity of the Star‟s  

Figure 4: Bunny reconstructed with 40% wavelet 

coefficients (left) and 50% coefficients (right). 

Figure 5: Bunny reconstructed with 50% wavelet 

coefficients (top left) and 60% wavelet coefficients 

(top right). Corresponding MSDM2 distortion 

maps are beneath each model.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

surface (circled on the 20% model, below, as an 

indication).  These are the areas that the 13 observers 

circled as having the worst (most noticeable) 

distortion on most of the Star models.  The 

corresponding MSDM2 distortion maps indicate that 

the worst MSDM2 distortions are in the same regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3  Torus 
The Torus model seems to have the largest disparity 

out of the three models tested, between the MOS and 

MSDM2 rate-distortion curves, especially at the 

lower rates.  A reason for this might be that, because 

the perceptual distortions in the Torus usually 

manifested themselves as small „bumps‟ on the 

surface (for example, see the Torus reconstructed 

with 30% wavelet coefficients, in Figure 7), the 

MSDM2 does not perceive these as very large 

differences in curvature to the original model, as 

these distortions are, in fact, not very sharp curves.   

This can be seen in the MSDM2 distortion map in 

Figure 7, where the areas of the Torus with the worst 

perceived distortion (circled in red) do correspond to 

the areas of highest distortion in the MSDM2 colour 

map, but these colours are mostly still in the lower 

(blue-green) range of distortion values, which, 

compared with the bright reds in the distortion map 

for the 10% Star model in Figure 6, are not very 

high.  However, because the human eye expects a 

smooth, uniform shape, any small „bumps‟ on the 

surface are readily visible and annoying as they 

Figure 6: Star reconstructed with 10% wavelet 

coefficients (top left), 20% coefficients (top middle), 

and 50% coefficients (top right). Corresponding 

MSDM2 distortion maps are beneath each model. 

Red circles indicate areas of worst distortion, as 

judged by the majority of the test observers. 

Figure 3: (Left) Rate-distortion curves for the 3 models used in the subjective test, and 

(Right) Rate-distortion curves for the remaining 3 models.  

0
0.2
0.4
0.6
0.8
1

1.2

0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n

 M
e

as
u

re
 

% Wavelet Coefficients 

Mannequin R-D Curves 

MSDM2 RMSE dH

0
0.2
0.4
0.6
0.8
1

1.2

0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n

 M
e

as
u

re
 

% Wavelet Coefficients 

Star R-D Curves 

0
0.2
0.4
0.6
0.8
1

1.2

0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n

 M
e

as
u

re
 

% Wavelet Coefficients 

Rounded Oct R-D Curves 

0
0.2
0.4
0.6
0.8
1

1.2

0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n

 M
e

as
u

re
 

% Wavelet Coefficients 

Torus R-D Curves 

0
0.2
0.4
0.6
0.8
1

1.2

0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n

 M
e

as
u

re
 

% Wavelet Coefficients 

Sphere R-D Curves 

0
0.2
0.4
0.6
0.8
1

1.2

0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n

 M
e

as
u

re
 

% Wavelet Coefficients 

Bunny R-D Curves 

MOS MSDM2 RMSE dH



interrupt the smooth flow of the surface.  This 

observation was confirmed in the perceptual 

distortion test, where people seemed so aware of the 

little bumps that they even perceived the Torus 

models reconstructed with 100% wavelet coefficients 

as being different to the original (the two models are, 

in fact, geometrically identical).  Only 5 observers 

out of 13 gave the Torus model at 100% a distortion 

score of 0, compared to the 10/13 zeros which were 

given to the 100% Star model and the 9/13 zeros 

which were given to the 100% Bunny model.   

 

 

 

 

 

 

 

 

 

5.2.4  Overall Performance of MSDM2 vs MOS 
Even though there are disparities between the MOS 

and MSDM2 rate-distortion curves, the locations of 

various distortions on our test models and the general 

levels of distortion have been captured well by the 

MSDM2, compared to the human perception of these 

distortions.  Evidence of this can be seen in Figures 

5, 6 and 7, where the human-circled areas of “worst” 

distortion correspond to the highest error values on 

the MSDM2 distortion maps, and in the R-D curves 

in Figure 3, where the MSDM2 values, like the MOS 

values, gradually decrease as the percentage of 

wavelet coefficients increases.      

In general, the largest differences between the MOS 

and MSDM2 rate-distortion curves for all the three 

test models in our experiments seemed to occur at the 

lower rates (smaller percentages of wavelet 

coefficients).  Because the largest wavelet 

coefficients are responsible for reconstructing the 

overall, global shape of a model, and the smaller 

wavelet coefficients are used to reconstruct the 

details, these results seem to suggest that the human 

eye is more critical of large-scale distortions (which 

affect the overall shape of a model) than the MSDM2 

predicts.  On a low-detail model like the Torus, the 

human eye notices differences in local distortions 

more easily.  This is to be expected, as this detail is 

not masked on a smooth surface whereas it might be 

masked on a highly-detailed surface.  This last point 

agrees with the observations of the visual masking 

effect demonstrated by Lavoué [Lav11].     

The disparities between the MOS and MSDM2 for 

different models are an indication that human 

observers use more visual cues than just curvature 

differences to perceive visual distortion.  For the type 

of distortion that we investigated, the removal of 

low- or medium-frequency wavelet coefficients 

produces large-scale localized distortions that have a 

high impact on the visual quality (see the left Bunny 

in Figure 4).  However, the MSDM2 metric fails to 

detect them; it underestimates these degradations, 

especially on very smooth, low-detail models like the 

Torus. 

5.3  Using a Combination of Distortion 

Metrics for R-D Performance Evaluation 
The performance of a wavelet-based mesh 

compression algorithm has not previously been 

reported with a combination of geometric and 

perceptual error metrics, and our investigation 

resulted in four main observations: 

1. Both the geometric and perceptual distortion 

values decrease with increasing percentages of 

wavelet coefficients.  This confirms that both the 

geometric and visual quality of a mesh improve 

with a greater number of wavelet coefficients. 

2. The dH and RMSE curves are quite closely 

correlated with the MOS curves for the Torus 

and Star models, but for the Bunny model the dH 

drops more rapidly than the MOS at low rates.  

This suggests that large-scale distortions on 

detailed models like the Bunny affect perceptual 

quality more than geometric quality. 

3. Across all six test models, the dH curves 

generally seem less stable than the RMSE curves.  

This shows that the quality of maximum error 

induced by the surface reconstruction (measured 

by the dH) is not always proportional to the 

average quality of vertex reconstruction 

(measured by the RMSE) as the number of 

wavelet coefficients increases. 

4. The R-D performance of a wavelet-based mesh 

compression algorithm, and the suitability of a 

distortion metric to measure this performance, is 

dependent on the 3D model used as input. 

More generally, we are able to conclude that, due to 

the disparities in distortion measurements produced 

by the different error metrics, it is not sufficient to 

evaluate the rate-distortion performance of a lossy 

mesh compression algorithm, such as the wavelet 

method, with a single error metric.  The use of 

multiple distortion metrics for evaluation would 

benefit both the developers and users of mesh 

compression algorithms.  The developers would 

benefit as it would be easier to accurately compare 

the performance of different algorithms, and the 

users would benefit because it would be easier to 

select the right compression method based on their 

application needs.  For example, users that are only 

concerned with the look of the reconstructed model 

may choose a compression method with the best 

Figure 7: Torus reconstructed with 30% wavelet 

coefficients (left) and the corresponding MSDM2 

distortion map (right). Red circles indicate areas of 

worst distortion on this model, as judged by the 

majority of the test observers.  



MSDM2 or MOS performance, users that desire a 

close surface reconstruction (geometrically) within a 

certain tolerance regarding the original surface may 

be interested in the Hausdorff performance, while 

users that require the mesh vertices to be 

reconstructed exactly may consider the RMSE values.  

Our evaluation of the classic wavelet mesh 

compression method with several different error 

metrics aims to provide the first small step in this 

direction.  

6. CONCLUSION 
We evaluated the rate-distortion performance of the 

Lounsbery wavelet mesh compression scheme by 

using four different distortion metrics – the 

Hausdorff distance (dH), the Root Mean Square Error 

(RMSE), the Mesh Structural Distortion Measure 2 

(MSDM2), and the Mean Opinion Scores (MOS) 

obtained through a subjective experiment.  We used 

the MOS to evaluate how well the MSDM2 metric 

compares to the human perception of distortion 

caused by discarding different numbers of wavelet 

coefficients in the mesh reconstruction.  The MSDM2 

has been found to correlate well with the MOS in 

terms of capturing the locations and general levels of 

these distortions, but has been shown to under-

evaluate the perceptual effects of low-frequency 

(large-scale) shape distortions, especially on very 

smooth, low-detail models.  We have further shown, 

through our evaluation of the wavelet compression 

method with different error metrics, that there exist 

disparities between the performance results produced 

by the existing distortion metrics, and for this reason 

it is important to measure and report the performance 

of a (lossy) mesh compression algorithm with several 

different distortion metrics.  This would make it 

easier for developers and users of these compression 

algorithms to make more informed decisions about 

the applicability of those compression algorithms in 

different application areas and for different types of 

3D models.    

Promising future work in perceptual distortion 

metrics for wavelet-based mesh compression might 

include an investigation of the visual optimization 

tools used in JPEG 2000 [ZDL02], to determine 

whether some of the perceptual models used there to 

steer 2D image compression might be useful for 3D 

mesh compression.   

7. ACKNOWLEDGEMENTS 
The authors would like to thank Michael Lounsbery 

for the correspondence relating to his subdivision 

wavelet method, Gabriel Peyré and AIM@SHAPE 

for providing the subdivision models, and the 

anonymous reviewers whose comments helped us to 

improve the quality of this paper. 

8. REFERENCES 
[CRS98] Cignoni, P., Rocchini, C., Scopigno, R.: Metro: 

Measuring Error on Simplified Surfaces. In Computer 

Graphics Forum (1998). 17(2): pp. 167-174. 

[HP05] Hoppe, H., Praun, E.: Shape Compression using 

Spherical Geometry Images. In Advances in 

Multiresolution for Geometric Modelling, N.A. Dodgson, 

M.S. Floater, and M.A. Sabin, Editors. 2005, Springer 

Berlin Heidelberg. pp. 27-46. 

[KG02] Khodakovsky, A., Guskov, I.: Compression of 

Normal Meshes. In Geometric Modeling for Scientific 

Visualization, G. Brunnett et al., Editors. 2002, Springer 

Verlag. pp. 189–206. 

[KSS00] Khodakovsky, A., Schröder, P., Sweldens, W.: 

Progressive geometry compression. In Proc. 27th 

International Conference on Computer Graphics and 

Interactive Techniques, New Orleans, LA, USA, July 2000, 

pp. 271-278, ACM/Addison-Wesley. 

[Lav11] Lavoué, G.: A Multiscale Metric for 3D Mesh 

Visual Quality Assessment. In Computer Graphics Forum 

(2011). 30(5): pp. 1427-1437. 

[LC10] Lavoué, G., Corsini, M.: A Comparison of 

Perceptually-Based Metrics for Objective Evaluation of 

Geometry Processing. In Multimedia, IEEE Transactions 

on (2010). 12(7): pp. 636-649. 

[LGDBE06] Lavoué, G., Gelasca, E.D., Dupont, F., 

Baskurt, A., Ebrahimi, T.: Perceptually driven 3D distance 

metrics with application to watermarking. In Proc. SPIE 

Applications of Digital Image Processing XXIX, San 

Diego, CA, USA, August 2006, vol. 6312, pp. 63120L.1–

63120L.12. 

[Lou94] Lounsbery, J.M.: Multiresolution analysis for 

surfaces of arbitrary topological type. PhD Dissertation. 

Dept. Comput. Sci. and Engineering, University of 

Washington, Washington, USA, 1994.  

[LTD12] Lavoué, G., Tola, M., Dupont, F.: MEPP - 3D 

MEsh Processing Platform. International Conference on 

Computer Graphics Theory and Applications, Rome, Italy, 

February 2012. 

[SF79] Shrout, P.E., Fleiss, J.L.: Intraclass correlations: 

uses in assessing rater reliability. In Psychological Bulletin 

(1979). 86(2): pp. 420-428. 

[SS95] Schröder, P., Sweldens, W.: Spherical wavelets: 

efficiently representing functions on the sphere. In Proc. 

22nd Annual Conference on Computer Graphics and 

Interactive Techniques, Los Angeles, CA, USA, August 

1995, pp. 161-172, ACM. 

[VP04] Valette, S., Prost, R.: Wavelet-based Progressive 

Compression Scheme for Triangle Meshes: Wavemesh. In 

Visualization and Computer Graphics, IEEE Transactions 

on (2004). 10(2): pp. 123-129. 

[ZBSS04] Zhou, W., Bovik, A.C., Sheikh, H.R., 

Simoncelli, E.P.: Image quality assessment: from error 

visibility to structural similarity. In Image Processing, 

IEEE Transactions on (2004). 13(4): pp. 600-612. 

[ZDL02] Zeng, W., Daly, S., Lei, S.: An overview of the 

visual optimization tools in JPEG 2000. In Signal 

Processing: Image Communication (2002). 17(1): pp. 85-

104.


