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Abstract

We propose a new connectivity-based progressive
compression approach for triangle meshes. The key
idea is to adapt the quantization precision to the res-
olution of each intermediate mesh so as to optimize
the rate-distortion trade-off. This adaptation is au-
tomatically determined during the encoding process
and the overhead is efficiently encoded using geo-
metrical prediction techniques. We also introduce
an optimization of the geometry coding by using
a bijective discrete rotation. Results show that our
approach delivers a better rate-distortion behavior
than both connectivity-based and geometry-based
compression state of the art methods.

1 Introduction

Nowadays, 3D graphics models are widely used in
many applications such as Computer-Aided Design,
scientific visualization, virtual reality, video gam-
ing and e-commerce. As the considerable number
of applications shows, 3D geometric models are be-
coming as popular as the other multimedia data like
audio, sound, image and video. This amount of
3D models has rapidly grown to satisfy needs of
representing objects or scenes with more and more
realism. This increasing size of 3D data and the
ever growing use of Web-based applications have
introduced the necessity of efficient compression
algorithms in order to reduce the storage size and
transmission time over the network. In this con-
text, progressive compression techniques are partic-
ularly useful, since they enable a quick rendering of
a coarse approximation of the original model with
a small number of bits, and then deliver more re-
fined versions as more bits are transmitted. In other

words, progressive compression permits to trans-
mit different levels of details (LOD) in a coarse-to-
fine way. Before to describe related works, we re-
call here that 3D triangular meshes have two main
components : geometry and connectivity. Geome-
try consists of vertex positions in the 3D space and
connectivity describes how theses positions are con-
nected together.

1.1 Previous works on progressive com-
pression

Firstly, the concept of progressive compression
was introduced by Hoppe [9]. This new mesh
representation, so-called progressive mesh, consists
in simplifying successively a given mesh by using
edge-collapses, which remove one vertex and two
faces adjacent to the edge. The reconstruction (at
the decompression stage) is accomplished by the
inverse operation called vertex split. Each edge
collapse is chosen based on geometric criteria to
obtain the better approximations of the original
mesh, hence the reconstruction needs extra bits
for the localization of the inverse operations. This
method has been extended by several researchers
to improve the compression ratio. Taubin et
al. [16] reduced the connectivity cost to 7-10
bits-per-vertex (bpv) by using forest split operation
instead of vertex split operation. Pajarola et al. [12]
proposed compressed progressive meshes. In
their representation, vertex splits are applied in
batches, performing 7 bpv for the connectivity.
The geometry of each vertex is coded based on the
butterfly-like prediction using its neighbors. Karni
et al. [11] proposed a similar approach: the authors
first built a sequence of edges which traverses all
mesh vertices. Due to good locality and continuity
properties of this sequence, applying edge collapses
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between two adjacent edges of the sequence leads
to an improvement of compression rates and also
rendering speed. In their work, Cohen-Or et
al. [6] proposed the patch coloring technique for
progressive transmission. This algorithm removes
iteratively a set of vertices. The hole induced
by each vertex removal is re-triangulated in a
deterministic way. This algorithm encodes the
connectivity with an average of 6 bpv.

Based on the existing valence-driven single rate
approaches [17] [2], Alliez and Desbrun [1] ex-
tended the valence-driven scheme for progressive
encoding. The authors iteratively applied decimat-
ing conquest alternating with cleansing conquest to
get different levels of details. Decimation conquest
traverses the mesh from patch to patch based on
a deterministic gate-based traversal; when the
valence of the front vertex of the actual gate is less
or equal to 6, this vertex is removed and the patch
is re-triangulated. Similarly, cleansing conquest
decimates only vertices of valence 3. During
conquests, valences of removed vertices and some
supplementary null-patch symbols are encoded to
allow the exact reconstruction of the connectivity.
Connectivity can be compressed to an average of

3.7 bpv.
All  the algorithms described above are
connectivity-driven techniques, meaning that

the priority is given to the connectivity coding.
Therefore, the coding of geometry is often not op-
timal because the geometry redundancy reduction
is constrained by the traversal of the connectivity
coding. As geometry data are often larger than
connectivity data, geometry-driven algorithms give
very good results and have been heavily studied
more recently.

Gandoin and Devillers [7] proposed the first
geometry-driven algorithm based on the kd-tree
space subdivision. This algorithm is performed
by two passes. The first pass consists of encoding
only geometry data. They recursively divide space
in two cells until there is only one vertex in each
cell. The number of vertices in one cell is then
encoded. The second pass encodes the connectivity
change caused by each cell subdivision. In terms
of compression ratio, this compression technique
outperforms connectivity-driven algorithms and
even can compete with the single rate coders
like [8] [14] [17]. Peng and Kuo [13] improved
the kd-tree algorithm [7] by using octree cell sub-

#V =563, Q=12 bits,
B=1.06bpy, D=2.91-10%

(a

(b

#V = 3660,
B=1.0bpv, D=39-10%

(c;

#V =1348, Q=7 bits,
B=1.06 bpy, D=1.57-10*

(c) OUR

Figure 1: The Horse model resulting from differ-
ent approaches at a similar bit rate: Alliez and Des-
brun [1](AD), Peng and Kuo [13](PK) and our al-
gorithm.

division. Each cell is divided into eight child-cells
and instead of the number of vertices, they encode
whether each child cell is empty or not. Using
an efficient prediction for both connectivity and
geometry coding, they achieved an improvement of
10 to 20% comparing to [7].

1.2 Overview and contributions

The increasing use of Web-based applications tar-
geting low computational power devices such as
mobile phones or PDAs calls for better approxima-
tion of model for the same amount of bits trans-
mitted. Therefore, the attention starts now to focus
on the improvement of the quality of intermediate
meshes.

Usually, geometry-driven algorithms perform bet-
ter than connectivity-driven algorithms in terms of
lossless compression ratio. However, the approxi-
mation quality of meshes at low resolutions is poor,
since these techniques produce stair-like appear-
ances in the intermediate meshes, due to the ex-
cessive number of vertices regarding the low quan-
tization precision. On the contrary, the quanti-
zation precision is higher than the necessity for
connectivity-guided algorithms at low bit rate. In
this context, we propose a novel connectivity-driven



Input gate

Figure 2: Both barycentric prediction and Frenet
coordinate frame are used for geometry coding
in [1]. Input gate is colored in red. The position of
barycenter b is calculated from boundary vertices of
the current patch. Vertex to be encoded, V., is ex-
pressed as an offset («, 3, y) from barycenter b in
the local coordinate frame.

approach that combines these two different schemes
in order to enhance the quality of intermediate
meshes in terms of rate-distortion (R-D) perfor-
mance.

Figure 1 illustrates a result of our algorithm: at
a given low bit rate, the quality of the decom-
pressed model is much better than state-of-the-art
algorithms [1] and [13].

Our contributions are as follows :

1. Observing that the high precision of vertex po-
sitions imposed by the initial quantization is
not necessary for meshes of low resolution, we
adopt an adaptive quantization scheme for in-
termediate meshes in order to improve the pro-
gressive mesh coder in terms of R-D perfor-
mance.

2. We propose also an improvement of the ge-
ometry coding of [1], by using a bijection be-
tween two sets of 3-tuples of integers through
a rotation operation. This technique brings a
compression gain between 3 and 25%.

This paper is organized as follows: in Section 2, we
present our geometric coder based on the bijection.
Section 3 deals with improvement of quality of in-
termediate meshes using adaptive quantization. In
Section 4, we give experimental results, and a con-
clusion follows.

2 Improvement of geometry coder

In general, connectivity-driven methods yield bet-
ter quality of intermediate meshes than geometry-

driven ones. In this context, our work is based on
the algorithm of Alliez and Desbrun [1] which is the
most efficient connectivity-driven algorithm. For
the geometry coding, Alliez and Desbrun first ap-
plied a global and uniform quantization to the co-
ordinates of the mesh vertices. Then, they used
both the barycentric prediction and the approxi-
mate Frenet coordinate frame, separating normal
and tangential components to further optimize the
bit rate. To build the base vectors of this local
coordinate frame, they first approximated the nor-
mal vector from normals of triangles of the patch
and the two other base vectors, ¢1 and t2, are com-
puted by using this normal vector and the gate of
the patch, as shown in Figure 2. The normal n
and the barycenter b approximate locally the tan-
gent plane of surface. Then, the vertex V, to be
encoded is projected on the new base vectors and
becomes V, = b+ a-t1 + - t2 + 7y - n. The new
coordinates (c, 3, 7y) represent the relative position
of the vertex V; from the barycenter in the local
Frenet frame. As («, 3, ) obtained by the projec-
tion are usually floating numbers, these coordinates
are rounded to the nearest signed integers in order
to be effectively encoded. This rounding operation,
however, can introduce a loss of information, mean-
ing that the exact position of V,. cannot be recon-
structed at the decompression stage. To overcome
this inconvenience, the authors introduced a post-
quantization step. Yet, this post-quantization adds
supplementary information to the geometry coder,
resulting in an increased compressed file size.

The key idea to improve the geometry coding
consists in eliminating this post-quantization step,
while allowing to retrieve the exact position of the
encoded vertex. The projection used in [1] to find
the new coordinates in the Frenet frame can be
considered as a rotation of the coordinate system.
Hence, the elimination of the post-quantization step
turns into finding the bijection between two sets of
3-tuples of integers through a rotation.

In [4], Carstens et al. proposed such a bijection.
However, the objective of their work was not related
to 3D mesh compression. Therefore, we modified
their scheme to optimize the compression bit rates
by minimizing angles of rotation to encode. First,
they proved that a rotation matrix, R, is equal to the



Figure 3: An example of minimization of rotation
angle. (a) Initial coordinate system (e, e,) and ro-
tated coordinate system (¢, ). Initial rotation angle
is 6. (b) Interchange of axis between e, and e,. (c)
After rotation by angle v, axis e, and n are aligned.
(d) After changing orientation of axis ez, transfor-
mation of coordinate system with a minimum angle
is achieved.

product of three shear matrices, Sz 0 Sz 0 Si.
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where 6 is the rotation angle in the counterclock-
wise sense, A1 = A3 = —tan(f/2) and A2 =
sin(6).

Then, they proposed a bijection method by using a
novel rounding scheme based on these three shear
matrices.
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The notation [ ] denotes the rounding process of
coordinates to the nearest integers. For a given vec-
tor, z = (4,7)7, where i and j are integers, the
principle of the bijection is to first applied a mul-
tiplication between the inverse matrix S; ' and z.
Then, the components of the resulting vector from
the multiplication are rounded to the nearest inte-
gers. After performing identically with S; ' and
S; ', 2’ which corresponds to  in the rotated co-
ordinate system is obtained. The authors demon-
strated the bijection method in 2D for simplicity.
We have applied their work for our case in 3D. In

3D, the rotation of the coordinate system can be
seen as a composition of three rotations. In other
words, any rotation may be described using three
angles, 0, ¢ and 1. These angles are calculable
from the base vectors of Frenet frame, (¢1, t2, n).
Hence, the bijection between two sets of 3-tuples of
integers is possible using, this time, nine shear ma-
trices as explained above in equations (1) and (2)
based on three angles, 6, ¢ and 1. The resulting 3-
tuple of integers, which represents the relative coor-
dinates of the vertex V;. in the local Frenet frame, is
then encoded.

However, in terms of compression efficiency, this
bijection method is not optimal. Assuming that ro-
tation angles affect distributions of the coordinates,
we propose a more efficient bijection to further im-
prove the geometry coding by minimizing these an-
gles. When calculating each rotation angle, we min-
imize it by interchanging axis and by changing the
orientation of the axis of the coordinate system. The
axis interchanging and the axis orientation change
are performed in a deterministic way, allowing the
coder and the decoder to obtain the same angles,
without any supplementary information to encode.
An example of angle minimization in 2D is illus-
trated in Figure 3. Our scheme allows to obtain
almost all rotation angles comprised between -7 /4
and 7 /4. This new bijection method brings a sup-
plementary compression gain for all models. Ta-
ble 1 shows geometry compression rates of our ge-
ometric coder before (Our(B)) and after angle opti-
mization (Our(BA)), compared to the result of [1].
All models are quantized using 10 bits. Our ge-
ometric coders outperform Alliez and Desbrun’s
coder and angle optimization brings an additional
compression gain between 0.2 and 0.5 bpv.

Table 1: Comparison of geometry compression
rates in bpv.
Models #v AD [1] Our(B) Our(BA)
Tiger 2738 12.7 12.1 11.7
Mannequin 11703 10.0 9.8 9.3
Venusbody 11362 10.2 8.6 8.1
Torus 36450 3.6 3.0 2.8




3 Rate-Distortion optimization by
adaptive quantization

3.1 Objectives and outline of algorithm

Rate-Distortion (R-D) performance is an important
criterion to evaluate the efficiency of progressive
compression. The term distortion indicates geomet-
ric error of intermediate meshes comparing to the
original mesh, and the other term, rate, designates
the required number of bits for the reconstruction.
At the beginning of geometry coding, quantization
is performed to the mesh vertices to reduce the ge-
ometry data amount. Quantization is a lossy pro-
cedure and introduces a geometric error. To avoid
a significant deformation of the original 3D object,
typically 8 to 12 bits are used as quantization pre-
cision. This high precision is effectively needed for
meshes at high resolutions where the number of ele-
ments is important. However, this high precision is
not necessary for meshes at low resolutions, which
are composed of low numbers of elements. Coarse
meshes which have been quantized using different
precision (3 to 12 bits) give quite the same quality in
terms of distortion. At very low resolution, the geo-
metric error induced by quantization is insignificant
compared to that caused by the reduced number of
mesh elements.

Of course, quantization influences also the size of
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Figure 4: R-D curves with different bits (4, 5, 6 and
7 bits) used for quantization applied on Venusbody.
Each curve possesses the best R-D performance at
the specific range of bit rates.

the compressed file. Therefore, applying a quanti-
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Figure 5: Our algorithm (red arrow) and standard
progressive algorithms (blue arrow).

zation with few bits can improve the R-D perfor-
mance at low bit rates. Figure 4 shows the R-D
curves of the model Venusbody respectively quan-
tized using 4, 5, 6 and 7 bits. For the distortion,
the maximum of two RMS distances normalized to
the bounding box diagonal is measured using the
METRO tool [5]. In Figure 4, we can observe that
the R-D curve of the progressive algorithm using
4-bit quantization shows the best R-D performance
until 3000 bits. Then, the R-D curve of 5-bits quan-
tization becomes the best up to 6000 bits, and so on.
Relying on this observation, our idea to improve the
R-D performance is to apply an adaptive quantiza-
tion for intermediate meshes. Figure 5 describes our
algorithm, comparing to other connectivity-driven
techniques. Traditionally, a progressive compres-
sion coder decimates iteratively an initial mesh,
MZE, whose vertices are quantized using @ bits.
After n iterations, the base mesh, Mé"? is obtained.
Our algorithm decreases also quantization precision
during coding process. Therefore, an improvement
of R-D performance is possible by finding the best
way, combining a series of decimation processes
and a series of diminutions of quantization preci-
sion. This algorithm needs two main issues:

e Automatic determination of next operation

which leads to the better R-D performance.
e Decreasing quantization precision and effi-
cient encoding of the inverse operations.

These operations are processed at the encoding step.
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Figure 6: For a given intermediate mesh, a determi-
nation is made between a decimation operation and
a diminution of quantization resolution.

3.2 Optimal quantization determination

As shown in Figure 6, for a given intermediate
mesh, MS:J’, obtained after j iterations of sim-
plification and after reduction of ¢ bits of quantiza-
tion, the next operation can be a decimation, leading
to Mf:ji_l, by applying one iteration of simplifi-
cation, or a diminution of quantization resolution,
leading to Mf:jifl. Between these two cases, we
select the one which improves more the R-D per-
formance. To perform automatically this determi-
nation, the distortion increase AD, the coding bit
increase AB, and their ratio R = AD/AB, are
calculates for both cases.

For this task, meshes Mf:ji_l and M, 7?:;71
are constructed. Then, for the decimated mesh
Mg:jtl, we compute ABg.. by evaluating the
entropy of connectivity and geometry information.
The distortion ADge.. is calculated using the dec-
imated mesh and the original mesh. Similarly, the
coding bit ABgyan (See Section 3.3) and ADguyan
are obtained. The determination is then possi-
ble by comparing Riec = ADgec/ABgec and
unan = Aunan/ABquan- If Rdec < unan,
we choose the decimation as the next operation,
else the diminution of quantization resolution is se-
lected.

Note that the R-D performance can be optimized in
terms of various geometric criterion, like RMS dis-
tance, Hausdorff distance or any user-defined met-
ric.

3.3 Diminution of quantization resolution

Here, we present the decrease of the quantization
resolution and the technique to encode efficiently
the inverse operation. Initial quantization using b
bits, divides the axis aligned bounding box of the
input mesh into 2° % 2° % 2° cubic cells. Then, a
vertex inside one cell is moved to its center posi-
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Figure 7: A 2D example of diminution of quantiza-
tion resolution. In this case, the index 3 is encoded.

tion. If we replace b by b — 1, the dimension of the
each cube becomes twice along the three axis, and
each vertex is moved to the center of the new cube.
Therefore, the diminution of quantization resolu-
tion can be considered as an octree structure. Initial
cubes are the child-cells and the new bigger cube is
the parent-cell of these child-cells. At the decod-
ing step, the inverse operation has to be processed.
Basically, the index of the corresponding child-cell
has to be encoded (8 possibilities).

Each displacement of vertex needs 3 bits without
any prediction. We adopt a prediction method from
geometry-driven compression algorithms. Among
existing techniques [13] [10] [15], we adopt the pre-
diction of Peng et al. [13], which reveals to be the
most efficient method for our case.

Indices of child-cells are reordered taking into ac-
count their priority values calculated using vertices
in the vicinity of parent-cell and their distances to
the centroid of the parent-cell.

The effectiveness of the prediction is illustrated in
Figure 8 which illustrates the indices distribution
without and with prediction.
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Figure 8: Histogram of child-cell indices before and
after prediction.

4 Experimental results

4.1 Lossless compression

Table 2 shows lossless compression results ap-
plied on various reference meshes using 10 and



12 bits coordinate quantization. We compare our
coding bit rates with the algorithm of Alliez and
Desbrun [1](AD). Some results obtained by the
geometry-driven octree based algorithm of Peng
and Kuo [13](PK) are also given. In terms of over-
all compression rate, our improved geometric coder
(BA) brings a gain between 2.9 to 25.0% (12.1% on
average for meshes in Table 2) compared to (AD).
‘We can see that the adaptive quantization (BAQ) de-
mands extra bits regarding (BA). However, for the
most part, this overhead is slight and for the mod-
els in Table 2, the compression rate of (BAQ) is al-
ways better than (AD). However, Peng and Kuo’s
approach is still better than ours. Lossless compres-
sion rates of (AD) are calculated using the software
provided by Pierre Alliez. Yet, this software does
not give rates of intermediates meshes. Therefore,
for the comparison of R-D performance, we use our
implementation which yields similar results.

4.2 R-D performance comparison

Figure 9 and Figure 10 show respectively the R-D
curves for the Venusbody mesh of 11,362 vertices
and the Venushead mesh of 8,268 vertices, both
quantized using 10 bits for the lossless precision.
The vertical axis is the maximum of two RMS dis-
tances with respect to the bounding box. In these
figures, we see that our algorithm combining the bi-
jection and the adaptive quantization, (BAQ), im-
proves the approximation quality compared to our
approach (BA) using only the bijection and AD ap-
proach. Figure 12 illustrates four different levels of
details of (BAQ) and (AD) in similar bits applied
on the Venusbody model. Our method gives the
better result regarding the distortion. In Figure 11,
we compare our algorithm with the octree coder
of Peng and Kuo [13](PK) for the Rabbit mesh of
67,039 vertices quantized using 12 bits. The ap-
proach of Alliez and Desbrun performs significantly
better than Peng and Kuo’s algorithm and again, our
algorithm gives the best result.

For those cases, we improved the R-D performance
in terms of RMS distance. However, our algorithm
is generic enough to enhance the R-D performance
using any geometric error metric such as Hausdorff
distance or even user-defined perceptual metrics.

Table 2: Compression rates for various reference
meshes in bpv.

Models #v Qbit PK AD Our(BA) Our(BAQ)
Fandisk 6475 10 133 174 15.6 16.7
Venusbody 11362 10 - 141 11.7 12.0
Horse 19851 12 16.6 20.9 20.3 20.6
Torus 36450 10 - 40 3.0 32
Torus 36450 12 11.8 - 4.8 5.7
Mannequin 11703 10 - 136 13.0 13.5
Tiger 2738 10 - 153 14.0 14.3
Rabbit 67039 12 148 - 16.2 16.4
Dinosaur 14070 10 - 185 15.2 15.6
Foot 10016 12 - 258 21.7 21.8
Venushead 8286 10 - 195 18.1 18.2
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Figure 9: Rate-Distortion curve for the Venusbody.
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Figure 10: Rate-Distortion curve for the Venushead.
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Figure 11: Rate-Distortion curve for the Rabbit.

5 Conclusion

We have presented a new method for progres-
sive compression based on geometry coding opti-
mization and adaptive quantization. Although our
method is basically connectivity-driven, we have
adopted mechanism of geometry-guided algorithm
by using the decrease of quantization precision.
This mixed connectivity-geometry scheme allows
us to optimize the trade-off between the number of
vertices and the quantization precision for a given
bit budget, improving the R-D performance. Our
algorithm allows to improve the quality of interme-
diate meshes in terms of any metric such as geomet-
ric distances or user-defined perceptual metrics.
Future work will concern extension of our work to
take into account associated properties like colors or
normals, and improvement of the determination of
quantization precision to further optimize the R-D
performance.
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Figure 12: Comparison of intermediate meshes in
similar bits between Alliez and Desbrun’s algorithm
(bottom) and our algorithm (top) for the Venusbody.
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