Progressive Streaming of Compressed 3D Graphics in a Web Browser

Guillaume Lavoué*
Université de Lyon, CNRS

Web client

e
0OBJ =127 MB

P3DW =5.6 MB
—— Encoding —>»

Laurent Chevalier
VELVET

After 500ms After 1s After 5s

Florent Dupont
Université de Lyon, CNRS

s /-/“ /!

Web Streaming and Decoding ——>

Figure 1: On the server side, our compression algorithm transforms the triangle mesh into a very compact P3DW file, which can then be
streamed, decompressed and visualized progressively on a Web browser. There is no latency even for huge meshes and low bandwidth.

1 Introduction

The introduction of the WebGL API for rendering 3D graphics
within the browser has boosted the development of 3D Web ap-
plications. However, delivering 3D Web content without latency
remains a challenging issue, not yet solved. An efficient way to
remove the latency is to compress the 3D content in a way that al-
lows streaming and progressive decoding (i.e. by generating levels
of detail). Such kind of progressive approach also makes it possible
to adapt the data to different networks and client hardware. A huge
number of mesh compression algorithms have been introduced by
the scientific community these last 20 years; unfortunately as high-
lighted in [Limper PG2013; Lavoue Web3D2013], they are more
suited to classical desktop applications than to lightweight Web-
based environments. In particular, most of these techniques have
ignored a critical factor which is the decoding complexity.

In this context, we introduce a solution for fast progressive stream-
ing and visualization of compressed 3D graphics on the Web. Our
approach is based on two main features: (1) a dedicated progres-
sive compression algorithm especially suited to Web-based envi-
ronments. It produces a compact binary compressed format which
allows very fast transmission as well as progressive decoding with
levels of detail. (2) a plugin-free solution for streaming, decoding
and visualization by the Web browser, which relies on an optimized
parallel JavaScript/WebGL implementation.

Our system allows instantaneous interactive visualization by pro-
viding a good approximation of the 3D models in a few millisec-
onds even for huge data and low-bandwidth channels. Experiments
and comparison with concurrent solutions for 3D web content de-
livery demonstrate its excellent results in terms of latency, adapt-
ability and quality of user experience.

*e-mail:glavoue @liris.cnrs.fr

2 Overview

Encoding. The main idea of our progressive compression algo-
rithm is to represent the 3D mesh by a simple coarse model (low
resolution) followed by a refinement sequence enabling its incre-
mental refinement until the highest resolution. Our encoding pro-
cess is based on iterative simplifications. At each simplification step
a set of vertices are removed and the data necessary for their inser-
tion, at the decoding, are recorded; these data contain connectivity
(vertex valences), geometry (vertex coordinates quantized and pre-
dicted) and other attributes (e.g. colors, normals). These data are
then fed to an entropic coder. Special care has been taken to mini-
mize the decoding complexity.

Decoding. The decoding is fully written in JavaScript and WebGL;
basically, three processes run in parallel: (1) The binary reader
which decodes the connectivity, geometry and attribute information
in a streamed way. (2) The LoD decompressor which constructs the
next level of details (LoD), starting from an already decompressed
LoD and using the decoded information. This component computes
the necessary geometrical and topological operations; for this task
we introduced a JavaScript HalfEdge data structure. (3) The render-
ing and user interaction management. Our implementation is multi-
threaded by relying on Web Workers and Array Buffers, as well as
asynchronous rendering. Special care has been taken to minimize
the use of the garbage collection which is critical in JavaScript.

3 Results

Firstly, our approach provides excellent compression rates, bet-
ter than existing Web-based tools (OpenCTM, Google WebGL-
Loader). Secondly, compared to these tools, our approach allows
for progressive decoding and therefore makes possible rapid visu-
alization of coarse versions of the 3D data. Thirdly, The JavaScript
decoding is very fast (7 seconds to decompress the Happy Buddha
model - 1 million faces). These advantages make our approach par-
ticularly efficient for mid-low bandwidth scenarios of 3D Web visu-
alization. It improves on our previous work [Lavoue Web3D2013]
both in terms of compression rate (x2) and decoding time (X 3).
The accompanying video provides comparisons with OpenCTM,
WebGL-Loader and the recent POP Buffer [Limper PG2013].



