A Roughness Measure for 3D Mesh Visual Masking
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Figure 1: The Armadillo 3D model and its roughness map. Warmer colors (reds, yellows, greens) illustrate high roughness values while

cooler colors (dark blue) illustrate rather smooth regions.

Abstract

3D models are subject to a wide variety of processing operations
such as compression, simplification or watermarking, which intro-
duce slight geometric modifications on the shape. The main issue is
to maximize the compression/simplification ratio or the watermark
strength while minimizing these visual degradations. However few
algorithms exploit the human visual system to hide these degrada-
tions, while perceptual attributes could be quite relevant for this
task. Particularly, the Masking Effect defines the fact that a signal
can be masked by the presence of another signal with similar fre-
quency or orientation. In this context we introduce the notion of
roughness for a 3D mesh, as a local measure of geometric noise
on the surface. Indeed, a textured (or rough) region is able to hide
geometric distortions much better than a smooth one. Our mea-
sure is based on curvature analysis on local windows of the mesh
and is independent of the resolution/connectivity of the object. An
application to Visual Masking is presented and discussed.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.m [Miscellaneous]: Perception;

Keywords: 3D mesh, Roughness, Curvature, masking.

1 Introduction

Technological advances in the fields of telecommunication, com-
puter graphics and multimedia during the last decade, have con-
tributed to an evolution of the digital data being manipulated,
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visualized and transmitted over the Internet. Nowadays, three-
dimensional data (mostly represented by polygonal meshes) con-
stitute the emerging multimedia content. In this context, 3D mod-
els are subject to a wide variety of processing operations such as
compression, simplification, indexing or watermarking, which can
introduce degradations of the visual quality of the shape. These
processes are generally committed for human centred applications,
thus it seems relevant to incorporate human perception principles in
their realization.

Many computational models of the human visual system have been
developed in the field of image processing particularly to evaluate
the perceptual similarity between two images like the Visible Dif-
ference Predictor (VDP) [Daly 1993]. These models often rely on
some psychophysical and physiological evidences like the Masking
Effect which defines the fact that a signal can be masked by the
presence of another signal with similar frequency or orientation.

In the field of computer graphics such perceptual models have not
been really considered except for rendering: Perceptual metrics are
used to determine, according to the location of the observer, which
Level Of Details (LOD) to use to satisfy frame rate and image qual-
ity requirements [Luebke and Hallen 2001; Reddy 2001]. Little
attention has been paid to the use of perceptual models for standard
3D mesh processing. Some ad-hoc metrics have been proposed to
pilot mesh simplification [Kim et al. 2002], evaluate compression
[Karni and Gotsman 2000] or watermarking algorithms [Rondao-
Alface et al. 2005; Drelie Gelasca et al. 2005; Corsini et al. 2005]
or predict the visual distortion between two meshes [Lavoué et al.
2006]. However, except the later, these existing metrics are de-
signed to measure specific artifacts produced by specific applica-
tions. Few general-purpose measures have been developed that
would be able to guide or improve any kind of processing (sim-
plification, compression, watermarking, recognition etc.). One ex-
ception is the work of Lee et al. [Lee et al. 2005] which aim at
detecting perceptually salient regions of a 3D object, using some
curvature statistics. Their objective is to drive some processing op-
erations, like simplification for instance, in such a way so as to
preserve these visually salient features. Similarly Howlett et al.
[Howlett et al. 2005] determine the saliency through an eye track-
ing system.



Our objective is somehow dual: We want to exploit the human vi-
sual system to hide geometric degradations, produced by standard
operations. The key idea is to detect regions where slight geomet-
ric distortions would be near invisible. This idea is linked with
the concept of Visual Masking: A rough (or noised) region is able
to hide some geometric distortions, provided that their frequencies
are quite similar. For instance, in figure 2, the artifacts produced
by a geometric quantization (8 bits) are much more visible on the
smooth surface (left) than on the rough surface (right). Indeed the
visual texture produced by roughness has masked the geometric
modifications. In the field of Computer Graphics, this masking
effect was only investigated by Ferwerda et al. [Ferwerda et al.
1997]. They propose a computational masking model, extending
the Daly VDP, which illustrates how a texture map can mask the
polygonal tessellation. Our objective is not to propose such com-
plex computational masking model but rather a simple roughness
estimator allowing to concentrate geometric errors coming from
common processing operations on areas associated with high mask-
ing properties. This concept of roughness is quite relevant for 3D

Figure 2: Effect of roughness for 3D masking. The upper images
are original while lower ones are quantized on 8 bits. The quantiza-
tion artifacts are much more visible on the smooth surface than on
the rough one because of the masking effect.

perception. A lot of roughness-like measures have been consid-
ered in most of existing perceptual 3D metrics. Karni and Gots-
man [Karni and Gotsman 2000], in order to evaluate properly their
compression algorithm, introduce the Geometric Laplacian (GL),
which measures the smoothness of a vertex v:
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where n(v) is the set of indices of the neighbours of v, and ; the
Euclidean distance from v to v;. GL(v) represents the difference
vector between v and its new position after a Laplacian smoothing
step, thus it represents a kind of measure of roughness: the higher
it is, the rougher is the surface around v. With the same idea, Drelie
Gelasca et al. [Drelie Gelasca et al. 2005] propose a perceptual met-
ric based on global roughness variation, to measure the quality of
a watermarked mesh. They define the roughness as the variance of
the geometric distances between a 3D model and its smoothed ver-
sion, similarly to the Geometric Laplacian from Karni and Gotsman
[Karni and Gotsman 2000]. Wu et al. [Wu et al. 2001] and Corsini
et al. [Corsini et al. 2005] present a similar roughness measure
based on the variance of the dihedral angles of edges surrounding a
vertex.

The main problems of these existing roughness measures are that:

e They depend on the connectivity of the input mesh since they
consider only the direct neighbours of each vertex to calcu-
late their statistics. Particularly, they do not depend on a de-
sired scale whereas the perception of a given object depends

on its distance from the camera, moreover the masking effect
is quite linked with the frequency of the roughness. Thus a
correct measure has to be driven by a scale parameter.

e Psychovisual researchers propose that there exist three princi-
pal relevant categories of regions in an image or a 3D object,
they are presented on figure 1: Edge (like the ear), rough (like
the ankle), and smooth (like the chest) regions. These cate-
gories are associated with different masking degrees, indeed
a rough region exhibit a high degree of masking, whereas a
geometric change on edge or smooth regions is much more
visible. Existing measures often confuse rough regions and
edge regions which is quite critical since their masking de-
grees are very different.

In this context we present a robust roughness measure for polygo-
nal meshes which is illustrated on Figure 3. For each vertex, the
corresponding roughness is processed basically by computing an
asymmetric difference between local average curvatures computed
on the original mesh and on a smoothed version. The curvature is
computed and averaged over sizeable local windows of the mesh.
Indeed our roughness measure is associated with a scale parame-
ter which determines the size (i.e .the frequency) of the details that
have to be considered as noise and that can lead to a masking effect
for a given signal to hide. The main idea is that average curvatures
computed over local windows aim at detecting regions associated
with high geometric variations. However these variations can be
caused by noise but also by the presence of salient features (edge re-
gions). On the smoothed version of the object, the geometric noise
disappears while salient features are preserved. Thus by comput-
ing curvature difference between original and smoothed versions,
we accurately differentiate the real geometric noise (i.e. the rough-
ness) from salient (edge) parts.
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Figure 3: Overview of our roughness calculation algorithm.

2 Curvature calculation

In order to define a measure of roughness (or noise), the first step
is to find a 3D measure analogous to the 2D concept of luminance
of an image. The geometric information (i.e. the coordinates of the
vertices) does not seem to be relevant for this objective since the hu-
man eye is not really sensitive to this information. Several authors
have considered discrete curvature for 3D perceptual measures [Lee
et al. 2005; Kim et al. 2002], indeed this information well describes
the visual characteristics of a 3D model. In particular curvature
variations strongly influence the intensity image coming from the
rendering of the object.

A triangle mesh is a piecewise linear surface, thus the calculation
of its curvature is not trivial. We have implemented the work of
Cohen-Steiner et al. [Cohen-Steiner and Morvan 2003], based on
the Normal Cycle, to estimate the mean curvature at each vertex
of the mesh. This estimation procedure relies on solid theoretical



foundations and convergence properties. In order to remain inde-
pendent of the connectivity of the input mesh, the tensor is averaged
over a geodesic region, like in [Alliez et al. 2003].

3 Definition of a 3D local window

The proposed measure is based on a scale parameter which de-
termines the frequencies that have to be considered as roughness
noise. In order to establish this scale parameter we define the notion
of local window of a mesh. However, even if the concept of local
window is trivial in the field of 2D image (a squared neighbour-
hood for each pixel for instance), it becomes quite more complex
for 3D objects with non-regular connectivity. For each vertex v,
we define its associated local window, as the connected set of ver-
tices belonging to the sphere with centre v and radius r (see blue
points in figure 4.a). We also integrate intersections between this
sphere and edges of the mesh, we call them edge points (see green
points in figure 4.a), their curvature value is interpolated from their
neighbours ones. In figure 4.b, the edge point v. is added to the
local window of vertex v, and its curvature C(v.) is calculated as
follows:

C(v2) 2)

(a) Local window computation (b) Edge point computation

Figure 4: (a) Example of local window computation, for a vertex v.
(b) Example of edge point.

4 Adaptive Smoothing

Our algorithm is based on a curvature difference between the orig-
inal object and a smoothed version. This smoothing must be linked
with a scale parameter, however much of existing algorithms do
not provide such criterion; their smoothing effect is rather linked
to the neighbourhood connectivity of the vertices and highly de-
pends on the mesh density. Figure 5 illustrates this problem: the
top row presents two versions of the same shape, respectively as-
sociated with 5K vertices (left) and 42K vertices (right) while the
middle row presents results after 15 iterations of Laplacian smooth-
ing. Resulting shapes are highly different, the left model is far more
smoothed than the right one.
We have defined an Adaptive Smoothing that depends on a scale
parameter while being independent of the object connectivity; it is
derived from the two-step Taubin filter [Taubin 1995]. For this task
we associate our smoothing filter to a e scale factor. For a vertex v,
its smoothed position v’ is defined in two steps as follows:
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with e; the ' edge point (in green in figure 4.a) of the local win-
dow z of v associated with the radius 7 = €. n is the number of
edge points of this local window. A and p are respectively fixed to
0.6307 and -0.6732 (values originally suggested by Taubin). Figure
5, bottom row, illustrates the results of our adaptive smoothing (5

iterations) on the two objects associated with different mesh den-
sities. Resulting shapes are basically identical, thus our smoothing
is really independent of the mesh density. Moreover only a small
number of iterations is necessary since our algorithm converges
quickly toward a stable smoothed shape, which depends only on
the € scale factor.

Figure 5: Top row: The Dyno shape associated with different mesh
densities: 5K vertices (left) and 42K vertices (right). Middle row:
Results after 15 iterations of Laplacian smoothing. Bottom row:
Results after 5 iterations (convergence) of our Adaptive Smoothing.

5 The roughness measure

Our roughness measure is the following:

1. The 3D object is smoothed using our Adaptive Smoothing as-
sociated with an € scale parameter (see section 4).

2. The curvature of each vertex of the two meshes (original and
smoothed) is calculated (see section 2).

3. An average curvature value is processed for each vertex, it
corresponds to the mean of the curvature of all vertices from
its local window. The radius of local windows is set to 2e.
This radius size allows to correctly detect the noise that has
been suppressed by the € scale smoothing from (1).

4. We construct the Roughness Map by processing, for each ver-
tex v;, an asymmetric difference between its average curva-
ture values on the original and the smoothed objects.

R(vi) = AC(Vi) = AC(V?) if AC(V;) > AC(VY)
R(v) = 0 else

This asymmetric difference permits to detect rough regions
where the original average curvature AC(v;) (which repre-
sents a kind of entropy) is higher than the one AC(v]) of
the smoothed version, while preventing the false detection of
edge features (like the ear of Armadillo on figure 1).

6 Results and application to masking

Figures 1, 3 and 6 respectively illustrate the roughness maps of 3D
objects: Armadillo (40K vertices), Dyno (42K vertices), Lion (39K
vertices) and Bimba (9K vertices), with ¢ fixed to 1% of the length
of the cubic bounding box of the models. In all of these examples,



noised regions are well detected, while smooth and edge parts are
associated with very low roughness values.

Figure 6: Roughness maps of the Lion (left) and Bimba (right) ob-
jects.

One interesting application of our roughness estimator is the mask-
ing effect. Indeed a rough region will be able to mask some ge-
ometric perturbations much better than a smooth surface (see fig-
ure 2). Hence we can imagine developing adaptive compression
or watermarking algorithms where the compression artifacts or the
watermark strength could be concentrated on rough parts where ge-
ometric modifications are nearly invisible.

In order to demonstrate this principle we have classified (K-means
algorithm) the roughness of different objects into two clusters:
Rather rough vertices and rather smooth vertices. We have then ap-
plied a random noise only on vertices from smooth and rough clus-
ters respectively. Figure 7 illustrates this experiment for the Lion
object. The noise strength is the same for both cases: 0.15% of the
length of the cubic bounding box of the model. The object from the
right, noised on rough parts, is associated with a higher Hausdorff
geometric mean distance from the original than the object from the
middle, noised on smooth parts (0.71 X 1073 vs 0.66 x 107%).
However the visual distortion is far less visible for the right object
thanks to the masking effect. This masking is confirmed by the
perceptual distortion measure MSDM [Lavoué et al. 2006] which
provides an approximation of the subjective visual similarity. This
value tends toward 1 (theoretical limit) when the measured objects
are visually different and is equal to O for identical ones. This per-
ceptual metric gives a smaller value (and thus a higher perceptual
similarity) for the object noised on rough parts (0.36 vs 0.42).
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Figure 7: Left: Roughness classification into two clusters: rough
vertices are in green and smooth ones are in blue. Middle: Random
noise on smooth regions. Right: Random noise on rough regions.

7 Conclusion

We have presented a robust roughness measure for 3D meshes
which does not depend on the connectivity but is driven by a scale
parameter defining the size of the noise that we aim to detect. This
estimator well detects rough regions while not confusing them with

edge regions or salient parts. We have presented an application to
Masking: A rough region is able to hide small geometric distortions
much better than a smooth one. This measure could be advanta-
geously integrated to compression or watermarking algorithms in
order to concentrate artefacts on rough parts of the object which
exhibit a high masking degree.
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