Lung motion modelling to simulate dosimetry during cancer treatment

Context
hadrontherapy necessities:
 - accuracy
 - organ motion detection
 - customised treatment

Mechanical parameters

Compliance
(physiological parameter)

Young modulus
(mechanical parameter)

Geometrical parameters

- **3D CT scans**
 - voxel size:
 - 0.94 x 0.94 x 5 mm³

- **right-lung mesh**
 - voxel size:
 - 7.5 x 7.5 x 5 mm³

Continuous Media Mechanics laws

- balance equation
- kinematics equation
- constitutive equation
- boundary conditions

computed with finite element method

Next step : Dynamic Dosimetry

- time dependant ionising ray propagation (ion or X-ray)
- static dosimetry calculation:
 - according to the beam position through the thorax
 - at different times
- dynamic dosimetry = integration over the time

Mechanical problem to solve

Motions and displacements inside the lung due to environmental constraints

Our solution

A uniform pressure around the lung is applied, at forced expiration state, until the simulated surface matches the final state

Results :

External surface variation during total lung inflating

Conclusion

- work based on medical collaborations
- clinical validation and lung environment integration required
- limits : anisotropy and heterogeneity