Efficient modeling of entangled details for natural scenes

Eric Guérin, Eric Galin, François Grosbellet Adrien Peytavie, Jean-David Génevaux LIRIS – CNRS – France

Introduction

Context/problem

Natural scenes

- Numerous details
- Entangled ۲
- Different kinds

\Rightarrow Tedious authoring

Method

Related work

Simulations

Procedural

Interactive editing

- + Realistic
- Limited user control
- Does not scale

- + Efficient
- Specific
- Memory

- + Control
- Specific
- Interpenetrations

Method

Results

Our approach

• Key observation: if not regular, repetitions are not visible

- Split the process into two steps
 - 1. Pre-compute collisions in a very dense tile
 - 2. Fast Instantiation
- Multiple control types

- + Realistic
- + Efficient
- + Not object-specific
- + Light in memory
- + Scalable
- + Controllable

Method

The method

Pipeline in 2 steps

The method

Step 1 – Ghost tile construction

Ghost tile

Ghost tile construction

Algorithm

1. Pick a random frame in the tile

2. Compute intersections inside the same tile in the neighbor tiles

3. If intersection, add two reciprocal arcs in the graph

⇒ Repeat (and use a spatial acceleration)

Collision detection

- Volume approximated by spheres
- Automatic or manual according to the context

Distance between unions of spheres is easy

$$d(\mathcal{A},\mathcal{B}) =$$

$$\min_{i,j} \|\mathbf{b}_j - \mathbf{a}_i\| - (r_i + r_j)$$

The method

Step 2 : Instantiation

Density description

13

Culling step

 Remove candidates whose density vanishes at anchor point(s)

Method

Results

Conclusion

Instantiation step

- Select the highest priority candidate (green)
- Discard colliding candidates (orange)

Results

Volumetric objects

Control over density

016

Density functions to control the relative density of each object type

Complex scenes - Borie

63k flat stones Instantiation time 17s

Metho

Complex scenes - Field

4.3M straw instances Instantiation time 54.6s

Results

Method

Complex scenes - Meadow

Interactive authoring Standard stroke 1k instances in 1.5s

Method

Conclusion

Conclusion

- Limitations
 - No structure
 - No animation
- General framework to model entangled details
- Two steps
 - 1. Offline pre-computation
 - 2. Instantiation
- Efficient
- Handle interpenetrations
- Several user controls

Results

Thank you for your attention!

See video and more on: http://liris.cnrs.fr/eric.guerin/efficient-modeling-of-entangled-details-for-natural-scenes/

