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Abstract

From the many attempts to produce a conceptual framework for the organization of living systems, the notions of (M,R) systems
and Autopoiesis stand out for their rigor, their presupposition of the circularity of metabolism, and the new epistemologies that they

imply. From their inceptions, these two notions have been essentially disconnected because each has defined its own language and

tools. Here we demonstrate the existence of a deep conceptual link between (M,R) systems and Autopoietic systems. This
relationship permits us to posit that Autopoietic systems, which have been advanced as capturing the central aspects of living

systems, are a subset of (M,R) systems. This result, in conjunction with previous theorems proved by Rosen, can be used to outline a
demonstration that the operation of Autopoietic systems cannot be simulated by Turing machines. This powerful result shows the

potential of linking these two models. Finally, we suggest that the formalism of (M,R) systems could be used to model the circularity
of metabolism.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Biology is an experimental science in which global
theoretical principles concerning the intrinsic peculiarity
of living systems have had great difficulties in opening
avenues of research. In the sense of the interrelation
between theory and experimentation, Biology has
revealed itself to be a conceptual domain very different
from physics. This difference is not surprising as the
properties of inanimate matter and living systems
appear so distinct to all observers. With perhaps the
sole exceptions of the notions of Evolution and
Mendelian genetics, theories in biology refer not to
aspects central to biological organization but rather to
applications of results from physics to subsets of
(phenomena in) the biological world. An excellent
example of such theories can be found in molecular

biology, a field that has populated cellular metabolism1

with imported concepts including: signals, transducers,
information, encoding and decoding.
In spite of the difficulty of generating a theoretical

framework about the central phenomenology of living
systems, the 20th century witnessed the creation of such
theories. In the context of this paper, it is important to
mention three theoretical bodies that have served as
general scaffolding or metaphors to describe biological
phenomena. These include General System Theory (von
Bertalanffy, 1950), Cybernetics (Rosenbluth et al., 1943)
and the modern, eclectic field of Artificial Life (Langton,
1989).
In parallel with these three well-known viewpoints,

the second half of the century saw the appearance of
many other theories about living systems that have had
less impact. These ideas encompass a wide variety of
models, from the structurally rich notions of Hyper-

cycles (Eigen, 1971), or Autocatalytic Sets (Kauffman,
1993) to the intriguing idea that ‘‘life equals cognition’’
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of Evolutionary Epistemology (Heschl, 1990), or the class
of Component-systems defined by the impossibility of
defining states or equations of motions (Kampis, 1991)
along with attempts to join concepts from biology,
chemistry, physics and mathematics in a single theore-
tical construct, like the Generalized Theory of Life

(Kalmykov, 1998)) or the field of Biosemiotics that
considers semantic communication to be the essence of
living systems (Sharov, 1991).
In this crowded field, two theories stand out for their

rigor, their central focus on the circular causality proper
to living systems, the new epistemologies that they
imply, their initial focus on cellular metabolism and
their detachment from structural details. These two
theories are (M,R) systems created by Rosen (1958a),
and the notion of Autopoiesis set forth by Humberto
Maturana and Francisco Varela in the early 1970s.
The purpose of this paper is to show the existence of a

deep connection, or correlation, between (M,R) systems
and Autopoiesis and to explore the consequences of
such a connection. Because the notions of (M,R)
systems and Autopoiesis are not generally well known,
we will first present an overview of both theories, with
an analysis of the impact that these concepts have had.
Second, we will demonstrate that both theories,
although originally stated in very different conceptual
frames and languages, share a common structure. Third,
we will demonstrate that Autopoietic systems are a strict
subset of (M,R) systems, and finally we will use this
inclusion to prove that living Autopoietic systems are
not Turing computable.

2. An algebraic approach to circular organization:

(M,R) systems

2.1. Background

In the 1930s, Nicolas Rashevsky,2 a physicist by
training, championed the biophysical approach to
understanding living systems. Rashevsky and his stu-
dents created a systematic theoretical effort that
consisted of applying theories from physics to explain
biological phenomena like cell division and neural
processing (Rashevsky, 1938). Around 1950, Rashevsky
became convinced that his intense and novel ‘‘bio-
physical’’ approach was fundamentally limited for
understanding living systems as a whole. He realized
that his previous work had dealt only with bit parts of
the phenomena of living systems, without considering
their peculiar organization. Thus, Rashevsky coined the

term Metric Biology to refer to all aspects where a
reductionist approach to biology was valid and the term
Relational Biology to aspects that depended on the
organization of living systems rather than the matter
found inside them (Rashevsky, 1954).
In 1958–1959, as a graduate student of Nicolas

Rashevsky, Robert Rosen published three papers
(Rosen, 1958a, b, 1959) that were a rigorous attempt
to formalize the intuitive notions of relational biology.
His formalism (known as (M,R) systems) used mathe-
matical language based on a modern and abstract
branch of mathematics (Theory of Categories (Eilenberg
and MacLane, 1945)). Since not many biologists are
well-enough versed in algebraic theory to evaluate its
utility, (M,R) systems has not had the wide impact it
may deserve. Despite the limited audience Rosen could
capture with his ideas, Rosen continued to develop the
theory of (M,R) systems and the use of the theory of
categories in Biology for 40 years until his death in 1998.

2.2. The formal model

To model cellular metabolism, Rosen initially distin-
guished two types of entities: Components and input/

output materials (i.e. transformable materials) (Rosen,
1958a). A component transforms a set of input materials
into output materials. Enzymes represent components as
they transform reactants into products without being
changed themselves. With this metaphor in mind, it is
possible to formalize the notion of a metabolic network
of interconnected biochemical reactions by rewriting a
metabolic map in terms of components and metabolic
processes. Because components represent the action of
metabolism, their action is termed metabolic (the M in
(M,R)). A real metabolic network contains thousands of
these components, forming a family of metabolic
components ðMiÞ and many thousands of transformable
materials. Thus any metabolic reaction, like the
phosphorylation of glucose, could be thought of as the
action of a component upon a set of input materials to
produce output materials (Fig. 1A). Cellular metabolism
could then be represented by a graph where the nodes
are the Mi and the links show that the output of one
component is the input for another (Fig. 1B).
In real living systems, each component Mi has a finite

lifespan. Thus to have a stable system operating in a
steady state, for every component Mi; there must be
a mechanism (or subsystem) that produces Mi and
maintains a functional concentration in the metabolic
system. Hence in metabolic networks, associated with
each component Mi; there must be a subsystem Ri (the
R in (M,R)) that repairs each component Mi (Fig. 2).
The collection of subsystems fRig entails an enormous
complexity, as these subsystems are also made of
components that transform input materials into output
materials (in this case, the outputs are the components

2Rashevsky was the founder of the Bulletin of Mathematical

Biophysics (in 1938), as well as the creator of the first graduate

program of theoretical biology (Program on Theoretical Biology at the

University of Chicago).
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Mi). Furthermore, the input materials for each Ri are
the byproduct of the collective action of the Mi such
that an (M,R) system could have incredible resiliency as
every component is dynamically maintained by a
network of processes (the Ri subsystems) whose input
materials are derived from the same metabolic network
fueled by the action of the set of components Mi

A crucial question, first addressed by Rosen (1959),
concerns the infinite regress implied by the existence of
subsystems Ri. In effect, as is the case for everyMi; every

Ri is a physical entity with a finite lifespan. Which
systems or collection of subsystems, then, repair Ri? The
invocation of special subsystems that would repair each
Ri is obviously an inadequate answer. Rosen suggested
that the infinite regress could be avoided if the set fRig
had the capability of self-replication by the (M,R)
system.
Rosen’s main result is the demonstration that the

synergy of metabolic and repair actions can imply,
under some circumstances, self-replication in the sense

glucose- P +  ADP +  H2O

HEXOKINASE (HXK)
(A)

(B)

fructose-

1)  glucose +  ATP

2)  glucose

PHOSPHOGLUCOSE
ISOMERASE (PGI)
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Fig. 1. The metabolic network. (A) Every biochemical reaction (like the initial step of glycolysis: phosphorylation of glucose), can be viewed as the

action of a component (in this case the enzyme hexokinase) upon a set of inputs (glucose and ATP) to produce a set of outputs (glucose-6-phosphate,

ADP and water). The second reaction of the glycolytic pathway (glucose isomerization) can be similarly viewed: glucose-6-phosphate is isomerized to

fructose-6-phosphate by the enzyme phosphoglucose isomerase. (B) Dual view of the 2 previous biochemical steps. In this representation the

enzymes, or ‘‘components’’ in Rosen’s language, are the nodes of a graph. The vertices are labeled by the materials that are transformed. Two nodes

are connected by a directed arrow if the output of one is the input for the other.
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Fig. 2. R subsystems. The components in a metabolic network (i.e. like enzymes HXK and PGI) have a finite lifespan. Thus, in order to have a

network operating in steady state, these components must be repaired by special subsystems: RHXK and RPGI. Repair subsystems are not simple; they

can contain many components and transformable materials.
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of self-production (or self-maintenance) of the complete
metabolic network. In other words, in some (M,R)
systems, it should be possible that the metabolic and
repair actions induce the replication of each subsystem
Ri (Fig. 3).

3 Incredibly the demonstration of this
important result concerning the closure of metabolic
systems does not rely on the explicit connectivity of the
graph between all the Mi (components) and Ri (repair
subsystems) inside the metabolic network, but rather on
a universal, but not obvious, property between sets and
sets of mappings (Rosen, 1959).

2.3. The F formulation

In a second phase, Rosen used the very general
framework of the theory of categories to convert the
replication result of 1959 into a theorem about closure

(Rosen, 1972). From a mathematical viewpoint, the
theorem consists of a procedure for selecting functions
from a set of functions, using those functions with their

ranges and domains as the only elements needed to build
the selecting procedure.
Rosen’s first step was to obtain a new representation

of the overall action of metabolism (i.e. the collective
action of all Mi) as a mapping f between the set of
possible input materials (A) and the set of possible
outputs materials (B). Thus instead of a complex graph
like the one depicted in Figs. 2 and 3A, which would be
unmanageable for real metabolisms involving thousands
of enzymatically controlled steps, metabolism (i.e. f

interpreted as one instance of all possible instances of
functions connecting (in the sense of set theoretic
functions) set A with set B (this set of functions is
denoted by H(A,B)). But f is indeed a very special
function as it must embody the properties of metabolism
and it must have the property of closure enunciated
above (Metabolism+Repair-Replication). Rosen
theorized that only some of elements of H(A,B) would
exhibit the closure (or circular organization) proper of
biological systems, and the vast majority of the
mappings between A and B would be ‘‘uninteresting’’
as they would not have circular organization.
Thus, Rosen’s central theoretical problem was to find

a mechanism (an operator in the language of functions)
for any bAB (where b must be the image of a certain a,
that is: b=f(a)) to select from among all the elements of
H(A,B) the only one (f) that is biologically relevant as it
represents circular metabolism in a given (M,R) system.
Rosen’s interpretation was to assume the existence of an
operator that, using elements b from set B as input,
selects f from H(A,B). This operator is denoted by F
and must have the property that it uses an instance
(or realization) of output materials (b) to define
metabolism (f):

FðbÞ ¼ f ð1Þ

F implements the repair function in an (M,R) system,
and thus plays the role of subsystems {Ri}. In effect,
starting with an instance of output materials (bAB), F
obtains f (which represents metabolism) from H(A,B)
(Fig. 4).
Rosen did not view F as an imaginative theoretical

device, or a metaphor for repair, but rather as a real
object acting in the world. Accordingly, Rosen named
these kinds of entities as functional components. Thus
from a theoretical standpoint, a metabolic network is
partially represented by Fig. 5.
In Fig. 5, a mapping, represented by f, acts upon a

molecular configuration of inputs materials (aAA) to
produce a configuration of output materials (bAB).
While the operator, F (a mapping between B and
H(A,B)), uses b to specify f. Superimposing the
formalism of the four Aristotelian causes (material,
formal, efficient and final), it can be said that f is the
efficient cause that acts upon a material cause (aAA) to

(M,R) Systems

The system replicates every R subsystem

(A)

(B)

= R

= M

Fig. 3. Metabolism and repair imply replication. In an (M,R) system

every component M must have an associate R subsystem that

maintains its concentration (A). But R subsystems are themselves

physical entities that need to be repaired. Instead of invoking an

infinite descend, or neglecting the problem, Rosen proved that the

whole (M,R) system can, under very general circumstances, replicate

each R subsystem. This systemic replication assures the continuous

operation of the system (B).

3These systems are called replicative (M,R) systems, in this paper,

we only deal with this class of (M,R) systems.
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produce an effect (bAB). Aristotelian causes play an
important role in Rosen’s (1991) analysis.
The next step concerns the mechanism by which F is

specified. This question is the mathematical counterpart
of ‘‘Which system produces every Ri?’’. In the language
of closure and Aristotelian causes, this question
demands that an ‘‘object’’ be found inside Fig. 5 that
is the efficient cause of F. Rosen was able to prove that,
in some cases, a mapping b, which Rosen called a
replication map, could exist with the property b(f)=F
(Fig. 6A) The crux of the formalism used by Rosen is to
identify b, which is an element of the following set of
functions H(H(A,B),H(B,H(A,B))), with a (molecular)
configuration in B.4 This identification produces the
diagram in Fig. 6B which summarized the complete
research program of Rosen. The power of Rosen’s
approach is that he treated the sequence of mathema-
tical objects (A,B, f,F) as an (M,R) system and as a

category C.5 Thus extending the class of (M,R) systems
to include, beside models of metabolism, pure formal
systems. Fig. 6B shows that three important biological
functions (metabolism (f), repair (F) and self-replication
(the diagram itself)) are entailed by another function
inside the diagram and nothing else: thus proving the
closure (circular causality) of metabolism. This diagram
was summarized by Rosen with the dictum, ‘‘Organisms
are different from machines because they are closed to
efficient causes.’’ Thus in an organism, all efficient
causes are produced inside the organism. In this respect,
organisms are very different from man-made artifacts,
where every component (from a line of code, a transistor
or a humble wooden handle) is produced by mechanisms
generated outside the artifact.
Finally, Rosen proved that (M,R) systems encompass

a wide spectrum of systems, many of them purely formal
systems, and that cells, as they are usually investigated
by biologists, were an example of a ‘‘molecular
realization’’ of a (M,R) system (Rosen, 1972). Using
the formal characterization of (M,R) systems, Rosen
explored some of their properties. One of his results was
the unexpected conclusion that (M,R) systems cannot be
simulated by Turing machines (Rosen, 1964, 1966,
1991). Without any doubt Rosen’s extremely coherent
theoretical viewpoint cannot be summarized in few
pages. Our aim is to present a glimpse of this complex
theoretical approach and take the minimal steps
necessary to explore the relationship between (M,R)
and Autopoietic systems.

ƒ Φ
A B H(A,B)

a ∈ Α b ∈ Β
b = ƒ(a)

ƒ
ƒ

∈ Η(Α,Β)
= Φ (b)

Fig. 5. Relation between f and F. Metabolism can be thought of as a

function (f) that transforms a set of materials (the instance aAA) into

another instance (bAB). The instance b is then used to select f from the

set H(A,B).

A B

ƒ

Φ

(B)

A B

ƒ β(A)

Φ

Fig. 6. Rosen’s diagram. (A) The first step consists of finding a formal

entity, b, (which plays the role of replication) that acts as the efficient
cause for the production of F. In this diagram, b appears as

independent of metabolism (f), repair (F), and the states of the
metabolic network (A & B). (B) This diagram illustrates the

fundamental result of Robert Rosen: b is identified with a metabolic
configuration. Thus all important biological functions, metabolism (f),

repair (F) and replication (b), are mutually dependent on each other or
in Rosen’s language ‘‘entailed’’. Metabolism (f), repair (F) and
molecular configurations (b) define each other. These diagrams

distinguish between material causation (open arrowhead) and efficient

causation (solid arrowhead). Thus, B is the end result of efficient cause

(f) acting upon a material cause (A) in order to produce its effect (B). B

plays a dual role; it is the material cause associated with the efficient

cause (F), and, when interpreted as b, it is the efficient cause that
produces F.

H(A,B) B

Φf1, f2,
f3

b1,
b2, b3

Possible Metabolic 
Configurations

Possible
Metabolisms

Fig. 4. The F formulation. Rosen reframed his 1958–1959 result

concerning the systemic replication of R subsystems in pure functional

terms. The operator F selects from a family of possible metabolisms
(f1, f2,y) the function f that realizes a concrete metabolic network.

The selection process uses molecular configurations (b1, b2,y) as its

input. Most of the possible networks of processes (i.e. most of the

elements of the set H(A,B)) do not have the property of circular

organization.

4A more extensive description of these results is found in Rosen

(1972). The term replication map is somewhat unfortunate as it evokes

the idea of reproduction.

5The proof of the existence of b, which constitutes the very kernel of
Rosen’s approach, is a delicate demonstration because it requires the

invertibility of evaluations, a situation that is seldom encountered.
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3. A systemic approach to circular organization:

autopoiesis (Maturana and Varela, 1972)

3.1. Background and model

In 1972, in the middle of a cataclysmic political
turmoil, two Chilean biologists introduced the concept
of Autopoietic systems6 (‘‘auto’’=self and ‘‘poiesis’’=
generating or producing) as a theoretical construction
on the nature of living systems centering on two main
notions: the circular organization of metabolism and a
redefinition of the systemic concepts of structure and
organization. Maturana and Varela’s starting point was
that any system can be decomposed into processes and
components. Components interact through processes to
generate other components.
The notion of circular organization is given in

Autopoiesis, and it is immediately clarified in the theory
by the very definition of an Autopoietic system:
‘‘an Autopoietic system is organized as a bounded

network of processes of production, transformation and
destruction of components which:

(i) through their interactions and transformations
continuously regenerate and realize the network of
processes that produced them

(ii) constitute the system as a concrete entity in the
space in which the components exist by specifying
the topological realization of the system as such a
network’’ (Varela et al., 1974; Maturana and
Varela, 1975, 1980).

In an Autopoietic system, the result of any given process
is the production of components that eventually would
be transformed by other processes in the network into
the components of the first process. This property,
termed operational closure, is an organizational property
that perfectly coexists with the fact that living systems
are, from a physical point of view, energetically and
materially open systems. The molecules that enter the
system determine the system’s organization, which
generates pathways whose operation produces molecu-
lar structures that determine the physical system and the
system’s organization (Fig. 7) (Fleischaker, 1990). Thus
an Autopoietic system does not have inputs or outputs,
instead it creates a web of molecular processes that
result in the maintenance of the autopoietic organiza-
tion. Because an Autopoietic system’s internal dynamics
are self-determined, there is no need to refer any
operational (or organizational) aspect to the outside.
Thus the environment does not inform, instruct or
otherwise define the internal dynamics, it only perturbs

the system’s dynamics. This does not mean that an
Autopoietic system is completely independent from its

medium. Instead it means that the system specifies its
own internal states and the domain of its changes. In
this context, external events act as perturbations that
only trigger internal changes. But the magnitude and
direction of these changes are defined by the internal
dynamics of the system and not by the external
perturbations (Maturana and Mpodozis, 2000).
The second clause demands that an Autopoietic

system has ‘‘sufficiently complex’’ dynamics to self-
produce the boundaries that separate the systems from
the ‘‘non-system’’. This apparently trivial clause has
profound implications as it touches upon the problem of
autonomy and also serves to weed out from the
Autopoietic forest some pure formal systems. Thus
Autopoietic systems are not simple relational devices
that connect components with components via complex
graphs. Autopoietic systems must conform to an
important topological property: their boundary (in the
space where their components exist) is actively produced
by the network of processes that define the system’s
identity. This property of Autopoietic systems couples a
purely relational property (operational closure) with a
topological property and it demands that an Autopoie-
tic system must be an autonomous unity, topographi-
cally and functionally segregated from its medium, but
yet dependent from this medium (Weber, 2001). In the
realm of molecules, the coupling of these two conditions
necessarily implies that the minimal metabolism must be
rather more complex than the spatial coupling of a
direct chemical reaction with its reverse reaction.
The theory of Autopoietic systems uses the concepts

of organization and structure with a new viewpoint and,

Molecular
configuration

Specifies

Network of
Processes

Determines

Fig. 7. Partial representation of an Autopoietic system. The set of

molecules found inside an Autopoietic system specifies the metabolic

processes that determine the type and arrangement of these molecules.

Thus, the molecular configuration and the network of processes define

each other in a recurrent mode, and the boundary of the system is

actively created by this interplay. An Autopoietic system produces a

unity that is topographically and functionally segregated from its

background.

6This theoretical body is also known as Autopoiesis or Autopoietic

Theory.
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in order to understand the theory, it is relevant to
understand how these notions are used. Thus the
organization of a system is defined as the pattern or
configuration of processes between components of the
system that define such a system as a member of a
particular class of systems. The structure is the specific
embodiment of these processes into specific material
entities. When a process (i.e. elongation by condensa-
tion) is embodied into a specific physical entity (i.e. a
polymerase), it also automatically defines the physical
properties or characteristics (i.e. nucleotides) of the
components transformed by the initial process. Accord-
ing to this definition, organization is a subset (in the
mathematical sense) of structure. The organization of a
system defines its systemic identity and its structure only
specifies one instance of the system’s organization.
Furthermore for a given system, the ontogenies of
organization and structure are not coupled, as some
structural changes do not imply any organizational
change.
Autopoiesis, as originally described by Maturana and

Varela (1972, 1980), is an extremely coherent and formal
theory formulated outside any mathematical frame-
work. Many attempts have been made to formalize and
simulate Autopoiesis. The first tessellation computer
models, initially done in an IBM 360 (Varela et al., 1974;
Zeleny, 1981)] and recently re-done in Swarm (McMul-
lin and Varela, 1997) have been a direct translation of a
minimal Autopoietic system into a small bi-dimensional
lattice. Varela used an Indicational Calculus (Varela,
1979) to model autonomous systems. But Indicational
Calculus, developed by Spencer-Brown (1969), is a
difficult tool to master and the progress, aside from
the effort’s of Varela, has also been limited. Other
mathematical formulations have included the use of
differential equations to model feedback (Limone,
1977). None of these models has generated clear-cut,
satisfactory results.
Implied in the early concepts about Autopoietic

systems is the idea that an observer is not naive and
transparent as science usually supposes. On the con-
trary, the process of cognition is embodied, not only in
logical and inferential rules, but in a specific neurophy-
siological substrate with specific cognitive consequences,
where the nervous system cannot distinguish illusion
from perception (Maturana, 1970a, 1970b; Fleischaker,
1988).

4. The current impact of both theories

The formalism of (M,R) systems has had limited
impact on biology. Excepting the direct and massive
work of Rosen himself, his ideas have remained
little explored (Rosen, 1991, 2000). One exception was
the sustained theoretical work of Leguizamon and

coworkers who used Rosen’s ideas about the functorial
representation of systems to embark upon a research
program concerning the physical-chemistry of living and
non-living systems (Zaretzky, 2000). Another important
line of work is due to Casti (1988, 1997) who explicitily
modeled linear (M,R) systems. Recently, the implica-
tions of Rosen’s epistemology in understanding complex
systems (Casti, 2002) or in Bio-informatics (Wolken-
hauer, 2001) have been published.
The development of Autopoiesis has been very

different from that of (M,R) systems. First, Autopoiesis
has been an extremely successful idea in various arenas
outside of Biology ranging from law (Luhmann, 1982)
to business administration (Mingers, 1995) and even
psychotherapy (Snyder, 1999). Second, because of
Autopoiesis’ epistemological foundations concerning
the process of cognition, it has become a central
paradigm of ‘‘second order cybernetics’’ (i.e. the
observer is considered, at least, as part of the feedback
loops defining the system) (Zeleny and Hufford, 1992).
But in biology, apart from new versions of the original
computer simulations (McMullin and Varela, 1997),
some applications to the problem of the origin of life
(Fleischaker, 1990; Mavelli and Luisi, 1996), approx-
imations to the origin of higher brain functions
(Mpodozis et al., 1995), its use in image processing
(Ruiz-del-Solar and K .oppen, 1999), and producing a
new formalization of Evolution based on natural drift
rather that natural selection (Maturana and Mpodozis,
1992, 1999, 2000), the notion has had limited advance.
Autopoiesis, acclaimed by theorists in many disciplines
(Mingers, 1995) has not penetrated the daily life of
biologists.
In summary, neither Autopoietic systems nor (M,R)

systems have been used to explain any experimental
findings or to predict new biological phenomena in an
unambiguous way. It is not surprising then that these
theoretical models have been neglected by the vast
majority of experimental biologists. This neglect may
reflect the fact that both theories are incomplete in the
fundamental aspect of how to map their theoretical
concepts (structure, organization, F, circularity, etc.)
with experimental entities. However, we feel an
important step in theoretical analysis could be achieved
by first finding a common link or correlation between
them.

5. Relations between autopoietic and ðM;PÞ systems.
Autopoietic systems are ðM;PÞ systems, but not vice versa

Autopoietic theory and (M,R) systems have been two
disconnected models with a similar primary objective: to
define circular causality as the core of biological
organization. Are (M,R) systems a subset of Autopoietic
systems, vice versa or is there any relationship between
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these two types of systems? Establishing this relationship
could be a first step towards producing a synthesis
between these two theories (Fig. 8).
Here we submit that every Autopoietic system is, at

least conceptually, operationally equivalent to an (M,R)
system, but not conversely as most (M,R) systems are
not Autopoietic systems (Fig. 8C). As an initial point we
need to decide how to transform or translate these two
seemingly different formalisms into a common lan-
guage. Also, it is important to realize that an Autopoie-
tic system has a more general, and hence less restricted,
formal structure because it only contains a single type of
object: components. These components interact through

processes. On the other hand, in an (M,R) system at least
three types of objects are distinguished: components,
transformable materials and R subsystems. Further-
more, these objects have different functions: Materials

are transformed; components transform input materials

into output materials; and R subsystems repair compo-

nents. Thus from a purely formal viewpoint, the
structure and the organization of an Autopoietic system
and an (M,R) system are rather different. This suggests
that it is easier, in the sense of having less restrictions, to
work with the generalized formalism of (M,R) systems
embedded in Fig. 6, where only metabolic functions f

and F are used, than with Rosen’s early formulations of
1958 and 1959 (Figs. 1 and 2).
The operational closure of Autopoietic systems

implies that every process in an Autopoietic network is
the direct consequence of the interplay of components
produced in other parts of the network. Thus, the
components of an Autopoietic systems are (in Rosen
terms) the material causes, and the configuration of the
network is the efficient cause for the existence of any
given process in the network. This argument shows that
every Autopoietic system has the property of being
closed to efficient causes and thus of being an (M,R)
system.

Conversely, we can prove that every (M,R) system
exhibits the operational closure proper to Autopoietic
systems. The demonstration flows directly from Fig. 6,
where it is shown that f (which represents the overall
metabolic transformation of set A into set B) is
produced by the action of F upon b (which can be
interpreted as a molecular configuration), but F itself is
produced by f : This mutual interdependence between f

and the dual role of the molecular instances (or
metabolic realizations), b and b, found inside set B

(i.e. b=f (a) and f=F (b) with the functional restriction
F=b(f)) shows, in the language of categories and
efficient causes, that an organism (from the point of
view of Rosen) exhibits operational closure. In effect,
F=b(f), can be rephrased as: the action of metabolic
self-maintenance (F) is the product (via b) of the action

of metabolism itself (f).
In conclusion, (M,R) systems exhibit the circular

organization (operational closure) of Autopoietic sys-
tems. This shows that every (M,R) system fulfills the first
part of an Autopoietic system in that it has circular
organization with operational closure. But nothing in
the formalism of (M,R) systems, not in the early
formulation (1958, 1959) nor in the latter formulations
(Rosen, 1972, 1991) indicates how a generic (M,R)
system can generate a distinguishable unity (i.e. the
second property of an Autopoietic system). The reason
is that the pure algebraic structure of a (M,R) system
precludes the second, and topological characteristic of
Autopoietic systems. In effect it is possible to think that
a mathematical structure (i.e. a purely logical construc-
tion) could fulfill the conditions embodied in Fig. 6, but
this pure logical construct will not be a living system.
Thus, we have the strict or proper inclusion of the class
of Autopoietic systems inside the class of (M,R) systems.
In essence, the property that a generalized (M,R) system
lacks, in order to be Autopoietic, is the generation of its
own border and the internal topology that Autopoiesis
implies. Perhaps (M,R) systems cannot be realized, in
the domain of molecules, without being Autopoietic. In
other words: in the domain of systems (M,R) systems
are a superset of Autopoietic systems, but in the domain
of real and concrete systems, made of molecules, both
sets are equal.
There are two other important similarities between

Autopoiesis and (M,R) systems. First, both theories
demand a drastic epistemological shift in defining the
question ‘‘What is a living system?’’. While Autopoiesis
was the direct offspring of a constructivistic theory of
knowledge based on neurobiological results in visual
perception (Maturana, 1970a, 1970b), using (M,R)
systems as a starting point, Rosen built a theory that
he termed ‘‘modeling relation’’ based on the relation
between the process of measurement and the formal
models that capture such measurements (Rosen, 1985).
These epistemological considerations only reflect

= Autopoietic = (M,R) 

Systems Systems Systems(A) (B) (C)

Fig. 8. Possible relations between Autopoietic and (M,R) systems. In

the universe of systems defined by current theories about living systems

(i.e. component-systems, Autocatalitic networks, Cybernetics loops,

Semantically closed systems, etc.) it is important to envisage the

possible relationship between Autopoietic and (M,R) systems. Perhaps

Autopoietic systems contain (M,R) systems (A), viceversa (C), or they

cannot be compared (B).
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that circular causality, as it is implied by living
systems, cannot be analysed without changing the
normal reductionist approach used in experimental
science. An excellent example can be found in the work
of Heschl and his notion of evolutionary epistemology
where he states that a theory about living organization is
at the same time a theory about cognition (Heschl,
1990).
Second, Autopoiesis and (M,R) systems do not

consider time as a relevant parameter in the description
of living organization. Neither theory uses evolution
equations to characterize living systems. Both are
essentially atemporal and intrinsically relational, which
sets them apart from theories that consider time and
thus frame biological phenomena in the language of
differential equations. This characteristic should not be
construed as a weak theoretical point as any algebraic
structure, like a group or a vector space, is defined
without using the concept of time. These structures
simply exist and have properties that depend on other
properties of the structure but not on any time-evolution
equation or concepts. This atemporal characteristic
definition does not negate that, in certain circumstances,
as it has been done by Casti (1988) for (M,R) systems,
time could be incorporate for certain models or
formulations.
Finally, it is important to differentiate (M,R) systems

and Autopoietic systems from Autocatalytic sets (also
known as collective autocatalysis) (Kauffman, 1993).
The main difference is that collective autocatalysis
requires some form of spatial confinement for effective
operation, a condition which is not produced by the set
of chemical reactions making up the collective set. Thus,
a realizable collective autocatalytic set requires spatial
or topological properties imposed from the outside
(McMullin, 1999). On the other hand (M,R) and
Autopoietic systems produce all the efficient causes
needed for their realization.

5.1. An easily obtained, but highly significant deduction

Because Autopoietic systems are included in the class
of (M,R) systems, the important facet of their computa-

tional abilities can be addressed using the crucial result
that (M,R) systems are not Turing computable in the
sense that the extended Turing–Church hypothesis does
not apply to them (Rosen, 1964, 1991). A simple
application of this fundamental result in conjunction
with the inclusion of Autopoietic systems in (M,R)
systems shows the impossibility of constructing a Turing
machine whose sequence of transitions is isomorphic to
the states of an Autopoietic system. This latter result
seems difficult to prove using only the elements of
Autopoietic theory (Maturana and Varela, 1972, 1975),
but it trivially flows from the inclusion of Autopoietic
systems in (M,R) systems.

6. Discussion

Autopoietic and (M,R) systems define the problem of
circular organization as the core of living systems but
approach this circularity from two different perspec-
tives. While Rosen tried, with (M,R) systems, to prove
that circular organization can arise spontaneously from
the functions of metabolism and repair inside a
metabolic network with a time-invariant organization,
Autopoiesis explored the biological consequences of a
living system characterized by circular organization
acting (behaving or interacting) with its environment
through structural coupling (see below). (M,R) systems
builds a theory to describe and manipulate metabolic
networks, specially to understand, how an invariant
metabolic organization arises through the interplay of
metabolism, repair and replication. Both theories posit
that the core of biological phenomena arises from
circular organization, and not from information proces-
sing, reproduction, the generation of ‘‘correct’’ re-
sponses to outside stimuli or optimizing metabolic
fluxes by minimizing energy use. Superficially, both
theories are similar to the notion of self-organization but
their focus on epistemological aspects, algebraic reason-
ing, the relation with computability theory (Rosen,
1991, 2000), emphasis on autonomy (Varela, 1987) or in
its relation with cognition (Maturana, 1987) clearly
show that they encompass a wider (and richer) field that
the word self-organization denotes.
The idea of using the formalism of (M,R) systems as a

possible framework of Autopoietic systems was pre-
viously advanced in the context of Quasi-Autopoietic

systems (QAP) (Nomura, 1997). Despite their name,
QAP systems are far more similar to (M,R) systems than
to Autopoietic systems. Instead of having a replication
map F QAPs have an iteration map that defines the
internal dynamics through a recursive procedure. QAPs
also lack a specific metabolism and, more importantly,
they do not consider the existence of the boundary. The
mathematical efforts behind QAPs are interesting but, in
our opinion, they fail to grasp the fundamental
biological relationship between (M,R) and Autopoietic
systems. The theory of categories has also been used to
model the internal organization of a living system, its
evolution and its levels of organization (Ehresmann and
Vanbremeersch, 1987). This model, known as Systemes

Evolutifs avec Memoire (SEM), is a technically complex
formalization of biological systems that crucially ignores
operational closure or circular organization and, in this
sense, is a theoretical effort centered on a categorical
representation of living systems but very different from
(M,R) systems.
By virtue of Autopoietic systems’ essential turnover of

components, as well as the destruction and creation
of whole classes of molecules during ontogeny, these
systems cannot be characterized within the scope of
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traditional Dynamical Systems Theory. As their struc-
ture can change, without changing the organization,
Autopoietic systems cannot be described with a fixed-
state space (Kampis, 1991). The challenge is to use the
categorical formalism of (M,R) systems to develop a
categorical representation of Autopoietic systems. This
specific work should be focused on finding a categorical
representation of a system that is circularly closed and
produces its own boundary. In summary the categorical
representation used by Rosen (1972) must be refined to
include the (extra) properties that make an (M,R)
system an Autopoietic system. The relevance of the
system’s boundary revealed by our theoretical analysis is
currently paralleled by the experimental efforts to
synthesize proto-cells and the importance that metabolic
compartmentalization acquires in such experiments
(Szostak et al., 2001).
Autopoietic systems’ non-computability by Turing

Machines has many important theoretical consequences.
First, it limits the validity of mimesis (i.e. simulation) as
a means to understand living systems. In effect, this
result shows that the phenomenology that arises from
the circularity of metabolism cannot be simulated with
current computer architectures based on the Von-
Neumann implementation of Turing machines. Using
different approaches this result has been hinted at on at
least two occasions in the last decade. Using formal
arguments, Boden argued for the impossibility of
designing a living system without a real metabolism,
thereby raising serious doubts about the conceptual
program of Strong Artificial-Life (Boden, 1999). On the
other hand, Kampis has developed a concept of living
systems, which he calls ‘‘Component-systems,’’ and he
shows that equations of state, equations of motion or
evolution equations cannot be applied to Component-
systems (Kampis, 1991). The non-computability of
Autopoietic systems, as advanced here, apparently
collides with the simulation results involving tessellation
automatas (Varela et al., 1974). But new versions of this
simulation show that the original report of computa-
tional Autopoiesis was flawed, as it used a non-
documented feature involving chain-based bond inhibi-
tion (McMullin and Varela, 1997). Thus the closure
exhibited by tessellation automatas is not a consequence
of the ‘‘network’’ of simulated processes, but rather an
artifact of coding procedures (McMullin and Varela,
1997). Thus our point concerning the non-computability
of Autopoietic systems appears supported by the more
modern simulations. In any case, as our analysis has
shown, the failure of closure in these computational
models cannot be construed, in any way, as a conceptual
failure of Autopoiesis, instead it reflects the non-
computability of Autopoietic systems.
The non-computability of Autopoietic systems

could initially appear as an incredibly (or suspiciously)
strong result, but even in the restricted field of pure

Mathematics it has been possible to prove the existence
of simple, but non-computable functions like the busy

beaver problem (Rado, 1962). Thus, Turing non-
computability is a property that does not require the
complexities of circular organization to be apparent, as
it is already demonstrable in simpler systems or
problems. The failure of the Turing–Church hypothesis
with respect to Autopoietic systems opens some
important new questions. The first challenge would be
to analyse whether an Autopoietic system can imple-
ment a Turing machine. The second, and far more
interesting question, is to consider whether some Turing
non-computable problems, like the busy beaver, can be
computed by Autopoietic systems. These considerations
belong to the new field of Emergent Computation or
bio-computing. To tackle these problems, it is essential
to expand the tools developed by Rosen, essentially the
use of the theory of categories to represent Autopoietic
systems and to understand and manipulate the opera-
tional closure of metabolism.
Autopoietic systems do not simply behave or exist

passively in an environment. A central aspect of
Autopoieis is the idea of structural coupling, a mechan-
ism by which the living system and its environment
determine, in a mutual way, some of their properties.
This idea could be the basis of a new type of biologically
oriented computation, which would not be program
based. Because Autopoietic systems do not have inputs
or outputs, only a circular dynamic which is perturbed
but not defined by external agents, it is not possible to
encode outside concepts into Autopoietic states, nor to
control a trajectory of states (like Turing machines).
Thus an external observer can only define a computa-
tion for an Autopoietic system as the particular
ontogeny for that system. During the system’s ontogeny,
a relation between it and its medium is selected or
stabilized. This relation has meaning, in the sense of the
Umwelt, for the Autopoietic system, which is structu-
rally coupled to its medium, but not for external
observers. Thus external observers, if they wish to use
Autopoietic systems to perform computations, must find
a procedure to attach meaning to particular moments
and properties of the system’s ontogeny (Letelier et al.,
2002).
Considering Autopoietic systems as a subset of (M,R)

systems raises questions such as: (a) how to map the
concept of F onto the formalism of Autopoietic systems;
(b) how the notions of structure and organization of an
Autopoietic system map onto (M,R) systems. Further-
more, F is a conflicting notion, as it is a functional
component that has the function of selecting one
realization of metabolism among many possible in-
stances. F is a functional component (i.e. a relational
entity) that does not map 1–1 onto physical entities. As
Autopoiesis begins from the notion of circular organiza-
tion (it does not try to prove how it can arise), F
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appears, in a first approximation, as an alien concept to
Autopoiesis. But a consideration of the very definition
of an Autopoietic system (‘‘...[an Autopoietic system] is
a network of processes configured in a....’’) suggests a
possible identification for F. From the point of view of
Autopoiesis, F could be thought of as the configuration
of processes that establishes a circular, time-invariant
network. It is exactly this configuration that moment by
moment drives the metabolism along the lines of
circularity and stability. Thus a profound identification
can be found between F and the ‘‘metabolic network or
mesh’’ that defines an Autopoietic system. The clarifica-
tion of this link is, without a doubt, one of the issues
that must be addressed first.
The conclusion that Autopoietic systems are a subset

of (M,R) systems could be rather surprising for some. As
Autopoiesis is the direct offspring of a very general
viewpoint of living systems, where the nature of the act
of observing is the fundamental step, its viewpoint seems
more general than the objectivistic vantage of early
system analysis, which is the (implicit) foundation of
(M,R) systems. Thus it could appear that (M,R) systems

are more specific, and less general, than Autopoietic
systems. We claim that, in this respect, it is important to
distinguish between the epistemological frameworks of
the models developed by Rosen, on one hand, and
Maturana and Varela, on the other, and the systems

(Autopoietic or (M,R)) that these two epistemologies
bring forth. In this paper, we avoided the interesting
point of comparing these epistemologies an effort that
should be undertaken. Instead we focused on the more
restricted domain of how these two classes of systems
are related. Because Autopoietic systems incorporate, in
the notion of separation from the environment, the
discrete nature of living systems, we conclude that
Autopoietic systems, although less general than (M,R)
systems, capture the essential points of living organiza-
tion as they couple circularity to discreteness. Thus, we
have a dual situation in which the epistemological

framework of Autopoiesis is more general than (M,R)
systems (for example only one type of object exists in
Autopoietic systems (called components) while trans-
formable materials, components and repair subsystems
compose (M,R) systems), but operationally an (M,R)
system is more general than an Autopoietic system as it
has only the property of circular cellular organization
and lacks spatial confinement.
We consider that our principal contribution is

connecting the two, until now, disconnected theories
and using this link to prove that Autopoietic systems are
not Turing-computable. The Autopoietic model has
gained the possibility of using the theory of categories to
describe the complex networks of processes that
constitute a real metabolism. On the other hand (M,R)
systems, along with QAPs and SEM, can benefit or
be complemented by the more biologically oriented

Weltanschauung of Autopoiesis revealed through its
application to problems like the origin of life (Mavelli
and Luisi, 1996), evolution (Maturana and Mpodozis,
2000) or neurobiology (Mpodozis et al., 1995). The
demonstration of Autopoiesis’ inclusion in (M,R)
systems presented here is only the first step in a future
synthesis. Besides the necessity of establishing a map
between F and Autopoietic concepts, other very difficult
points need to be addressed, specially how to incorpo-
rate the notion of the observer in defining ‘‘objects’’ that
are not independent from the observing act.
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