TCLP Manual

Emmanuel COQUERY™
October 26, 2008

Contents

1 What is TCLP ?

TCLP is a type checker for Prolog/CLP(X). TCLP thus aims to introduce a
typing discipline to contraint logic programming. That is, given a description
of the types’ universe, and the set of the types of used function symbols, TCLP
will check the coherence of the use of these function symbols. TCLP take the
program plus any type definitions as input and will output the type of infered
predicates plus any errors w.r.t. the type checking.

Currently TCLP comes with definitions for three Prolog/CLP(X) dialects:
ISO-Prolog, GNU-Prolog (with CLP(FD) extension) and SICStus Prolog with
its libraries (including the constraint programming libraries CLP(B), CLP(FD),
CLP(QR), CHR).

TCLP has been written in SICStus Prolog and comes in three forms: an on-
line demo! (Section ??), a SICStus Prolog library (Section ??) and a command
line tool? (Section ?7).

1.1 Features
e Uses three kinds of polymorphism:
— parametric polymorphism (e.g. list(a))
— subtyping (e.g. list(«) j term)

— overloading (i.e. ad hoc polymorphism,
like - : int x int — int and - : a x B — pair(a, B)

e Is able to infer a heuristic type for predicates

e Default type term or atom for undeclared function symbols

*Emmanuel.Coquery@inria.fr
'http://contraintes.inria.fr/ coquery/tclp/exemples/demo.en.html
2http://contraintes.inria.fr/~coquery/tclp/download.en.html

e Possibility to define your own clause syntax (ex :+ instead of : - in CLP(FD)
constraint definitions)

2 Online demo

2.1 Quick start

You can find the online demo at:
http://contraintes.inria.fr/"coquery/tclp/exemples/demo.en.html.

There you can try to type check some programs by writing them into the “Pro-
gram to type check” area, ex:

append ([],L,L).
append ([X|L],L2, [XIR]) :- append(L,L2,R).

By clicking on the type inference button, you will get the following result:
%% tclp 0.2.99g
%% starting type checking ...
:— typeof append(list(A),list(A),list(A)) is pred.
%% finished

You can also tell TCLP what Prolog/CLP dialect you are using with CLP
dialect box.

2.2 Advanced usage
Here is a description of the different options you can use in the online demo:
e Clear clears the form.

e CLP dialect allows one to choose which Prolog/CLP dialect the program
to type check is made for. You can choose either ISO Prolog, GNU Prolog,
SISCtus Prolog or load your own type library with Other (file) and the
Browse ... button on the right.

e View built-in declarations allows you to view the type definitions for
the selected dialect.

e Program to type check: The source of the program to type check must
be placed on this area. You can also use the Browse ... button to use one
of your own file directly instead of copying it into the area.

e Optionnal type declaration: you can put any type declaration in this
area. You can also load them using the Browse ... button.

e Type inference starts the type check the program. The type of unknown
predicates defined in the program source will be infered

e Type check only starts the type checking of the program. Does not infer
the type of unknown predicates.

e Declared type of prints the type of the given predicate or functor on
the right. The syntax can be of the following forms:
— append
— append/3
— append/X
append(X,Y,Z)

e Declarations for module prints the content of the .typ file for the given
module. This is useful if you want to know available predicates and data
structures of a peticular module.

3 Command line tool

3.1 Install

You can download the binaries at the following location:
http://contraintes.inria.fr/"coquery/tclp/download.en.html

3.1.1 Linux / MacOS X

Extract the archive in some folder, enter it and execute the install script:
tar xzvf tclp-i386-xxx.tgz
cd tclp—xxx
./install.sh
Install options:

—prefix <dir> the directory where TCLP files and directories will be
installed (defaults to /usr/local)

—bindir <dir> the directory where the tclp executable will be installed,
which should be in your PATH environment variable (defaults to prefiz/bin)

—tclpdir <dir> the directory where TCLP files will be installed (defaults
to prefiz/tclp)

3.2 Get started

Basically, you just have to run on your file:
tclp file.pl
Example:

$../Devel/tclpchr/bin/tclp append.pl

%% tclp 0.3

%% tclp directory: /home/gewurz/coquery/Devel/tclpchr/bin
:— typeof append(list(A),list(A),list(A)) is pred.

3.3 Command line options

Usage:
tclp [--prolog <dialect>] [-I <dir>] [--stdlib <file>] [-v <sort>
| -nv <sort>] [-i | --type_inference | --type_check] [-1 | -nl

] [--help] <file> [<files>]

--prolog <dialect> <dialect> is the name of a prolog dialect. This option
causes TCLP to use type definitions for the corresponding dialect. Cur-
rently, available dialects are:

e IS0: ISO Prolog (default)
e gprolog: GNU Prolog
e sicstus: SICStus Prolog

-I <dir> This options adds <dir> to the list of directories where TCLP looks
for files.

--stdlib <file> Makes TCLP use <file> as the standard type library (for
built-in predicates). By default TCLP will use the first file named stdlib.typ
in the lookup directories (which contains the dialect directory tclpdir/lib/dialect).

-v <sort> Enable verbose mode for <sort>, where <sort> can be either:
e actions: prints the different actions of TCLP , like, e.g., loading a
type library.
e timing: prints CPU time used by TCLP for different actions.

e defaults: output a message each time TCLP encounters a term
that has no defined type. This can be useful to understand some
€rror messages.

e types: prints the type of each infered predicate (this is activated by
default)

-nv <sort> Disables verbose mode for <sort>.

-i, --type_inference Enables predicate type inference (this is activated by
default).

-—type_check Disables predicate type inference.

--help Prints the different options.

4 SICStus Prolog library

4.1 Install and get started

You can download the library at the follwing location:
http://contraintes.inria.fr/~coquery/tclp/download.en.html

Just extract the archive where who want the library to be installed. To
install the library as a SICStus Prolog library, extract it to a temporary folder
and copy the files in the directory tclp-xxx to the SICStus Prolog library
directory (e.g. /usr/local/lib/sicstus-3.9.1/library).

The library can be loaded with the use_module directive:

:— use_module(’ tclp-installation-directory/tclp’)

or :- use_module(library(tclp)) if the TCLP library is installed into
the SICStus Prolog library directory.

Then you must choose the prolog dialect of the files to type check, using one
of the following predicates:

e iso/0: the initializes TCLP for ISO dialect

e gnu/0: the initializes TCLP for GNU Prolog dialect

e sicstus/0: the initializes TCLP for SICStus Prolog dialect

You can type check files and load types using the tclp/1 predicate:
:= tclp(’filel.typ’).

:— tclp([’file2.typ’, ’file3.pl’]).

4.2 Available predicates
These predicate are available in the TCLP library

4.2.1 Type initialization

tclp__reinit Remove all types from the current type data base and reload
the types corresponding to the current dialect, using tclp__reinit/1
and user:init_dialect/1.

tclp__reinit(+Goal) Remove all types from the current type data base, exe-
cutes Goal and real the standard library according to the current settings
(usually, Goal is used to determine these settings).

tclp__set_dialect(+Dialect) Sets the current CLP dialect to Dialect.

user:init_dialect(+Dialect) This is a dynamic predicate used by tclp__-
reinit/0.

sicstus Sets the dialect to SICStus Prolog and reinits the types.
iso Sets the dialect to ISO Prolog and reinits the types.

gnu Sets the dialect to GNU Prolog and reinits the types.

4.2.2 Processing

tclp(+File0OrFiles) FileOrFiles is either on file name or a list of file names.
TCLP first loads ’.typ’ files of FileOrFiles, then reads and type checks
.pl’ files of FileOrFiles.

tclp__process_typ(+FileOrFiles) FileOrFilesis afile or a list files. TCLP
loads TCLP declarations in these files.

tclp__process_pl(+FileOrFiles) FileOrFiles is a file or a list files. TCLP
reads Prolog programs in these files and type check them.

tclp__process_phrases(+PhraseList) PhraseListisalist of pairs Phrase-Location,
where Phrase is a phrase to type check and Location is some informa-
tion about the phrase, given by tclp__reader:read_one_term(Stream,
Phrase, Location, FileName).

4.2.3 Options

tclp__set_inference(+TrueFalse) TrueFalse is either true or false. This
predicate en(dis)ables type predicate inference in TCLP.

tclp__add_search_directory(+Directory) Directory is a directory name.
This predicate adds Directory to the directories used by TCLP for file
lookup.

tclp__set_stdlib_name(+File) Sets the name of the file to load as the stan-
dard type library to File.

tclp__enable_verbose(+Sort) Enables verbose mode for Sort, where Sort
can be one of:

e actions: prints the different actions of TCLP , like, e.g., loading a
type library.
e timing: prints CPU time used by TCLP for different actions.

e defaults: output a message each time TCLP encounters a term
that has no defined type. This can be useful to understand some
error messages.

e types: prints the type of each infered predicate (this is activated by
default)

tclp__disable_verbose(+Sort) Disables verbose mode for Sort, where Sort
can take the values above.

4.2.4 The tclp() path alias

The loading of the tclp module will cause a path alias 'tclp’ to be created.

This alias can used, either to load a module of the TCLP implementation (like
tclp(tclp__reader)) or to access the type files for ISO (resp. GNU and SICS-

tus) Prolog using tclp(’1ib/IS0/file.typ’) (resp. tclp(’lib/gprolog/file.typ’)
and tclp(’lib/sicstus/file.typ’).

5 Syntax of TCLP declarations

5.1 Syntax of types

type = symbol(type , ... , type)
| symbol
| variable
symbol : a prolog atom, which corresponds to a type constructor
variable : a prolog variable, which corresponds to a type parameter

5.2 Type declaration

:- order Typel(A1, ... , AM) < Type2(B1, ... , BN) Declares that the
type constructor Typel is smaller than the type constructor Type2. The
mapping are given by the arguments, i.e. if AT == BJ then the I-th argu-
ment of Typel corresponds to the J-th argument of Type2.

:— typeof +TypedTerm is +Type Declares a type for the given term. TypedTerm
is of the form Name(Typel, ..., TypeN), where Type and Typel are types.
Typel,..., TypeN are the types of the arguments and Type is the type of the
result.

:— type +TypeConstructor. Declares a type. TypeConstructor is either of
the form Name/Arity or of the form Name(A,B,...). It declares the exis-
tence of a type named Name which have Arity arguments.

:— type +Type is +TermConstructorList. Combinaison of type and typeof.
Type is of the form Name(A,B,...) and +TermConstructorList is alist of
terms of the form Name(Typel,...,TypeN). The declared type is Type.
The result type is Type.

:— untyped +SpecOrSpecList. Avoid to type check the given terms. SpecOrSpecList
is a functor specification of the form Name/Arity, or a list of such speci-
fications. It causes TCLP to avoid to type check these terms.

5.3 TCLP meta declarations
:= tclp__include(+File) Include TCLP declarations found in File.

:- user:args_location(+Location, ?PLocationList) This predicate decom-
pose the location of a term into the list of the locations of its subterms.

:— tclp__define_clause(+Phrase, +Location, +Heads, +Bodies, +Condition)
This will tell TCLP what the clauses look like. Phrase is the phrase to
cut into bodies and heads. Location is the location of the phrase in the
program source. Heads is a list of triplets Head-HLocation-Type, where
Head is a head of the clause, HLocation is the location of Head in the
program source (one can use user:args_location/2 to find it) and Type
is the type expected for the head of the clause. Bodies is a list of pairs
Body-BLocation, where Body is a body of the clause and BLocation is
its location. Condition is a goal executed when recognizing clauses. E.g.
(prolog directive “:- Body”):

:— tclp__define_clause((:- Body), Location, [], [Body-BodyLocation],
user:args_location(Location, [BodyLocation]))

:— tclp__define_clause(+Phrase, +Location, +Heads, +Bodies) Same as tclp_-
_define_clause(Phrase,Location,Heads,Bodies,true)

tclp__define_clause_op(+BinOp,+Type) This predicate is a shortcut of
tclp__define_clause/5 for defining binary clause operators such as * : =’ /2.
BinOp is the name of the operator and Type is the type expected for the
head of the clause. E.g.

:— tclp__define_clause_op(’:-’,pred).
:— tclp__define_clause_op(+Bin0p) Same as tclp__define_clause_op(BinOp,pred)

:— tclp__executable(+Goal,+Condition) Tells TCLP that the goal Goal is
a TCLP declaration if the goal Condition succeeds. E.g. the op/3 direc-
tive:

:— tclp__executable(op(_,_,_) ,true).
:— tclp__executable(+Goal) Same as tclp__executable(+Goal,true)

:= tclp__add_hook(+Goal,+Location, +Hook, +Condition) Whenever TCLP
encounters a TCLP declaration, it will handle it using a hook defined via
this predicate. Goal is the TCLP declaration, Location is its location in
the program source, Hook is the goal that will be executed by TCLP to
handle the declaration and Condition is a goal that must succeed. E.g.
the op/3 directive:

:— tclp__add_hook(op(Priority,Mode,Operators), _, op(Priority,Mode,Operators),
true) .

:= tclp__add_hook(+Goal,+Location, +Hook) Same astclp__add_hook(Goal,Location,Hook,true)

:= tclp__add_hook(+Goal,+Hook) Same as tclp__add_hook(Goal,_,Hook)

5.4 Dialect specific declarations

:= tclp__load_prolog(+File) Causes TCLP to consult Fileisin consult/1.
This can be useful if you want to define complex treatments of some TCLP
declarations.

6 Limitations

modules Currently, TCLP only loads .typ files automatly when it encounters
the directives use_module/[123] and module/2. The functor ’:’/2 is not
handled. Moreover if two predicates with the same name and arity exists
in two different modules, they will be considered as the same predicate by
TCLP.

A TCLP source files

tclp.pl This the main file for the library. It mainly consists in wrappers for
calling predicates in other TCLP modules.

tclp__main.pl The main file for the command line tool.

tclp/tclp__arity.pl The file contains predicates for handling depandancies
between the arguments of the different type constructors.

tclp/tclp__arrays.pl Defines dynamic arrays with predicates to manipulate
them.

tclp/tclp__clp_types.pl Defines the solver for constraints over subtyping
inequalities.

tclp/tclp__connexity.pl Handles the computation of mutually recursive pred-
icates in the program source, as well as the order in which the clauses must
be type checked.

tclp/tclp__declarations.pl Defines the core meta declarations of TCLP.
tclp/tclp__def.pl Some constants definitions.

tclp/tclp__errors.pl Handles printing of errors and warning. Also handles
the verbose predicates (should be in an IO module I think)

tclp/tclp__files.pl Handles file loading, file names, etc ...

tclp/tclp__functor_types.pl Handles the typing of the application of a func-
tor to its arguments. In particular, it handles the treatment of overloading.

tclp/tclp__handle_goals.pl Core handling TCLP definitions.

tclp/tclp__reader.pl Reads source phrases and handle their location in the
program source.

tclp/tclp__type_checker.pl Type checking predicates.

tclp/tclp__type_inference.pl Defines how the inference of the type of pred-
icates.

tclp/tclp__type_order.pl Handles the order between type constructors.
tclp/tclp__utils.pl Miscellaneous predicates.
tclp/version.pl The version TCLP.

tclp/sicstus_modules.pl Predicates to handle some SICStus Prolog direc-
tives (e.g. use_module/1).

B TCLP .typ files
ISO Prolog

1ib/IS0/corelib.typ Meta definitions for ISO Prolog. Included from
1ib/IS0/stdlib.typ.

1ib/IS0/stdlib.typ Standard type library for ISO Prolog.
GNU Prolog

1ib/gprolog/corelib.typ Meta definitions for GNU Prolog. Included
from 1ib/gprolog/stdlib.typ

lib/gprolog/stdlib.typ Standard type library for GNU Prolog.

SICStus Prolog

10

lib/sicstus/corelib.typ Meta definitions for SICStus Prolog. Included
from lib/sicstus/stdlib.typ

1lib/sicstus/stdlib.typ Standard type library for SICStus Prolog.

lib/sicstus/prolog.typ Internal type library for SICStus Prolog. You
need this one for predicates used with the prolog:predicate(...)
prefix.

lib/sicstus/arrays.typ types for SICStus module arrays
lib/sicstus/assoc.typ types for SICStus module assoc
lib/sicstus/attributes.typ types for SICStus module atts
1ib/sicstus/bdb.typ types for SICStus module bdb
lib/sicstus/charsio.typ types for SICStus module charsio

lib/sicstus/chr.typ types for SICStus module chr implementing the
CHR extension. It contains meta definitions to handle the solver
definitions (e.g. ’<=>7/2).

lib/sicstus/clpb.typ types for SICStus module clpb implementing the
CLP(B) extension

lib/sicstus/clpfd.typ types for SICStus module clpfd implementing
the CLP(FD) extension. It contains meta declarations to handle
contraints definitions (e.g. ’:+°/2).

lib/sicstus/clpq.typ, lib/sicstus/clpr.typ and lib/sicstus/clpqr.typ
types for SICStus modules clpr, clpq and clpqr implementing exten-
sion CLP(Q) and CLP(R).

lib/sicstus/fastrw.typ types for SICStus module fastrw
lib/sicstus/heaps.typ types for SICStus module heaps
1lib/sicstus/jasper.typ types for SICStus module jasper
lib/sicstus/linda.typ types for SICStus module linda
lib/sicstus/lists.typ types for SICStus module lists
lib/sicstus/ordsets.typ types for SICStus module ordsets
lib/sicstus/queues.typ types for SICStus module queues
lib/sicstus/random.typ types for SICStus module random
lib/sicstus/sockets.typ types for SICStus module sockets
lib/sicstus/system.typ types for SICStus module system
lib/sicstus/terms.typ types for SICStus module terms
lib/sicstus/timeout.typ types for SICStus module timeout
lib/sicstus/trees.typ types for SICStus module trees
1lib/sicstus/ugraphs.typ types for SICStus module ugraphs
lib/sicstus/user.typ types for SICStus module user
lib/sicstus/wgraphs.typ types for SICStus module wgraphs

11

