Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning

Morgan A. Schmitz∗, Matthieu Heitz†, Nicolas Bonneel†, Fred Ngolé‡, David Coeurjolly†, Marco Cuturi§, Gabriel Peyré¶, and Jean-Luc Starck∗

Abstract. This article introduces a new non-linear dictionary learning method for histograms in the probability simplex. The method leverages optimal transport theory, in the sense that our aim is to reconstruct histograms using so called displacement interpolations (a.k.a. Wasserstein barycenters) between dictionary atoms; such atoms are themselves synthetic histograms in the probability simplex. Our method simultaneously estimates such atoms, and, for each datapoint, the vector of weights that can optimally reconstruct it as an optimal transport barycenter of such atoms. Our method is computationally tractable thanks to the addition of an entropic regularization to the usual optimal transportation problem, leading to an approximation scheme that is efficient, parallel and simple to differentiate. Both atoms and weights are learned using a gradient-based descent method. Gradients are obtained by automatic differentiation of the generalized Sinkhorn iterations that yield barycenters with entropic smoothing. Because of its formulation relying on Wasserstein barycenters instead of the usual matrix product between dictionary and codes, our method allows for non-linear relationships between atoms and the reconstruction of input data. We illustrate its application in several different image processing settings.

Key words. Optimal Transport, Wasserstein barycenter, Dictionary Learning

AMS subject classifications. 33F05, 49M99, 65D99, 90C08

1. Introduction. The idea of dimensionality reduction is as old as data analysis [49]. Dictionary learning [35], independent component analysis [31], sparse coding [36], autoencoders [30] or most simply Principal Component Analysis (PCA) are all variations of the idea that each datapoint of a high-dimensional dataset can be efficiently encoded as a low dimensional vector. Dimensionality reduction typically exploit a sufficient amount of data to produce an encoding map of datapoints into smaller vectors, coupled with a decoding map able to reconstruct an approximation of the original datapoints using such vectors. Algorithms to carry out the encoding and/or the decoding can rely on simple linear combinations of vectors, as is the case with PCA and non-negative matrix factorization. They can also be highly non-linear, and employ kernel methods [62] or neural networks for that purpose [30].

In this work, we consider a very specific type of encoding/decoding pair, which relies on the optimal transport (OT) geometry between probability measures. The OT geometry, also known as Wasserstein or earth mover’s, defines a distance between two probability measures μ,ν by computing the minimal effort required to morph measure μ into measure ν. Monge’s
original interpretation [42] was that μ would stand for a heap of sand, which should be used to fill in a hole in the ground of the shape of ν. The effort required to move the pile of sand is usually parameterized by a cost function to move one atom of sand from any location x in the support of μ to any location y in the support of ν (see Figure 1). Monge considered then the problem of finding the optimal (least costly) way to level the ground by transporting the heap into the hole. That cost defines a geometry between probability measures which has several attractive properties. In this paper we exploit the fact that shapes and more generally images can be cast as probability measures, and propose several tools inherited from the OT geometry, such as OT barycenters, to warp and average such images [67]. These tools can be exploited further to carry out non-linear inverse problem in a Wasserstein sense [13], and we propose in this work to extend this approach to carry out non-linear dictionary learning on images using the Wasserstein geometry.

![Figure 1: Graphical representation of the mass transportation problem. The minimal effort cost to transport one measure into the other defines the OT distance between μ and ν.](image)

1.1. Previous works.

Linear and Non-linear Dictionary Learning. Several dimensionality reduction approaches rely on using a predefined orthogonal basis upon which datapoints can be projected. Such basis are usually defined without even looking at data, as is the case for Fourier transforms or Wavelet-based dictionaries [39]. Dictionary learning methods underline instead the idea that dictionaries should be customized to fit a particular dataset in an optimal way. Suppose that the M datapoints of interest can be stored in a matrix $X = (x_1, \ldots, x_M) \in \mathbb{R}^{N \times M}$. The aim of (linear) dictionary learning is to factorize the data matrix X using two matrices: a dictionary, D, whose elements (the atoms) have the same dimension N as those of X, and a list of codes Λ used to relate the two: $X \approx D\Lambda$.

When no constraints on D nor Λ are given, and one simply seeks to minimize the Frobenius norm of the difference of X and $D\Lambda$, the problem amounts to computing the singular value decomposition of X or, equivalently, the diagonalization of the variance matrix of X. In practical situations, one may wish to enforce certain properties of that factorization, which can be done in practice by adding a prior or a constraint on the dictionary D, the codes Λ, or both. For instance, an l_0 or l_1 norm penalty on the codes yields a sparse representation
of data [38]. The sparsity constraint might instead be imposed upon the new components (or atoms), as is the case for Sparse PCA [20]. Other properties than sparsity might be desired, for example statistical independence between the components, yielding Independent Component Analysis (ICA [31]), or positivity of both the dictionary entries and the codes, yielding Non-negative Matrix Factorization (NMF [35]). A third possible modification of the dictionary learning problem is to change the fitting loss function that measures the discrepancy between a datapoint and its reconstruction. When data lies in the non-negative orthant, Lee and Seung have for instance shown the interest of considering the Kullback-Leibler divergence to compute such a loss [35], or, more recently, the Wasserstein distance [56] as detailed later in this section. More advanced fitting losses can also be derived using probabilistic graphical models, such as those considered in the topic modelling literature [11].

The methods described above are linear in the sense that they attempt to reconstruct each datapoint x_i by a linear combination of a few dictionary elements. Non-linear dictionary learning techniques involve instead reconstructing such datapoints using non-linear operations. Autoencoders [30] propose to use neural networks, and use their versatility to encode data-points into low dimensional vectors and later decode them with another network to form a reconstruction. The main motivation behind principal geodesic analysis [23] is to build such non-linear operations using geometry, namely by replacing linear interpolations with geodesic interpolations. Of particular relevance to our paper is the body of work that relies on the Wasserstein geometry to compute geodesic components [10, 12, 64, 74] which we introduce in the next section, after providing some reminders on optimal transport.

Computational Optimal Transport. Optimal transport has seen significant interest from mathematicians in recent decades [55, 69, 72]. For many years, that theory was however of limited practical use and mostly restricted to the comparison of small histograms or point clouds, since typical algorithms used to compute them, such as the auction algorithm [9] or the Hungarian algorithm [33], were intractable beyond a few hundreds of bins or points. Recent approaches [54, 65] have ignited interest for fast yet faithful approximations of OT distances. Of particular interest to this work is the entropic regularization scheme proposed by Cuturi [17], which finds its roots in the gravity model used in transportation theory [22]. This regularization can also be tied to the relation between OT and Schrödinger’s problem [63] (as explored by Leonard [37]). Whereas the original OT problem is a linear problem, regularizing it with an entropic regularization term results in a strictly convex problem with a unique solution which can be solved with Sinkhorn’s fixed-point algorithm [66], a.k.a. block coordinate ascent in the dual regularized OT problem. That iterative fixed-point scheme yields a numerical approach relying only on element-wise operations on vectors and matrix-vector products. The latter can in many cases be replaced by a separable convolution operator [67], forgoing the need to manipulate a full cost matrix of prohibitive dimensions in some use cases of interest (e.g. when input measures are large images).

Wasserstein barycenters. Agueh and Carlier introduced the idea of Wasserstein barycenter in the space of probability measures [1], namely Fréchet means [25] computed with the Wasserstein metric. Such barycenters are the basic building block of our proposal of a non-linear dictionary learning scheme with a Wasserstein geometry. Agueh and Carlier studied several properties of Wasserstein barycenters, and showed very importantly that their exact
computation for empirical measures involves solving a multimarginal optimal transport problem, namely a linear program with size growing exponentially with the size of the support of the considered measures.

Since that work, several algorithms have been proposed to efficiently compute these barycenters [14, 15, 54, 68, 75]. The computation of such barycenters using regularized distances [18] is of particular interest to this work. Cuturi and Peyré [19] use entropic regularization and duality to cast a wide range of problems involving Wasserstein distances (including the computation of Wasserstein barycenters) as simple convex programs with closed form derivatives. They also illustrate the fact that the smoothness introduced by the addition of the entropic penalty can be desirable, beyond its computational gains, in the case of the Wasserstein barycenter problem. Indeed, when the discretization grid is small, its true optimum can be highly unstable, which is counteracted by the smoothing introduced by the entropy [19, §3.4]. The idea of performing iterative Bregman projections to compute approximate Wasserstein distances can be extended to the barycenter problem, allowing its direct computation using a generalized form of the Sinkhorn algorithm [7]. Chizat et al. recently proposed a unifying framework for solving unbalanced optimal transport problems [16], including computing a generalization of the Wasserstein barycenter. Bonneel et al. proposed a method to solve the inverse problem associated with Wasserstein barycenters: Given a database of S histograms, they proposed a method to associate to any new input histogram a vector of S weights, such that the barycenter of that database with those weights approximates as closely as possible the input histogram [13]. This step can be seen as an analogy of, given a dictionary D, reconstructing the best vector of weights Λ that can help reconstruct a new datapoint using the atoms in the dictionary. That work can be seen as a precursor for our proposal, whose aim is to learn weights and dictionary atoms simultaneously.

Applications to image processing. OT was introduced into the computer graphics community by Rubner et al. [57] to retrieve images from their color distribution, by considering images as distributions of pixels within a 3-dimensional color space. Color processing has remained a recurring application of OT, for instance to color grade an input image using a photograph of a desired color style [52] or using a database of photographs [13], or to harmonize multiple images’ colors [14]. Another approach considers grayscale images as 2-dimensional histograms. OT then allows to find a transport-based warping between images [29, 41]. Further image processing applications are reviewed in the habilitation dissertation of Papadakis [48].

Wasserstein loss and fidelity. Several recent papers have investigated the use of OT distances as fitting losses that have desirable properties that KL or Euclidean distances cannot offer. We have already mentioned generalizations of PCA to the set of probability measures via the use of OT distances [10, 64]. Sandler and Lindenbaum first considered the NMF problem with a Wasserstein loss [59]. Their computational approach was, however, of limited practical use. More scalable algorithms for Wasserstein NMF and (linear) dictionary learning were subsequently proposed [56]. The Wasserstein distance was also used as a loss function with desirable robustness properties to address multi-label supervised learning problems [26].

Using the Wasserstein distance to quantify the fit between data (an empirical measure) and a parametric family of densities, or a generative model defined using a parameterized pushforward map of a base measure, has also received ample attention in the recent literature.
Theoretical properties of such estimators were established by Bassetti et al. [5, 6], and additional results by Bernton et al. [8]. Entropic smoothing has facilitated the translation of these ideas into practical algorithms, as illustrated in the work by Montavon et al. who proposed to estimate the parameters of restricted Boltzmann machines using the Wasserstein distance instead of the KL divergence [43]. Purely generative models, namely, degenerate probability measures defined as the push-forward of a measure supported on a low-dimensional space into a high dimensional space using a parameterized function, have also been fitted to observations using a Wasserstein loss [8], allowing for density fitting without having to choose summary statistics (as is often the case with usual methods). The Wasserstein distance has also been used in the context of GANs (Generative Adversarial Networks) [4]. In that work, the authors use a proxy to approximate the 1-Wasserstein distance. Instead of computing the 1-Wasserstein distance using 1-Lipschitz functions, a classic result from Kantorovich’s dual formulation of OT (see Theorem 1.14 in Villani’s book [72]), the authors restrict that set to multilayer networks with rectified linear units and boundedness constraints on weights, which allows them to enforce some form of Lipschitzness of their networks. Unlike the entropic smoothing used in this paper, that approximation requires solving a non-convex problem whose optimum, even if attained, would be arbitrarily far from the true Wasserstein distance. More recently, Genevay et al. introduced a general scheme for using OT distances as the loss in generative models [27], which relies on both the entropic penalty and automatic differentiation of the Sinkhorn algorithm. Our work shares some similarities with that paper, since we also propose to differentiate automatically the Sinkhorn iterations used in Wasserstein barycenter computations.

1.2. Contributions. In this paper, we provide an algorithm to carry out non-linear dictionary learning for probability histograms using the optimal transport geometry. Non-linearity comes from the fact that we replace the usual linear combination of dictionary atoms by Wasserstein barycenters. Our goal is to reconstruct datapoints using the closest (according to an arbitrary fitting loss on the simplex, not necessarily the Wasserstein distance) Wasserstein barycenter to that point using the dictionary atoms. We propose to learn simultaneously atoms and barycentric weights. Contrary to existing dictionary learning approaches, including those using the Wasserstein distance as the fidelity criterion (see section 1.1), our method makes full use of the Wasserstein space: Instead of considering linear reconstructions for \(X \approx D \Lambda \), our aim is to approximate columns of \(X \approx P(D, \Lambda) \) using the \(P \) operator which maps atoms \(D \) with lists of weights \(\Lambda \) to their respective barycenters.

An approach to search for optimal \(\Lambda \) was recently proposed [13], where the generalized Sinkhorn algorithm for the computation of Wasserstein barycenters is differentiated. Given a list of fixed histograms and a loss function, a list of barycentric weights yielding a local minimum of the loss can be found for any other histogram defined on the same grid. In other words, it provides a scheme to find the Wasserstein barycenters that most closely matches any chosen histogram, among the set of all possible Wasserstein barycenter of some fixed atoms. In this work, we expand this approach by also deriving a gradient for the atoms themselves, and performing updates by gradient descent (or, in our case, a quasi-Newton approach) to both atoms and barycentric weights simultaneously. We thus obtain a non-linear dictionary learning approach that makes full use of the Wasserstein space’s properties, as illustrated in Figure 2: two atoms are learned from a dataset made up of five discretized Gaussian distributions in 1D,
each slightly translated on the grid. Despite the simplicity of the transformation (translation), linear generative models fail to capture the changes of the geometrical space, as opposed to our OT approach. Moreover, the atoms we learn are also discrete measures, unlike the PCA and NMF components.

We also offer some variants to our method. By performing the computation in the log-domain, we can reach arbitrarily sharp reconstructions, though a naive approach comes with a much higher computational overhead. We offer a general method to make use of the separability of the kernel involved, thus greatly alleviating the computational cost of the log-domain stabilization for our method. Our representation is learned from the differentiation of an iterative, Sinkhorn-like algorithm; the overall process can be sped up either by differentiating very few Sinkhorn iterations initialized using the previous values (warm start), or by the addition of a momentum term in the Sinkhorn iterations. Lastly, we expand our method to an Unbalanced Optimal Transport framework.

Part of this work was previously presented as a conference proceedings [60], featuring an initial version of our method, without any of the above improvements and variants, and in the case where we were only interested in learning 2 different atoms.

Additional background on OT is given in section 2. The method itself can be efficiently implemented as derived in section 3. We highlight other extensions in section 4. We showcase its use in several image processing applications in section 5.

1.3. Notations. We denote Σ_d the simplex of \mathbb{R}^d, that is:

$$\Sigma_d := \left\{ u \in \mathbb{R}_+^d, \sum_{i=1}^d u_i = 1 \right\}.$$

For any positive matrix T, we define its negative entropy as:

$$H(T) := \sum_{i,j} T_{ij} \log(T_{ij} - 1).$$

\odot denotes the Hadamard product between matrices or vectors. Throughout this paper, when applied to matrices, \prod, \div and \exp notations refer to element-wise operators. The scalar product between two matrices denotes the usual inner product, that is:

$$\langle A, B \rangle := \text{Tr}(A^\top B) = \sum_{i,j} A_{ij} B_{ij},$$

where A^\top is the transpose of A. For $(p, q) \in \Sigma_2^N$, we denote their set of couplings as:

$$\Pi(p, q) := \left\{ T \in \mathbb{R}_+^{N \times N}, T \mathbf{1}_N = p, T^\top \mathbf{1}_N = q \right\},$$

where $\mathbf{1}_N = (1, \ldots, 1)^\top \in \mathbb{R}^N$. Δ denotes the diag operator, such that if $u \in \mathbb{R}^N$:
Figure 2: Top row: data points. Bottom three rows: on the far sides, in purple, are the two atoms learned by PCA, NMF and our method (WDL), respectively. In between the two atoms are the reconstructions of the five datapoints for each method. The latter two were relaunched a few times with randomized initializations and the best local minimum was kept. As discussed in section 2, the addition of an entropy penalty to the usual OT program causes a blur in the reconstructions. When the parameter associated with the entropy is high, our method yields atoms that are sharper than the dataset it was trained on, as is observed here where the atoms are Diracs despite the dataset consisting of discretized Gaussians. See subsection 4.1 for a method to reach arbitrarily low values of the entropy parameter and counteract the blurring effect.

\[
\Delta(u) := \begin{pmatrix}
 u_1 \\
 \vdots \\
 u_N
\end{pmatrix} \in \mathbb{R}^{N \times N}.
\]

\(\iota\) is the indicator function, such that for two vectors \(u, v\):

\[
\iota\{u\}(v) = \begin{cases}
 0 & \text{if } u = v, \\
 +\infty & \text{otherwise},
\end{cases}
\]

and \(\text{KL}(\cdot|\cdot)\) is their Kullback-Leibler divergence, defined here as:

\[
\text{KL}(u|v) = \sum_i u_i \log \left(\frac{u_i}{v_i} \right) - u_i + v_i.
\]

For a concatenated family of vectors \(t = [t_1^\top, \ldots, t_S^\top]^\top \in \mathbb{R}^{NS}\), we write the \(i\)th element of \(t_s\) as \([t_s]_i\). We denote the rows of matrix \(M\) as \(M_i\) and its columns as \(M_j\). \(I_N\) and \(0_{N \times N}\) are the \(N \times N\) identity and zero matrices, respectively.
2. Optimal Transport.

2.1. OT distances. In the present work, we restrict ourselves to the discrete setting, i.e. our measures of interest will be histograms, discretized on a fixed grid of size N (Eulerian discretization), and represented as vectors in Σ_N. In this case, the cost function is represented as a cost matrix $C \in \mathbb{R}^{N \times N}$, containing the costs of transportation between any two locations in the discretization grid. The OT distance between two histograms $(p, q) \in \Sigma_N^2$ is the solution to the discretized Monge-Kantorovich problem:

$$W(p, q) := \min_{T \in \Pi(p, q)} \langle T, C \rangle.$$

As defined in (1), $\Pi(p, q)$ is the set of admissible couplings between p and q, that is, the set of matrices with rows summing to p and columns to q. A solution, $T^* \in \mathbb{R}^{N \times N}$, is an optimal transport plan.

Villani’s books give extended theoretical overviews of OT [72, 73], and in particular several properties of such distances. The particular case where the cost matrix is derived from a metric on the chosen discretization grid yields the so-called Wasserstein distance (sometimes called the Earth Mover’s Distance). For example, if $C_{ij} = \|x_i - x_j\|^2_2$ (where x_i, x_j are the positions on the grid), the above formulation yields the squared 2-Wasserstein distance, the square-root of which is indeed a distance in the mathematical sense. Despite its intuitive formulation, the computation of Wasserstein distances grows super-cubically in N, making them impractical for dimensions of the order of a thousand grid points. This issue has motivated the recent introduction of several approximations that can be obtained at a lower computational cost (see section 1.1). Among such approximations, the entropic regularization of OT distances [17] relies on the addition of a penalty term as follows:

$$W_\gamma(p, q) := \min_{T \in \Pi(p, q)} \langle T, C \rangle + \gamma H(T),$$

where $\gamma > 0$ is a hyperparameter. As $\gamma \to 0$, W_γ converges to the original Wasserstein distance. As $\gamma \to \infty$, the minimizer of (3) promotes a diffuse transport matrix. The addition of a neg-entropic penalty makes the problem γ-strongly convex; first order conditions show that the problem can be analyzed as a matrix-scaling problem which can be solved using Sinkhorn’s algorithm [66] (also known as Iterative Proportional Fitting Procedure, or IPFP [21]). The Sinkhorn algorithm can be interpreted in several ways: for instance, it can be thought of as an alternate projection scheme under a Kullback-Leibler divergence for couplings [7], or as a block-coordinate ascent on a dual problem [18]. The Sinkhorn algorithm consists in using the following iterations for $l \geq 1$, starting with $b^{(0)} = \mathbb{1}_N$:

$$a^{(l)} = \frac{q}{K^\top b^{(l-1)}},$$

$$b^{(l)} = \frac{p}{K a^{(l)}},$$
where $K := \exp\left(\frac{-C}{\gamma}\right)$ is the elementwise exponential of the negative of the rescaled cost matrix. When γ is close to 0, some values of K become negligible, and values within the scaling vectors, $a^{(l)}$ and $b^{(l)}$, can also result in numerical instability (we will study workarounds for that issue in subsection 4.1). Application of the matrix K can often be closely approximated by a separable operation [67] (see subsection 4.1.2 for separability even in the log-domain). In the case where the histograms are defined on a uniform grid and the cost matrix is the squared Euclidean distance, the convolution kernel is simply Gaussian with standard deviation $\sqrt{\gamma/2}$.

The two vectors $a^{(l)}, b^{(l)}$ converge linearly towards the optimal scalings [24] corresponding to the optimal solution of (3). Notice finally that the Sinkhorn algorithm results at each iteration $l \geq 1$ in an approximate optimal transport matrix $T^{(l)} = \Delta(b^{(l)})K\Delta(a^{(l)})$.

2.2. Wasserstein barycenter. By analogy with the usual Euclidean barycenter, the Wasserstein barycenter of a family of measures is defined as the minimizer of the (weighted) sum of squared Wasserstein distances from the variable to each of the measures in that family [1]. For measures with the same discrete support, we define, using entropic regularization, the barycenter of histograms $(d_1, \ldots, d_S) \in (\Sigma_N)^S$ with barycentric weights $\lambda = (\lambda_1, \ldots, \lambda_S) \in \Sigma_S$ as:

$$P(D, \lambda) := \arg\min_{u \in \Sigma_N} \sum_{s=1}^{S} \lambda_s W_\gamma(d_s, u),$$ \quad (5)

where $D := (d_1^\top, \ldots, d_S^\top)^\top \in \mathbb{R}^{NS}$. The addition of the entropy term ensures strict convexity and thus, that the Wasserstein barycenter is uniquely defined. It also yields a simple and efficient iterative scheme to compute approximate Wasserstein barycenters [7], which can be seen as a particular case of the unbalanced OT setting [16]. This scheme, a generalization of the Sinkhorn algorithm, once again relies on two scaling vectors:

$$a_s^{(l)} = \frac{d_s}{Kb_s^{(l-1)}},$$ \quad (6)

$$P^{(l)}(D, \lambda) = \prod_{s=1}^{S} \left(K^\top a_s^{(l)}\right)^{\lambda_s},$$ \quad (7)

$$b_s^{(l)} = \frac{P^{(l)}(D, \lambda)}{K^\top a_s^{(l)}},$$ \quad (8)

where, as before, $K = \exp\left(\frac{-C}{\gamma}\right)$. In this case, however, the scaling vectors are of size NS, such that $a^{(l)} = \left(a_1^{(l)}, \ldots, a_S^{(l)}\right)^\top$, $b^{(l)} = \left(b_1^{(l)}\top, \ldots, b_S^{(l)}\top\right)^\top$ and $b^{(0)} = 1_{NS}$. Note that one can perform both scaling vector updates at once (and avoid storing both) by plugging one of (6), (8) into the other. An illustration of the Wasserstein barycenter, as well as the impact of the γ parameter, is given in Figure 3.

3.1. Overview. Given data \(X \in \mathbb{R}^{N \times M} \) in the form of histograms, i.e., each column \(x_i \in \Sigma^N \) (for instance a list of \(M \) images with normalized pixel intensities), and the desired number of atoms \(S \), we aim to learn a dictionary \(D \) made up of histograms \((d_1, \ldots, d_S) \in (\Sigma^N)^S \) and a list of barycentric weights \(\Lambda = (\lambda_1, \ldots, \lambda_M) \in (\Sigma^S)^M \) so that for each input, \(P(D, \lambda_i) \) is the best approximation of \(x_i \) according to some criterion \(\mathcal{L} \) (see Table 1 for examples). Namely, our representation is obtained by solving the problem:

\[
\min_{D, \Lambda} \mathcal{E}(D, \Lambda) := \sum_{i=1}^{M} \mathcal{L}(P(D, \lambda_i), x_i).
\]

(9)

Note the similarity between the usual dictionary learning formulation (see section 1.1) and the one above. In our case, however, the reconstruction of the original data happens via the non-linear Wasserstein barycenter operator, \(P(D, \Lambda) = (P(D, \lambda_i))_i \), instead of the (linear) matrix product \(DA \).

Differentiation of (9) relies in part on the computation of the Wasserstein barycenter operator’s Jacobians with regards to either the barycentric weights or the atoms. While it is possible to obtain their analytical formulae, for example by using the fact that Sinkhorn updates (7)-(8) become fixed-point equations when convergence is reached, they rely on solving a linear system of prohibitive dimensionality for our settings of interest where \(N \) is typically large (Bonneel et al. derived the expression with regards to barycentric weights and discussed the issue [13, §4.1]). Moreover, in practice, the true Wasserstein barycenters with entropic penalty \(P(D, \lambda_i) \) are unknown, and approximated by sufficient Sinkhorn iterations (7)-(8). As is now frequently used in machine learning methods (a typical example being backward propagation for neural nets), and following recent works [13], we instead take an approach in the vein of automatic differentiation [28]. That is, we recursively differentiate the iterative scheme yielding our algorithm instead of the analytical formula of our Wasserstein barycenter. In our case, this is the generalization of the Sinkhorn algorithm for barycenters. Instead of (9), we thus aim to minimize:
Table 1: Examples of similarity criteria and their gradient in p. See Figure 12 for the atoms yielded by our method for these various fitting losses.

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Name & $\mathcal{L}(p, q)$ & $\nabla \mathcal{L}$ \\
\hline
Total Variation & $\|p - q\|_1$ & $\text{sign}(p - q)$ \\
Quadratic & $\|p - q\|^2_2$ & $2(p - q)$ \\
Kullback-Leibler & $\text{KL}(p|q)$ & $\log(p/q) - 1$ \\
Wasserstein & $W_\gamma^{(L)}(p, q)$ & $\gamma \log(a^{(L)})$ \text{(See (4))} \\
\hline
\end{tabular}
\end{center}

The right-hand term in both cases is the gradient of the loss which is typically readily computable (see Table 1) and depends on the choice of fitting loss. The left-hand terms are the Jacobians of the Wasserstein barycenter operator with regard to either the weights or the dictionary. These can be obtained either by performing the analytical differentiation of the $P^{(L)}$ operator, as is done in subsection 3.2 (and Appendix A), or by using an automatic differentiation library such as Theano [70]. The latter approach ensures the complexity of the backward loop is the same as that of the forward, but can lead to memory problems due to the storing of all objects being part of the gradient computation graph (as can be the case, for instance, when performing the forward Sinkhorn loop in the log-domain as in subsubsection 4.1.1; for this specific case, an alternative is given in subsubsection 4.1.2). The resulting numerical scheme relies only on element-wise operations and on the application of the matrix K (or its transpose) which often amounts to applying a separable convolution [67] (see subsubsection 4.1.2). The resulting algorithm is given in Algorithm 1. At first, a ‘forward’ loop is performed, which amounts to the exact same operations as those used to compute the approximate Wasserstein barycenter using updates (7)-(8) (thus the barycenter for current weights and atoms is computed as a by-product). Two additional vectors of size SNL are...
stored, then used in the recursive backward differentiation loops that compute the gradients with regard to the dictionary and the weights.

Algorithm 1 SinkhornGrads: Computation of dictionary and barycentric weights gradients

Inputs: Data \(x \in \Sigma_N \), atoms \(d_1, \ldots, d_S \in \Sigma_N \), current weights \(\lambda \in \Sigma_S \)

comment: Sinkhorn loop

\[
\forall s, b_s^{(0)} := 1_N
\]

for \(l = 1 \) to \(L \) step 1 do

\[
\forall s, \varphi_s^{(l)} := K^T \frac{d_s}{K \lambda s}
\]

\[
p := \prod_s \varphi_s^{(l)} \lambda s
\]

\[
\forall s, b_s^{(l)} := \frac{p}{\varphi_s^{(l)}}
\]

comment: Backward loop - weights

\[
w := 0_S
\]

\[
r := 0_{S \times N}
\]

\[
g := \nabla L(p, x) \odot p
\]

for \(l = L \) to 1 step \(-1\) do

\[
\forall s, w_s := w_s + \log \varphi_s^{(l)}, g >
\]

\[
\forall s, r_s := -K^T \left(K \left(\frac{\lambda_s g - r_s}{\varphi_s^{(l)}} \right) \odot \frac{d_s}{(K \lambda s)^2} \right) \odot b_s^{(l-1)}
\]

\[
g := \sum_s r_s
\]

comment: Backward loop - dictionary

\[
y := 0_{S \times N}
\]

\[
z := 0_{S \times N}
\]

\[
n := \nabla L(p, x)
\]

for \(l = L \) to 1 step \(-1\) do

\[
\forall s, c_s := K((\lambda_s n - z_s) \odot b_s^{(l)})
\]

\[
\forall s, y_s := y_s + \frac{c_s}{K \lambda s}
\]

\[
\forall s, z_s := -\frac{1}{\lambda_s} \odot K^T \frac{d_s \odot c_s}{(K \lambda s)^2}
\]

\[
n := \sum_s z_s
\]

comment: Backward loop - dictionary

\[
\forall s, b_s^{(l)} := 1_N
\]

for \(l = 1 \) to \(L \) step 1 do

\[
\forall s, \varphi_s^{(l)} := K^T \frac{d_s}{K \lambda s}
\]

\[
p := \prod_s \varphi_s^{(l)} \lambda s
\]

comment: Backward loop - weights

\[
w := 0_S
\]

\[
r := 0_{S \times N}
\]

\[
g := \nabla L(p, x) \odot p
\]

for \(l = L \) to 1 step \(-1\) do

\[
\forall s, w_s := w_s + \log \varphi_s^{(l)}, g >
\]

\[
\forall s, r_s := -K^T \left(K \left(\frac{\lambda_s g - r_s}{\varphi_s^{(l)}} \right) \odot \frac{d_s}{(K \lambda s)^2} \right) \odot b_s^{(l-1)}
\]

\[
g := \sum_s r_s
\]

comment: Backward loop - dictionary

\[
y := 0_{S \times N}
\]

\[
z := 0_{S \times N}
\]

\[
n := \nabla L(p, x)
\]

for \(l = L \) to 1 step \(-1\) do

\[
\forall s, c_s := K((\lambda_s n - z_s) \odot b_s^{(l)})
\]

\[
\forall s, y_s := y_s + \frac{c_s}{K \lambda s}
\]

\[
\forall s, z_s := -\frac{1}{\lambda_s} \odot K^T \frac{d_s \odot c_s}{(K \lambda s)^2}
\]

\[
n := \sum_s z_s
\]

Outputs: \(P^{(L)}(D, \lambda) := p, \nabla_D E^{(L)} := y, \nabla_{\lambda} E^{(L)} := w \)

Using the above scheme to compute gradients, or its automatically-computed counterpart from an automatic differentiation tool, one can find a local minimum of the energy landscape \((10)\), and thus the eventual representation \(\Lambda \) and dictionary \(D \), by applying a descent method while ensuring both the atoms and the weights belong to their respective simplices \(\Sigma_N, \Sigma_S \). This can be achieved either by performing a projected gradient descent, or by enforcing these constraints through the following change of variable:
∀i, d_i := F_N(α_i) := \frac{e^{α_i}}{\sum_{j=1}^{N} e^{α_j}} \quad \lambda := F_S(β) := \frac{e^{β}}{\sum_{j=1}^{S} e^{β_j}}.

The energy to minimize (with regards to α, β) then reads:

\[G_L(α, β) := E_L(F(α), F_S(β)), \]

Where \(F(α) := (F_N(α_1), \ldots, F_N(α_S)) = D \). Differentiating (13) yields:

\[\nabla_α G_L(α, β) = [∂F(α)]^T \nabla_D E_L(F(α), F_S(β)) \]
\[\nabla_β G_L(α, β) = [∂F_S(β)]^T \nabla_Λ E_L(F(α), F_S(β)) \]

where \([∂F_p(u)]^T = ∂F_p(u) = (I_p - F_p(u)1_p^T) \Delta (F_p(u))\), \(p \) being either \(N \) or \(S \) for each atom or the weights, respectively, and both derivatives of \(E_L \) are computed using either automatic differentiation or as given in (11), (12) with Algorithm 1 (see subsection 3.2). The optimization can then be performed with no constraints over α, β, for instance using a quasi-Newton method, that is, at each iteration \(t \), an approximation of the inverse Hessian matrix of the objective function, \(B(t) \), is updated, and the logistic variables for the atoms and weights are updated as:

\[α(t+1) := α(t) - ρ(t) B(α) \nabla_α G_L(α, β) \]
\[β(t+1) := β(t) - ρ(t) B(β) \nabla_β G_L(α, β) \]

where the \(ρ(t) \) are step sizes. The overall algorithm yielding our representation is given in Algorithm 2.

In the applications of section 5, \(B(t) \) and \(ρ(t) \) were chosen using an off-the-shelf L-BFGS solver [44]. Note that in this case, both atoms and weights are fed to the solver of choice as a concatenated vector. It is then beneficial to add a ‘variable scale’ hyperparameter \(ζ \), and to multiply all gradient entries related to the weights by that value. Otherwise, the solver might reach its convergence criterion when approaching a local minimum with regards to either dictionary atoms or weights, even if convergence is not yet achieved in the other. Setting either a low or high value of \(ζ \) bypasses the problem by forcing the solver to keep optimizing with regards to one of the two variables in particular. In practice, and as expected, we have observed that relaunching the optimization with different \(ζ \) values upon convergence can increase the quality of the learned representation. While analogous to the usual alternated optimization scheme often used in Dictionary Learning problems, this approach avoids having to compute two different forward Sinkhorn loops to obtain the derivatives in both variables.

3.2. Backward Recursive Differentiation.

To differentiate \(P(L)(D, Λ) \), we first rewrite its definition (7) by introducing the following notations:

\[P(t)(D, λ) = Ψ(b(t-1)(D, λ), D, λ) \]
\[b(t)(D, λ) = Φ(b(t-1)(D, λ), D, λ), \]

\[P(t)(L) = Ψ(x(t-1)(D, Λ), D, Λ) \]
\[x(t)(D, Λ) = Φ(x(t-1)(D, Λ), D, Λ), \]

where \(x(t) \) and \(b(t) \) are the logistic variables for the atoms and weights, respectively.
Algorithm 2 Wasserstein Dictionary Learning algorithm

Inputs: Data $X \in \mathbb{R}^{N \times M}$, initial guesses $\alpha^{(0)}, \beta_1^{(0)}, \ldots, \beta_M^{(0)}$, convergence criterion

$t := 0$

while convergence not achieved do

$D^{(t)} := F(\alpha^{(t)})$

$\alpha^{(t+1)} := \alpha^{(t)}$

for $i = 1$ to M step 1 do

$\lambda_i^{(t)} := FS(\beta_i^{(t)})$

$p_i, g^D_i, g^\lambda_i := \text{SinkhornGrads}(x_i, D^{(t)}, \lambda_i^{(t)})$

Select $\rho^{(t)}_i, R_i, B_i$ (L-BFGS)

$\alpha^{(t+1)} := \alpha^{(t+1)} - \rho^{(t)}_i B_i \partial F(\alpha^{(t)}) g^D_i$

$\beta_i^{(t+1)} := \beta_i^{(t)} - \rho^{(t)}_i B_i \partial FS(\beta_i^{(t)}) g^\lambda_i$

od

$t := t + 1$

od

Outputs: $D = F(\alpha^{(t)})$, $\Lambda = \left\{ FS(\beta_1^{(t)}), \ldots, FS(\beta_M^{(t)}) \right\}$

where:

$$\Psi(b, D, \lambda) := \prod_s \left(K^\top \frac{d_s}{K b_s} \right)^{\lambda_s} \quad (16)$$

$$\Phi(b, D, \lambda) := \left[\left(\Psi(b, D, \lambda) \right)^\top K^\top \frac{d_l}{K b_l} \right]^\top, \ldots, \left(\Psi(b, D, \lambda) \right)^\top K^\top \frac{d_S}{K b_S} \right]^\top. \quad (17)$$

Lastly, we introduce the following notations for readability:

$$\xi_y^{(t)} := \left[\partial_y \xi(y^{(t)}, D, \lambda) \right]^\top \quad B_y^{(t)} := \left[\partial_y b^{(t)}(D, \lambda) \right]^\top,$$

where ξ can be Ψ or Φ, y can be D or λ.

Proposition 1.

$$\nabla_D \mathcal{E}_L(D, \lambda) = \Psi_D^{(L-1)} \left(\nabla \mathcal{L}(P^{(L)}(D, \lambda), x) \right) + \sum_{l=0}^{L-2} \Phi_D^{(l)} \left(v^{(l+1)} \right) \quad (18)$$

$$\nabla_\lambda \mathcal{E}_L(D, \lambda) = \Psi_\lambda^{(L-1)} \left(\nabla \mathcal{L}(P^{(L)}(D, \lambda), x) \right) + \sum_{l=0}^{L-2} \Phi_\lambda^{(l)} \left(v^{(l+1)} \right), \quad (19)$$

where:
\[v^{(L-1)} := \Psi_b^{(L-1)} \left(\nabla L(P^{(L)}(D, \lambda), x) \right) \]

\[\forall l \leq L - 1, v^{(l-1)} := \Phi_b^{(l-1)} \left(v^{(l)} \right) . \]

See Appendix A for proof.

4. Extensions.

4.1. Log-domain stabilization.

4.1.1. Stabilization. In its most general framework, representation learning aims at finding a useful representation of data, rather than one allowing for perfect reconstruction. In some particular cases, however, it might also be desirable to achieve a very low reconstruction error, for instance if the representation is to be used for compression of data rather than a task such as classification. In the case of our method, the quality of the reconstruction is directly linked to the selected value of the entropy parameter \(\gamma \), as it introduces a blur in the reconstructed images as illustrated in Figure 3. In the case where sharp features in the reconstructed images are desired, we need to take extremely low values of \(\gamma \), which can lead to numerical problems, e.g. because values within the scaling vectors \(a \) and \(b \) can then tend to infinity. As suggested by Chizat et al. [16] and Schmitzer [61], we can instead perform the generalized Sinkhorn updates (7)-(8) in the log-domain. Indeed, noting \(u^{(l)}_s \), \(v^{(l)}_s \) the dual scaling variables, that is:

\[a^{(l)}_s := \exp \left(\frac{u^{(l)}_s}{\gamma} \right), \quad b^{(l)}_s := \exp \left(\frac{v^{(l)}_s}{\gamma} \right), \]

the quantity \(-c_{ij} + u_i + v_j\) is known to be bounded and thus remains numerically stable. We can then introduce the stabilized kernel \(\tilde{K}(u, v) \) defined as:

\[\tilde{K}(u, v) := \exp \left(\frac{-C + u^\top + v^\top}{\gamma} \right), \]

and notice that we then have:

\[u^{(l)}_s = \gamma \left[\log(d_s) - \log(Kb^{(l-1)}_s) \right] \]

\[\left[\log(Kb^{(l-1)}_s) \right]_i = \log \left[\sum_j \exp \left(\frac{-c_{ij} + v^{(l-1)}_j}{\gamma} \right) \right] \]

\[= \log \left(\sum_j \tilde{K}(u^{(l-1)}_s, v^{(l-1)}_s)_j \right) - \frac{\left[u^{(l-1)}_s \right]_i}{\gamma}. \]

With similar computations for the \(v_s \) updates, we can then reformulate the Sinkhorn updates in the stabilized domain as:
\[u_s^{(l)} := \gamma \left[\log(d_s) - \log \left(\sum_j \tilde{K}(u_s^{(l-1)}, v_s^{(l-1)})_j \right) \right] + u_s^{(l-1)} \]

\[v_s^{(l)} := \gamma \left[\log(P^{(l)}) - \log \left(\sum_i \tilde{K}(u_s^{(l)}, v_s^{(l-1)})_i \right) \right] + v_s^{(l-1)} \]

This provides a forward scheme for computing Wasserstein barycenters with arbitrarily low values of \(\gamma \), which could be expanded to the backward loop of our method either by applying an automatic differentiation tool to the stabilized forward barycenter algorithm, or by changing the steps in the backward loop of Algorithm 1 to make them rely solely on stable quantities. However, this would imply computing a great number of stabilized kernels as in (22), which relies on non-separable operations. Each of those kernels would also either have to be stored in memory, or recomputed when performing the backward loop. In both cases, the cost in memory or number of operations, respectively, can easily be too high in large scale settings.

4.1.2. Separable log kernel

These issues can be avoided by noticing that when the application of the kernel \(K \) is separable, this operation can be performed at a much lower cost. For a \(d \)-dimensional histogram of \(N = n^d \) bins, applying a separable kernel amounts to performing a sequence of \(d \) steps, where each step computes \(n \) operations per bin. It results in a \(O(n^{d+1}) = O(N \frac{d+1}{2}) \) cost instead of \(O(N^2) \). As mentioned previously, the stabilized kernel (22) is not separable, therefore we introduce a new stable and separable kernel suitable for log-domain processing. We illustrate this process using 2-dimensional kernels without loss of generality. Let \(X \) be a 2-dimensional domain discretized as an \(n \times n \) grid. Applying a kernel of the form \(K = \exp \left(-\frac{C}{\gamma} \right) \) to a 2D image \(b \in X \) is performed as such:

\[
R(i,j) := \sum_{k=1}^{n} \sum_{l=1}^{n} \exp \left(-\frac{C((i,j),(k,l))}{\gamma} \right) b(k,l),
\]

where \(C((i,j),(k,l)) \) denotes the cost to transport mass between the points \((i,j)\) and \((k,l)\).

Assuming a separable cost such that \(C((i,j),(k,l)) := C_y(i,k) + C_x(j,l) \), it amounts to performing two sets of 1-dimensional kernel applications:

\[
A(k,j) = \sum_{l=1}^{n} \exp \left(\frac{C_x(j,l)}{\gamma} \right) b(k,l)
\]

\[
R(i,j) = \sum_{k=1}^{n} \exp \left(\frac{C_y(i,k)}{\gamma} \right) A(k,j).
\]

In order to stabilize the computation and avoid reaching representation limits, we transfer it to the log-domain \((v := \log(b)) \). Moreover, we shift the input values by their maximum, and add it at the end. The final process can be written as the operator \(K_{LS} : \log(b) \rightarrow \log(K(\log(b))) \) with \(K \) a separable kernel, and is described in Algorithm 3.
Algorithm 3 LogSeparableKer K_{LS}: Application of a 2D separable kernel in log-domain

Inputs: Cost matrix $C \in \mathbb{R}^{N \times N}$, image in log-domain $v \in \mathbb{R}^{n \times n}$

\[
\forall k, j, \quad x_l(k, j) := \frac{C(x_l)}{\gamma} + v(k, l)
\]

\[
\forall k, j, \quad A'(k, j) := \log \left(\sum_i^n \exp(x_l - \max_l x_l) \right) + \max_l x_l
\]

\[
\forall i, j, \quad y_k(i, j) := \frac{C(y_k)}{\gamma} + A'(k, j)
\]

\[
\forall i, j, \quad R'(i, j) := \log \left(\sum_k^n \exp(y_k - \max_k y_k) \right) + \max_k y_k
\]

Outputs: Image in log-domain $K_{LS}(v) = R'$

This operator can be used directly in the forward loop, as seen in Algorithm 4. For backward loops, intermediate values can be negative and real-valued logarithms are not suited. While complex valued logarithms solve this problem, they come at a prohibitive computational cost. Instead, we store the sign of the input values and compute logarithms of absolute values. When exponentiating, the stored sign is used to recover the correct value.

4.2. Warm start.

In optimization, the idea behind warm start is to use the solution of a previous optimization problem, close to the current one, as initialization point in order to speed up the convergence. As an example, in our case, instead of a single L-BFGS run of 500 iterations, we restart a fresh L-BFGS every 10 iterations, and initialize the scaling vectors as the ones reached at the end of the previous run. This technique accumulates the Sinkhorn iterations as we accumulate L-BFGS runs. This has several consequences: a gain in precision and time, a potential increase in the instability of the scaling vectors, and changes in the energy we minimize.

First, the last scaling vectors of the previous L-BFGS run are closer to that of the current one than a vector of constant value. Therefore, the Sinkhorn algorithm converges more rapidly, and the final barycenters computed at each iteration gain accuracy compared to the classical version of the algorithm.

Second, as mentioned in subsection 4.1, the scaling vectors may become unstable when computing a large number of iterations of the Sinkhorn algorithm. When using a warm start strategy, Sinkhorn iterations tend to accumulate, which may consequently degrade the stability of the scaling vectors. For example, using 20 Sinkhorn iterations running through 50 L-BFGS runs, a warm start would lead to barycenters computed using scaling vectors comparable to those obtained after 1000 Sinkhorn iterations. When instabilities become an issue, we couple the warm start approach with our log-domain stabilization. The reduced speed of log-domain computations is largely compensated by the fact that our warm start allows to compute less Sinkhorn iterations for an equivalent or better result.

Third, when differentiating (10), we consider the initial, warm-started values given to the scaling vectors to be constant and independent of weights and atoms. This amounts to considering a different, more accurate, energy to minimize at each L-BFGS run.

We demonstrate the benefits of the warm start in Figure 4. We plot the evolution of the mean PSNR (Peak Signal-to-Noise Ratio) of the reconstructions throughout the L-BFGS iterations for different settings, for the two datasets used in subsection 5.3. For these examples, we used the Kullback-Leibler loss (since it gave the best reconstructions overall), we did not have to use the log-domain stabilization, and we restarted L-BFGS every 10 iterations. At
Figure 4: Evolution of the mean PSNR of the reconstructions per L-BFGS iteration, for 3 configurations, on 2 datasets. The KL loss was used for this experiment. We see that the warm start yields better reconstructions with the same number of Sinkhorn iterations (N_{SH}), in roughly the same time.

an equal number of Sinkhorn iterations (N_{SH}), enabling the warm start always yields better reconstructions after a certain number of iterations. It comes at a small overhead cost in time (around 25%), because L-BFGS line search routine requires more evaluations at start. For the example in Figure 4a, the computation times are 20 minutes for $N_{SH} = 2$, 25 minutes for warm restart and $N_{SH} = 2$, and 15 hours for $N_{SH} = 100$. In this particular case, enabling the warm start with 2 Sinkhorn iterations yields even better results than having 100 Sinkhorn iterations without warm start, and with a 36 gain factor in time. For the second dataset (Figure 4b), enabling the warm start does not yield as good results as when running 100 Sinkhorn iterations. However, it would require considerably more than 2 Sinkhorn iterations, hence a lot more time, to achieve the same result without it. The computation times in all three cases are similar to the previous example.

4.3. Sinkhorn heavyball. As part of a generalization of the Sinkhorn algorithm for solving OT between tensor fields [51], Peyré et al. introduced relaxation variables. In the particular case of scalar OT (our framework in the present work), these relaxation variables amount to an averaging step in the Sinkhorn updates; for instance, in the case of the barycenter scaling updates (6), (8):
\[\tilde{a}_s^{(l)} = \frac{d_s}{K b_s^{(l-1)}} \]
\[a_s^{(l)} = \left(a_s^{(l-1)}\right)^\tau \left(\tilde{a}_s^{(l)}\right)^{1-\tau} \]
\[\tilde{b}_s^{(l)} = \frac{P^{(l)}(D, \lambda)}{K \tilde{a}_s^{(l)}} \]
\[b_s^{(l)} = \left(b_s^{(l-1)}\right)^\tau \left(\tilde{b}_s^{(l)}\right)^{1-\tau} \].

\(\tau = 0 \) yields the usual Sinkhorn iterations, but it has been shown that negative values of \(\tau \) produce extrapolation and can lead to a considerable increase in the rate of convergence of the Sinkhorn algorithm [51, Remark 6]. This effect can be thought of in the same way as the Heavy Ball method [45, 76] often used in optimization problem and dating back to Polyak [53], i.e. as the addition of a momentum term (e.g., \(\left(a_s^{(l-1)} / \tilde{a}_s^{(l)}\right)^\tau \), which amounts to \(\tau \left(a_s^{(l-1)} - \tilde{a}_s^{(l)}\right) \) in the log-domain) to the usual Sinkhorn updates. This acceleration scheme can be used within our method by applying an automatic differentiation tool [70] to the forward Sinkhorn loop yielding the barycenter (shown in Algorithm 5 in the Supplementary Material) and feeding the gradients to Algorithm 2.

4.4. Unbalanced. In (1), we defined the set of admissible transport plans \(\Pi(p, q) \) as the set of matrices whose marginals are equal to the two input measures; that is, with rows summing to \(p \) and columns summing to \(q \). Equivalently, we can reformulate the definition of the approximate Wasserstein distance (3) as:

\[W_\gamma(p, q) := \min_{T \in \mathbb{R}^N \times N} \langle T, C \rangle + \gamma H(T) + \iota \{ p \}(T 1_N) + \iota \{ q \}(T^T 1_N), \]

where \(\iota \) is the indicator function defined in (2). Chizat et al. introduce the notion of Unbalanced Transport problems [16], wherein this equality constraint between the marginals of the optimal transport plan and the input measures is replaced by some other similarity criterion. Using entropic regularization, they introduce matrix scaling algorithms generalizing the Sinkhorn algorithm to compute, among others, unbalanced barycenters. This generalizes the notion of approximate Wasserstein barycenters we have focused on thus far.

In particular, using the KL divergence between the transport plan’s marginals and the input measures allows for less stringent constraints on mass conservation, which can in turn yield barycenters which maintain more of the structure seen in the input measures. This amounts to using the following definition of \(W_\gamma \) in the barycenter formulation (5):

\[W_\gamma(p, q) := \min_{T \in \mathbb{R}^N \times N} \langle T, C \rangle + \gamma H(T) + \rho \left(\text{KL}(T 1_N | p) + \text{KL}(T^T 1_N | q) \right), \]

where \(\rho > 0 \) is the parameter determining how far from the balanced OT case we can stray, with \(\rho = \infty \) yielding the usual OT formulation. In this case, the iterative matrix scaling updates (7)-(8) read, respectively [16]:
\[
P^{(l)}(D, \lambda) = \left(\sum_{s=1}^{S} \lambda_s \left(K^T a_s^{(l)} \right)^{\frac{\rho + \gamma}{\gamma}} \right)^{\frac{\gamma}{\rho + \gamma}}
\]

\[
a_s^{(l)} = \left(\tilde{a}_s^{(l)} \right)^{\frac{\rho}{\rho + \gamma}} , b_s^{(l)} = \left(\tilde{b}_s^{(l)} \right)^{\frac{\rho}{\rho + \gamma}} ,
\]

Where $\tilde{a}_s^{(l)}$, $\tilde{b}_s^{(l)}$ are obtained from the usual Sinkhorn updates as in (25), (26).

Algorithm 6, given in the Supplementary Materials, performs the barycenter computation (forward loop) including both the unbalanced formulation and the acceleration scheme shown in subsection 4.3. Automatic differentiation can then be performed using an appropriate library [70] to obtain the dictionary and weights gradients, which can then be plugged into Algorithm 2 to obtain a representation relying on unbalanced barycenters.

5. Applications.

Figure 5: Simulated Euclid-like PSF variation at a fixed position in the field of view for varying incoming wavelengths.

Figure 6: Polychromatic variations of PSFs by displacement interpolation.

5.1. Point Spread Functions. As with every optical system, observations from astrophysical telescopes suffer from a blurring related to the instrument’s optics and various other effects (such as the telescope’s jitter for space-based instruments). The blurring function, or Point Spread Function (PSF) can vary spatially (across the instrument’s field of view), temporally and chromatically (with the incoming light’s wavelength). In order to reach its scientific goals, ESA’s upcoming Euclid space mission [34] will need to measure the shape of one billion galaxies extremely accurately, and therefore correcting the PSF effects is of paramount importance.
The use of OT for PSF modelling has been investigated by Irace and Batatia [32] and Ngolè and Starck [46], both with the aim of capturing the spatial variation of the PSF. For any given position in the field of view, the transformations undergone by the PSF depending on the incoming light’s wavelength is also known to contain strong geometrical information, as illustrated in Figure 5. It is therefore tempting to express these variations as the intermediary steps in the optimal transportation between the PSFs at the two extreme wavelengths. This succession of intermediary steps, the displacement interpolation (also known as McCann’s interpolation [40]) between two measures, can be computed (in the case of the 2-Wasserstein distance) as their Wasserstein barycenters with weights \(\lambda = (1 - t, t), t \in [0, 1] \) [1].

We thus ran our method on a dataset of simulated, Euclid-like PSFs [47, §4.1] at various wavelengths and learned only two atoms. The weights were initialized as a projection of the wavelengths into \([0, 1]\), but allowed to vary. The atoms were initialized without using any prior information, as two uniform images with all pixels set at \(1/N\), \(N\) being the number of pixels (in this case, \(40^2\)). The fitting loss was quadratic, the entropic parameter \(\gamma\) set to a value of 0.5 to allow for sharp reconstructions, and the number of Sinkhorn iterations set at 120, with a heavy-ball parameter \(\tau = -0.1\).

The learned atoms, as well as the actual PSFs at both ends of the spectrum, are shown in Figure 7. Our method does indeed learn atoms that are extremely close visually to the two extremal PSFs. The reconstructed PSFs at the same wavelength as those of Figure 5 are shown in Figure 6 (the corresponding final barycentric weights are shown in Figure 9b). This shows that OT, and in particular displacement interpolation, does indeed capture the geometry of the polychromatic transformations undergone by the PSF. On the other hand, when one learns only two components using a PCA, they have no direct interpretation (see Figure 8), and the weights given to the 2nd principal component appear to have no direct link to the PSF’s wavelength, as shown in Figure 9a.

Note that while adding constraints can also make linear generative methods yield 2 atoms that are visually close to the extreme PSFs, for instance by using NMF instead of PCA (see Figure E.1 in the Supplementary Materials for the atoms learned), our method yields lower reconstruction error, with an average normalized mean square error of \(1.71 \times 10^{-3}\) across the whole dataset, as opposed to \(2.62 \times 10^{-3}\) for NMF. As expected, this difference in reconstruction error is particularly noticeable for datapoints corresponding to wavelengths in the middle of the spectrum, as the NMF reconstruction then simply corresponds to a weighted sum of the two atoms, while our method captures more complex warping between them. This shows that the OT representation allows us to better capture the non-linear geometrical variations due to the optical characteristics of the telescope.

5.2. Cardiac sequences. We tested our dictionary learning algorithm on a reconstructed MRI sequence of a beating heart. The goal was to learn a dictionary of 4 atoms, representing the key frames of the sequence. As seen in Figure 10, the ‘barycentric path’ (polyline of the barycentric points) is a cycle, which means the algorithm is successful at finding those key frames that, when interpolated, can represent the whole dataset. This is confirmed by the similarity between the reconstructions and the input measures.

For this application, we used 13 frames of \(272 \times 240\), a regularization \(\gamma = 2\), and a scale between weights and atoms of \(\zeta = N/(100 \times M)\), \(N = 272 \times 240\), \(M = 13\) frames. Initialization
was random for the weights, and constant for the atoms. We used a quadratic loss because it provided the best results in terms of reconstruction and representation. We found 25 iterations for the Sinkhorn algorithm to be a good trade-off between computation time and precision.

5.3. Wasserstein faces. It has been shown that images of faces, when properly aligned, span a low-dimensional space that can be obtained via Principal Component Analysis (PCA). These principal components are called EigenFaces and are used for face recognition [71], see Figure 11 (and E.2 in the Supplementary Material). We show that our dictionary learning algorithm can produce atoms that can be interpreted more easily than principal components, and can be used to edit a human face’s appearance.

We illustrate this application on the MUG facial expression dataset [2]. In a first experiment we used a total of 20 (224 × 224) images of a single person performing 5 facial expressions, and learned a dictionary of 5 atoms. We show that, contrary to EigenFaces and NMF and depending on the chosen loss function, our method produces atoms that are significant of each expression. Our method also reconstructs faces better, with a PSNR of 33.8 compared to a PSNR of 33.6 for EigenFaces and 33.5 for NMF. Indeed, minor translations or deformations of the faces can break the PCA approach, while optimal transport accounts for small motion.

From the raw images of the MUG database, we isolated faces and converted the images to
Figure 8: PCA-learned components.

(a) Weights for the first two principal components learned by PCA.
(b) Barycentric weights learned by our method. The dashed lines are the initialization.

Figure 9: Evolution of representation coefficients by wavelength.

grayscale. The resulting images are in Figure 11(a). We can optionally invert the colors and apply a power factor α similarly to a gamma-correction.

For this experiment, we set the number of Sinkhorn iterations to 25, and the maximum number of L-BFGS iterations to 450. The weights were randomly initialized and the atoms were initialized as constant.

We performed a cross validation using two datasets, four loss functions, three values for ζ ($N_2^{N_2}, 0.75^N, 0.5^N$), four values for α (1, 2.2, 3, 5), the constraint on positive barycentric weights turned on or off, and colors inverted or not. We found that none of the α and ζ values we tested significantly give better results (in terms of reconstruction fidelity). On the other hand, inverting colors improved the result in most cases. We can conclude that when dealing with faces, it is better to transport the thin and dark zones (eyebrows, mouth, creases) than the
5.4. Literature Learning. We use our algorithm to classify literary work. To this end, we use a bag-of-words representation [58], where each book is represented by a histogram of its words. In this particular application, the cost matrix C (distance between each word) is computed exhaustively and stored. We use a semantic distance between words. These distances were computed from the Euclidian embedding provided by the GloVe database (Global Vectors for Word Representation) [50].

Our learning algorithm is unsupervised and considers similarity between books based on their lexical fields. Consequently we expect it to sort books by either author, writing style, or genre.

To demonstrate our algorithm’s performance, we created a database of 20 books by 5 different authors. In order to keep the problem size reasonable we only considered words that are between 7 and 8 letters long. In our case, it is better to deal with long words, because they have a higher chance of holding discriminative information than shorter ones.

The results can be seen in Figure 14. Our algorithm is able to classify the novels by author, recognizing the proximity of lexical fields across the different books. The atom 0 seems to be representing Charlotte Brontë’s style, the atoms 1 and 4 Mark Twain’s, the atom 2 Arthur Conan Doyle’s, and the atom 3 Jane Austen’s. Charles Dickens shares an extended amount of vocabulary with the other authors without it differing enough to be represented by its own atom like others are.
Figure 11: We compare our method with Eigenfaces [71] and Non-negative Matrix Factorization (NMF) as a tool to represent faces on a low dimensional space. Given a dataset of 20 images of the same person from the MUG dataset [2] performing 5 facial expressions 4 times (row (a) illustrates each expression), we project the dataset on the first 5 EigenFaces (row (b)). The reconstructed faces corresponding to the highlighted input images are shown in row (e). Row (c) shows atoms obtained using an NMF and row (f) the reconstructions. Using our method, we obtain 5 atoms shown in row (d) that produce the reconstructions in row (g).
Figure 12: We compare the atoms (columns 1 to 5) obtained using different loss functions, ordered by fidelity of the reconstructions to the input measures (using the mean PSNR), from best to worst: the Kullback-Leibler divergence (a) $\overline{PSNR} = 32.03$, the quadratic loss (b) $\overline{PSNR} = 31.93$, the total variation loss (c) $\overline{PSNR} = 31.41$ and the Wasserstein loss (d) $\overline{PSNR} = 30.33$. In the last column, we show the reconstruction of the same input image for each loss. We notice that from (a) to (d), the atoms’ visual appearance seems to increase even though the reconstruction quality decreases.

5.5. Multimodal Distributions. It is a well-known limitation of the regular OT-based Wasserstein barycenters that when there are several distinct areas containing mass, the supports of which are disjoint on the grid, the barycenter operator will still produce barycenters with mass in between them. To illustrate the advantages of using the unbalanced version our method introduced in subsection 4.4, and the use cases where it might be preferable to do so, we place ourselves in such a setting.

We generate a dataset as follows: A 1D grid is separated into three equal parts, and while the center part is left empty, we place two discretized and truncated 1D Gaussians with the same standard deviation, their mean randomly drawn from every other appropriate position on the grid. We draw 40 such datapoints, yielding several distributions with either one (if the same mean is drawn twice) or two modes in one of the two extreme parts of the grid, or one mode in each.

We then run our method in both the balanced and the unbalanced settings. In both cases,
Figure 13: Face editing: Using the atoms shown in row (a) of Figure E.3, we interpolate between the atoms isobarycenter (top image) and each one of the atoms (with respective contributions of 70%-30%). This allows to emphasize each emotion (bottom images) when starting from a neutral face.

\(\gamma\) is set to 7, 100 Sinkhorn iterations are performed, the loss is quadratic and the learned dictionary is made up of 3 atoms. In the unbalanced case, the KL-regularization parameter is set as \(\rho = 20\).

Figure 15 shows examples of the input data and its reconstructions in both settings. In the unbalanced case, our method always yields the right number of modes in the right parts of the grid. Running our method with balanced Wasserstein barycenters, however, leads to reconstructions featuring mass in parts of the grid where there was none in the original datapoint (two left-most examples). Parts of the grid where the datapoint featured a mode can also be reconstructed as empty (third example). Lastly, we observe mass in areas of the grid that were empty for all datapoints (fourth example).

6. Conclusion. This paper introduces a non-linear dictionary learning approach that uses the Optimal Transport geometry by fitting data to Wasserstein barycenters of a list of learned atoms. We offer schemes to compute this representation based on the addition of an entropic penalty to the definition of Optimal Transport distances, as well as several variants and extensions of our method. We illustrate the representation our approach yields on several different applications.

Some very recent works present a faster Sinkhorn routine, such as the Greenkhorn algorithm [3] or a multi-scale approach [61]. These could be integrated into our method along with automatic differentiation in order to speed up the algorithm.
Figure 14: Book classification: using our algorithm, we look at word histograms of novels, and learn 5 atoms in a sample of 20 books by 5 authors. We plot each book according to its barycentric coordinates with regard to the learned atoms. Our algorithm successfully classifies books by author.

Appendix A. Proof of Proposition 3.1. By differentiating (14) with regards to the dictionary or one of the barycentric weights, we can rewrite the Jacobians in (11), (12), respectively, while separating the differentiations with regard to the dictionary D, the weights λ, and the scaling vector b, by total differentiation and the chain rule:

\begin{align}
\partial_D P^{(l)}(D, \lambda) & = \Psi^{(l-1)}_D + B^{(l-1)}_D \Psi^{(l-1)}_b \\
\partial_{\lambda} P^{(l)}(D, \lambda) & = \Psi^{(l-1)}_\lambda + B^{(l-1)}_\lambda \Psi^{(l-1)}_b .
\end{align}

And, differentiating (15):

\begin{align}
B^{(l)}_D & = \Phi^{(l-1)}_D + B^{(l-1)}_D \Phi^{(l-1)}_b \\
B^{(l)}_\lambda & = \Phi^{(l-1)}_\lambda + B^{(l-1)}_\lambda \Phi^{(l-1)}_b .
\end{align}
Figure 15: Four different original datapoints (in blue) and their reconstructions (in yellow) from our method in both the balanced (top row) and unbalanced (bottom row) settings. In the balanced case, we see the appearance of spurious modes where there was no mass in the original data, or a lack of mass where there was a mode originally (third example). Conversely, in the unbalanced case, our approach always places mass at the right positions on the grid.

We then have, by definitions (20)-(21) and by plugging (27) and (29) into (11):

$$\nabla_D \mathcal{E}_L(D, \lambda) = \Psi^{(L-1)}_D \left(\nabla \mathcal{L}(P^{(L)}(D, \lambda), x) \right) + B^{(L-1)}_D v^{(L-1)}$$

$$= \Psi^{(L-1)}_D \left(\nabla \mathcal{L}(P^{(L)}(D, \lambda), x) \right) + \Phi^{(L-2)}_D \left(v^{(L-1)} \right) + B^{(L-2)}_D v^{(L-2)}$$

$$= \ldots$$

(31) $$\nabla_D \mathcal{E}_L(D, \lambda) = \Psi^{(L-1)}_D \left(\nabla \mathcal{L}(P^{(L)}(D, \lambda), x) \right) + \sum_{l=0}^{L-2} \Phi^{(l)}_D \left(v^{(l+1)} \right),$$

where the sum starts at 0 because $B^{(0)}_D = 0$ since we initialized $b^{(0)}$ as a constant vector. This proves (18). Similarly, differentiating with regard to λ yields:

$$\nabla_\lambda \mathcal{E}_L(D, \lambda) = \Psi^{(L-1)}_\lambda \left(\nabla \mathcal{L}(P^{(L)}(D, \lambda), x) \right) + \sum_{l=0}^{L-2} \Phi^{(l)}_\lambda \left(v^{(l+1)} \right)$$

Hence (19). The detailed derivation of the differentials of φ, Φ and Ψ with regard to all three variables are given in the Supplementary Materials, Appendix C.
Appendix B. Stabilized backward loop.

Algorithm 4 logSinkhornGrads: Computation of dictionary and barycentric weights gradients in log-domain. Log-domain variables are marked with a tilde.

Inputs: Data $x \in \Sigma_N$, atoms $d_1, \ldots, d_S \in \Sigma_N$, current weights $\lambda \in \Sigma_S$

comment: Sinkhorn loop

$\forall s, v_s^{(l)} := 0_N$

for $l = 1$ to L step 1 do

$\forall s, \tilde{\varphi}_s^{(l)} := K_{LS} \left(\log(d_s) - K_{LS}(v_s^{(l-1)}) \right)$

$\tilde{p} := \sum_s \lambda_s \tilde{\varphi}_s^{(l)}$

$\forall s, v_s^{(l)} := \tilde{p} - \tilde{\varphi}_s^{(l)}$

od

$p = \exp(\tilde{p})$

comment: Backward loop - weights

$w := 0_S$

$r := 0_{S \times N}$

$g := \nabla L(p, x) \odot p$

for $l = L$ to 1 step -1 do

$\forall s, w_s := w_s + <\tilde{\varphi}_s^{(l)}, g>$

$\forall s, \tilde{t}_s := K_{LS} \left(\log(\lambda_s g - r_s) - \tilde{\varphi}_s^{(l)} \right) + \log(d_s) - 2 * K_{LS}(v_s^{(l-1)})$

$\forall s, r_s := \exp \left(K_{LS}(\tilde{t}_s) + v_s^{(l-1)} \right)$

$g := -\sum_s r_s$

od

comment: Backward loop - dictionary

$y := 0_{S \times N}$

$z := 0_{S \times N}$

$n := \nabla L(p, x)$

for $l = L$ to 1 step -1 do

$\forall s, \tilde{c}_s := K_{LS} \left(\log(\lambda_s n + z_s) + v_s^{(l)} \right)$

$\forall s, y_s := y_s + \exp \left(\tilde{c}_s - K_{LS}(v_s^{(l-1)}) \right)$

$\forall s, z_s := \exp \left(-\tilde{\varphi}_s^{(l-1)} + K_{LS} \left(\log(d_s) + \tilde{c}_s - 2 * K_{LS}(v_s^{(l-1)}) \right) \right)$

$n := -\sum_s z_s$

od

Outputs: $P^{(L)}(D, \lambda) := p, \nabla_D \mathcal{E}^{(L)} := y, \nabla_\lambda \mathcal{E}^{(L)} := w$

Appendix C. Detailed derivations. Let us first introduce the notation:

$$\varphi : b_s, d \mapsto K^\top \frac{d}{K b_s}.$$
C.1. Computation of \(\partial_b \varphi \). By definition:

\[
\frac{\partial \varphi}{\partial b_s}(b_s, d) = -K^\top \Delta \left(\frac{d}{(Kb_s)^2} \right) K \tag{32}
\]

In what follows, we will denote \(\varphi_{NS}(b, D) = [\varphi(b_1, d_1)^\top, \ldots, \varphi(b_S, d_S)^\top]^\top \in \mathbb{R}^{NS} \):

\[
\partial_b \varphi_{NS}(b, D) = \begin{pmatrix}
\frac{\partial \varphi(b_1, d_1)}{\partial b_1} & 0_{N \times N} & \cdots & 0_{N \times N} \\
0_{N \times N} & \frac{\partial \varphi(b_2, d_2)}{\partial b_2} & \cdots & 0_{N \times N} \\
\vdots & \ddots & \ddots & \vdots \\
0_{N \times N} & \cdots & 0_{N \times N} & \frac{\partial \varphi(b_S, d_S)}{\partial b_S}
\end{pmatrix}
\]

C.2. Computation of \(\Psi_b \). Taking the logarithm of (16) yields:

\[
\log(\Psi(b, D, \lambda)) = \sum_s \lambda_s \log(\varphi(b_s, d_s))
\]

The differentiation of which gives us:

\[
\Delta \left(\frac{1_N}{\Psi(b, D, \lambda)} \right) \partial_b \Psi(b, D, \lambda) = (\lambda_1 I_N \ldots \lambda_S I_N) \Delta \left(\frac{1_{NS}}{\varphi_{NS}(b, D)} \right) \partial_b \varphi_{NS}(b, D) \Rightarrow \Psi_b = [\partial_b \varphi_{NS}(b, D)]^\top \Delta \left(\frac{1_{NS}}{\varphi_{NS}(b, D)} \right) J_\lambda \Delta(\Psi(b, D, \lambda))
\]

Where \(J_\lambda = \begin{pmatrix} \lambda_1 I_N \\ \vdots \\ \lambda_S I_N \end{pmatrix} \in \mathbb{R}^{NS \times N} \).

C.3. Computation of \(\Psi_D \). Let \(i \in \{1, \ldots, S\} \):

\[
\Psi(b, D, \lambda) = \prod_{s \neq i} \Delta(\varphi_c(b_s, d_s))^{\lambda_i}. \left(K^\top \frac{d_i}{Kb_i} \right)^{\lambda_i}
\]

And:

\[
\frac{\partial}{\partial d_i} \left(K^\top \frac{d_i}{Kb_i} \right)^{\lambda_i} = \lambda_i \Delta \left(K^\top \frac{d_i}{Kb_i} \right)^{\lambda_i-1} K^\top \Delta \left(\frac{1_N}{Kb_i} \right) \Rightarrow \frac{\partial \Psi}{\partial d_i}(b, D, \lambda) = \lambda_i \frac{\Delta(\Psi(b, D, \lambda))}{\Delta \left(K^\top \frac{d_i}{Kb_i} \right)} K^\top \left(\frac{1_N}{Kb_i} \right)
\]

\[
\tag{34}
\]
C.4. Computation of \(\Phi_b \).

\[
\partial_b \Phi(b, D, \lambda) = \begin{pmatrix}
\Delta \left(\frac{1_N}{\varphi(b_1, d_1)} \right) \\
\vdots \\
\Delta \left(\frac{1_N}{\varphi(b_S, d_S)} \right)
\end{pmatrix} \partial_b \Psi(b, d)
\]

\[
- \begin{pmatrix}
\Delta \left(\frac{\Psi(b, D, \lambda)}{\varphi(b_1, d_1)} \right) \frac{\partial \varphi(b_1, d_1)}{\partial b_1} \\
\vdots \\
\Delta \left(\frac{\Psi(b, D, \lambda)}{\varphi(b_S, d_S)} \right) \frac{\partial \varphi(b_S, d_S)}{\partial b_S}
\end{pmatrix}
\]

\[
\left[I_{N,S}^\top \partial_b \varphi(b, D, \lambda) - \Delta(\Phi(b, D, \lambda)) \partial_b \varphi(b, D, \lambda) \right]
\]

\[
\Rightarrow \Phi_b = \left[\Psi_b I_{N,S} - [\partial_b \varphi(b, D, \lambda)]^\top \Delta(\Phi(b, D, \lambda)) \right] \Delta \left(\frac{1_N}{\varphi(b, D, \lambda)} \right)
\]

\[
\Delta(\Phi(b, D, \lambda)) I_{N,S} = \Delta(\Phi(b, D, \lambda)) I_{N,S} - \Delta(\Phi(b, D, \lambda))
\]

(35)

Where \(I_{N,S} = [I_N, \ldots, I_N] \in \mathbb{R}^{N \times NS} \). Moreover, we have:

\[
\Delta \left(\frac{1_N}{\varphi(b, D)} \right) J_\lambda \Delta(\Psi(b, D, \lambda)) = \begin{pmatrix}
\Delta(1/\varphi(b_1, d_1)) \\
\vdots \\
\Delta(1/\varphi(b_S, d_S))
\end{pmatrix} \begin{pmatrix}
\lambda_1 \Delta(\Psi(b, D, \lambda)) \\
\vdots \\
\lambda_S \Delta(\Psi(b, D, \lambda))
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\lambda_1 \Delta \left(\frac{\Psi(b, D, \lambda)}{\varphi(b_1, d_1)} \right) \\
\vdots \\
\lambda_S \Delta \left(\frac{\Psi(b, D, \lambda)}{\varphi(b_S, d_S)} \right)
\end{pmatrix}
\]

\[
\Delta(\Phi(b, D, \lambda)) \begin{pmatrix}
\lambda_1 I_N \\
\vdots \\
\lambda_S I_N
\end{pmatrix}
\]

\[
\Delta \left(\frac{1_N}{\varphi(b, D)} \right) J_\lambda \Delta(\Psi(b, D, \lambda)) = \Delta(\Phi(b, D, \lambda)) J_\lambda
\]
Hence, in (35):

$$\Phi_b = [\partial_b \varphi_{NS}(b, D)]^\top \Delta(\Phi(b, D, \lambda))[J_\lambda I_{N,S} - I_{NS}] \Delta \left(\frac{I_N}{\varphi_{NS}(b, D)} \right)$$

C.5. Computation of \(\Phi_D \). Let \(i \in \{1, \ldots \} \). \(\forall s \neq i \), the only dependency in \(d_i \) of \(\Phi^s(b, D, \lambda) \) resides in \(\Psi \) (see (17)), hence:

$$\forall s \neq i, \frac{\partial \Phi^s}{\partial d_i} = \Delta \left(\frac{I_N}{\varphi(b_s, d_s)} \right) \frac{\Delta(\Psi(B, D, \lambda))}{\Delta(\varphi(b_s, d_s)) \Delta(\varphi(b_i, d_i))} K^\top \Delta \left(\frac{I_N}{K b_i} \right)$$

$$\text{(34)} \quad \left(\frac{\Delta(\Psi(B, D, \lambda))}{\Delta(\varphi(b_s, d_s)) \Delta(\varphi(b_i, d_i))} \right) K^\top \Delta \left(\frac{I_N}{K b_i} \right)$$

$$\text{(17)} \quad \lambda_i \left(\frac{\Delta(\Phi^i(B, D, \lambda))}{\Delta(\varphi(b_s, d_s))} \right) K^\top \Delta \left(\frac{I_N}{K b_i} \right)$$

As for \(s = i \), we have:

$$\Phi^i(b, D, \lambda) = \frac{\Psi(b, D, \lambda)}{K^\top d_i b_i}$$

$$\Rightarrow \frac{\partial \Phi^i}{\partial d_i} (b, D, \lambda) = \Delta \left(\frac{I_N}{\varphi(b_i, d_i)} \right) \frac{\Delta(\Psi(b, D, \lambda))}{\Delta(\varphi(b_i, d_i))} \frac{\partial}{\partial d_i} \varphi(b_i, d_i)$$

$$= \Delta \left(\frac{I_N}{\varphi(b_i, d_i)} \right) \frac{\Delta(\Psi(b, D, \lambda))}{\Delta(\varphi(b_i, d_i))^2} \frac{\partial}{\partial d_i} \varphi(b_i, d_i)$$

$$= \Delta \left(\frac{I_N}{\varphi(b_i, d_i)} \right) \frac{\Delta(\Phi^i(b, D, \lambda))}{\Delta(\varphi(b_i, d_i))} K^\top \Delta \left(\frac{I_N}{K b_i} \right)$$

$$= (\lambda_i - 1) \left(\frac{\Delta(\Phi^i(b, D, \lambda))}{\Delta(\varphi(b_i, d_i))} \right) K^\top \Delta \left(\frac{I_N}{K b_i} \right)$$
Appendix D. Generalized barycenters.

Algorithm 5 HeavyballSinkhorn: Computation of approximate Wasserstein barycenters with acceleration

Inputs: Data \(x \in \Sigma_N \), atoms \(d_1, \ldots, d_S \in \Sigma_N \), weights \(\lambda \in \Sigma_S \), extrapolation parameter \(\tau \leq 0 \)

\(\forall s, b_s^{(0)} := 1_N \)

for \(l = 1 \) to \(L \) step 1 do

\(\forall s, \tilde{a}_s^{(l)} := \frac{d_s}{K\tilde{b}_s^{(l-1)}} \)

\(\forall s, a_s^{(l)} := \left(a_s^{(l-1)} \right)^\tau \left(\tilde{a}_s^{(l)} \right)^{1-\tau} \)

\(p := \prod_s \left(K^\top a_s^{(l)} \right)^\lambda_s \)

\(\forall s, \tilde{b}_s^{(l)} := \frac{p}{K^\top a_s^{(l)}} \)

\(\forall s, b_s^{(l)} := \left(b_s^{(l-1)} \right)^\tau \left(\tilde{b}_s^{(l)} \right)^{1-\tau} \)

od

Outputs: \(P_L(D, \lambda) := p \)

Algorithm 6 GeneralizedSinkhorn: Computation of unbalanced barycenters with acceleration

Inputs: Data \(x \in \Sigma_N \), atoms \(d_1, \ldots, d_S \in \Sigma_N \), weights \(\lambda \in \Sigma_S \), extrapolation parameter \(\tau \leq 0 \), KL parameter \(\rho > 0 \)

\(\forall s, b_s^{(0)} := 1_N \)

for \(l = 1 \) to \(L \) step 1 do

\(\forall s, \tilde{a}_s^{(l)} := \left(\frac{d_s}{K\tilde{b}_s^{(l-1)}} \right)^\frac{\rho}{\rho+\gamma} \)

\(\forall s, a_s^{(l)} := \left(a_s^{(l-1)} \right)^\tau \left(\tilde{a}_s^{(l)} \right)^{1-\tau} \)

\(p := \frac{\left(\sum_{s=1}^S \lambda_s \left(K^\top a_s^{(l)} \right)^\frac{\rho}{\rho+\gamma} \right)^\frac{\rho}{\rho+\gamma}}{\tilde{p}} \)

\(\forall s, \tilde{b}_s^{(l)} := \left(\frac{p}{K^\top a_s^{(l)}} \right)^\frac{\rho}{\rho+\gamma} \)

\(\forall s, b_s^{(l)} := \left(b_s^{(l-1)} \right)^\tau \left(\tilde{b}_s^{(l)} \right)^{1-\tau} \)

od

Outputs: \(P_L(D, \lambda) := p \)
Appendix E. Additional results.

Figure E.1: Extreme wavelength PSFs in the dataset and atoms learned from NMF. See Figure 7 for those learned using our method.
Figure E.2: Similarly to Figure 11, we compare our method to the Eigenfaces [71] approach and Non-negative Matrix Factorization as a tool to represent faces on a low dimensional space.
Figure E.3: Similarly to Figure 12, we compare the atoms obtained using different loss functions, ranking them by mean PSNR: (a) $\text{PSNR} = 33.81$, (b) $\text{PSNR} = 33.72$, (c) $\text{PSNR} = 32.95$ and (d) $\text{PSNR} = 32.34$

Acknowledgements. This work was supported by the Centre National d’Etudes Spatiales (CNES), the European Community through the grants DEDALE (contract no. 665044) and NORIA (contract no. 724175) within the H2020 Framework Program and the French National Research Agency (ANR) through the grant ROOT.

REFERENCES

