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1 Overview

In this report, we revisit the work of Pilleboue et al. [2015], provid-
ing a representation-theoretic derivation of the closed-form expres-
sion for the expected value and variance in homogeneous Monte
Carlo integration. We show that the results obtained for thevari-
ance estimation of Monte Carlo integration on the torus, thesphere,
and Euclidean space can be formulated as specific instances of a
more general theory. We review the related representation theory
and show how it can be used to derive a closed-form solution.

2 Problem Statmement

We begin by reviewing some basic concepts from Monte Carlo inte-
gration. Next, we present a formal definition of homogeneity. And
finally, we formulate the generalized problem statement.

Monte Carlo Integration

Definition Given a domainΩ and given two (complex-valued)
functionsF,G : Ω → C, the dot-productof the functions is the
integral of the product ofF with the complex conjugate ofG:

〈F,G〉 =

∫

Ω

F (x) ·G(x) dx.

Definition Given a domainΩ and givenS = {s1, · · · , sN} ∈ ΩN ,
theMonte Carlo estimateof the integral of a functionF : Ω → C

is obtained by averaging the values ofF at theN positions:

MC(F, S) :=
1

N

N∑

i=1

F (si).

TreatingS as the average of delta functions, centered at{si}:

S(x) ≡
1

N

N∑

i=1

δsi(x),

the Monte Carlo estimate becomes the dot-product ofF andS:

MC(F, S) = 〈F, S〉 .

Definition Given a domainΩ and a positive integerN , asampling
pattern is a functionP : ΩN → R over the set of allN -tuples of
points inΩ, satisfying:

∫

ΩN

P(S) dS = |Ω| and P(S) ≥ 0, ∀ S ∈ ΩN ,

where|Ω| is the measure ofΩ.

Definition Given a sampling patternP and a functionF : Ω →
C, theexpected valueof the integral ofF and thevariancein the
estimate of the integral are given by:

EP [〈F,S〉] :=

∫

ΩN

〈F, S〉 · P(S) dS

VarP(〈F,S〉) := EP

[
‖〈F,S〉‖2

]
− ‖EP [〈F,S〉]‖

2 .

Homogeneity

In order to make the problem of estimating the variance in Monte
Carlo integration tractable, we restrict ourselves to sampling pat-
terns that are homogeneous. To make this formal, we first define a
notion of a group action.

Definition We say that a group,Γ, acts onΩ if each elementγ ∈ Γ
defines a mapsγ : Ω → Ω the preserves the measure onΩ.

Notation Given a group action ofΓ onΩ, givenF : Ω → C, and
givenγ ∈ Γ, we denote byγ(F ) : Ω → C the function obtained
by applying the inverse ofγ to the argument ofF :

[γ(F )](x) := F
(
γ−1(x)

)
.

Here, inversion is required so that(γ ◦ γ̃)(F ) = γ(γ̃(F )) for all
γ, γ̃ ∈ Γ.

Remark Since the mapγ : Ω → Ω preserves the measure, the
associated map on the space of functions is unitary. That is,for any
functionsF,G : Ω → C we have:

〈F,G〉 = 〈γ(F ), γ(G)〉 , ∀ γ ∈ Γ.

Definition Given a group action ofΓ onΩ, we say that a sampling
patternP : ΩN → R is homogeneous with respect toΓ if the prob-
ability of choosing a sampling pattern is the same as the probability
of choosing any of its transformations by the group elements:

P(S) = P (γ(S)) , ∀ γ ∈ Γ.

(Note that we can either think ofγ(S) as the sampling pattern ob-
tained by transforming the sample positions,si 7→ γ(si), or as the
transform of the sum of delta functions – the two definitions are
consistent.)

Remark If the groupΓ is compact, one can always transform an
initial sampling patternP0 into a homogeneous sampling patternP
by averaging over the group elements:

P(S) :=
1

|Γ|

∫

Γ

P0 (γ(s)) dγ.

Remark It is common to use the termhomogeneousto refer to
invariance to translation and the termisotropic to refer to invari-
ance to rotations. As the general theory we present will not distin-
guish between the group actions, we will use the termhomogeneous
throughout.

Problem Statement

Thinking of the space of functions as a complex inner-product
space, thinking of a sampling pattern as a real-valued function on
this vector space, and using the fact that computing the Monte Carlo
integral amounts to taking the dot-product of the integrandwith the
average of delta functions, we can view the problem of estimating
variance in Monte Carlo integration as an instance of the following,
more general, algebraic problem:
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Assume we are given a complex inner-product space(V, 〈·, ·〉), a
groupΓ acting onV , and a homogeneous functionP : V → R.
Then, givenw ∈ V , compute the expected value and variance of
the dot-product ofw with the vectorsv ∈ V :

EP [〈w,v〉] =

∫

V

〈w, v〉 · P(v) dv

VarP(〈w,v〉) = EP

[
‖〈w,v〉‖2

]
− ‖EP [〈w,v〉]‖2 .

The advantage of formulating the problem in this manner is that it
makes it easier to leverage representation theory to find a solution.
To this end, we review some basic concepts from representation the-
ory in the next section, as well as derive two lemmas describing how
the average of the inner-products of vectors behave as we transform
one of the arguments by the elements of the group. Using these,
we present our closed-form expression for the expected value and
variance, given in terms of the Fourier coefficients of the integrand
F and the sampling patternsS, in Section 4.

3 Representation Theory

The study of how the Fourier coefficients of a signal change asit
is transformed by the elements of a group is best expressed inthe
language of representation theory. We review some basic concepts
from this theory, before deriving the lemmas that lead to a closed-
form expression for the expected value and variance of the Monte
Carlo integral.

In what follows, we will assume a compact (closed and bounded)
Lie groupΓ.

Definition Given a complex inner-product space(V, 〈·, ·〉), we say
that the(ρ, V ) is a representation ofΓ if ρ is a group homomor-
phism fromΓ into the group of unitary transformations onV . That
is:

ρ(γ ◦ γ̃) = ρ(γ) ◦ ρ(γ̃), ∀ γ, γ̃ ∈ Γ.

Notation Given a representation(ρ, V ), a group elementγ ∈ Γ,
and a vectorv ∈ V , we will write:

γ(v) := ρ(γ)(v).

Definition Given a vector spaceV , thetrivial representationis the
mapρ sending every group element to the identity:

ρ(γ) = Id., ∀ γ ∈ Γ.

Definition Given a representation(ρ, V ) and a subspaceW ⊂ V ,
we say thatW is asub-representationif γ(w) ∈ W for all w ∈ W
and allγ ∈ Γ.

Definition We say that(ρ, V ) is an irreducible representationif
the only sub-representations areW = {0} andW = V .

Remark Since any subspace of a trivial representation is a sub-
representation (as the identity maps all vectors to themselves), a triv-
ial representation is irreducible if and only if it is one-dimensional.

Given a representation(ρ, V ), Maschke’s Theorem [Serre 1977;
Fulton and Harris 1991] tells us that we can decomposeV as the
direct sum of finite-dimensional, irreducible representations:

V =
⊕

λ∈Λ

V λ

with V λ andV λ̃ perpendicular wheneverλ 6= λ̃.

Choosing an orthonormal basis{b1λ, · · · , b
nλ
λ } for eachV λ allows

us to define a Fourier transform:

Definition Given a vectorv ∈ V , and indicesλ ∈ Λ andm ∈
[1, · · · , nλ], the(λ,m)-th Fourier coefficientof v, denoted̂vmλ , is
the coefficient ofv corresponding to the basis vectorbmλ :

v̂mλ := 〈v, bmλ 〉.

Remark Since the basis defining the Fourier coefficients is or-
thonormal, we can write the inner product of two functionsv, w ∈
V in terms of these coefficients as:

〈v, w〉 ≡
∑

λ∈Λ

nλ∑

m=1

v̂mλ · ŵm
λ .

Lemma 3.1. Given an irreducible representation(ρ, V ) of a group
Γ, for anyx, y, v, w ∈ V , we have:

1

|Γ|

∫

Γ

〈γ(x), y〉 · 〈γ(v), w〉 dγ =
1

dim(V )
· 〈x, v〉 · 〈y, w〉.

Corollary 3.2. In particular, letting{b1, · · · , bn} be an orthonor-
mal basis forV , takingy = bi andw = bj , and fixingx = v, the
above statement becomes:

∫

Γ

γ̂(v)
i
· γ̂(v)

j
=

|Γ|

dim(V )
· ‖v‖2 · δij .

That is, the Fourier coefficients ofγ(v), thought of as complex-
valued functions onΓ, are orthogonal and the magnitude is inde-
pendent of which Fourier coefficient we are considering.

Proof Fixing y, w ∈ V , letBy,w : V × V → C be the map:

By,w(x, v) =

∫

Γ

〈γ(x), y〉 · 〈γ(v), w〉 dγ.

It is not hard to show that this map is linear in the first argument,
conjugate-linear in the second, andΓ-equivariant. (That is, for
anyγ ∈ Γ we haveBv,w (γ(x), γ(y)) = Bv,w(x, y)). Thus, by
Schur’s Lemma [Serre 1977; Fulton and Harris 1991],By,w is a
scalar multiple of the inner-product onV :

By,w(x, v) = λy,w · 〈x, v〉.

Noting thatBy,w(x, v) = Bx,v(y,w), it follows that:

By,w(x, v) = λ · 〈x, v〉 · 〈y, w〉,

for some constantλ ∈ C that is independent ofv andw.

Thus, we are left with the problem of determiningλ. As it is in-
dependent ofx, y, v, andw, it suffices to determine the value
Bv,v(v, v) for somev 6= 0. More generally, letting{b1, . . . , bn}
be an orthonormal basis we can get an expression forλ in terms of
the integrated square norm of the trace ofρ(γ):

∫

Γ

‖Tr (ρ(γ))‖2 dγ =

∫

Γ

∥∥∥∥∥
n∑

i,j=1

〈γ(bi), bj〉

∥∥∥∥∥

2

dγ

=
n∑

i=1

Bbi,bj (b
i, bj)

= dim(V ) · λ.

Since the trace is the character of the representation, it follows
by the orthogonality of characters [Serre 1977; Fulton and Harris
1991] that

∫
Γ
‖Tr (ρ(γ))‖2 dγ = |Γ|, givingλ = |Γ|/dim(V ).

Thus, as desired, we get:

1

|Γ|

∫

Γ

〈γ(x), y〉 · 〈γ(v), w〉 dγ =
1

dim(V )
· 〈x, v〉 · 〈y, w〉.

�



Lemma 3.3. Leveraging Schur’s Lemma in a similar manner, it
follows that if(ρ1, V1) and (ρ2, V2) are two irreducible represen-
tations that are not isomorphic, then for anyv1, w1 ∈ V1 and
v2, w2 ∈ V2:

∫

Γ

〈γ(v1), w1〉 · 〈γ(v2), w)〉 dγ = 0.

4 Variance Estimation

Using the above theory, we are now prepared to estimate the vari-
ance in Monte Carlo integration. We begin by presenting a general
expression for the expected value and variance and then consider
the specific cases of the torus, the sphere, and Euclidean space.

4.1 General Framework

We assume that we are given a representation(ρ, V ) of a compact
groupΓ, a homogeneous functionP : V → R (i.e. P(v) =
P(γ(v)) for all v ∈ V and allγ ∈ Γ), and a vectorw ∈ V . Our
goal is to express the expected value and variance of the dot-product
of w with the vectorsv ∈ V :

EP [〈w,v〉] =

∫

V

〈w, v〉 · P(v) dv

VarP(〈w,v〉) = EP

[
‖〈w,v〉‖2

]
− ‖EP [〈w,v〉]‖2 .

In deriving the closed form expression for the expected value and
variance, we will assume that the decomposition ofV into irre-
ducible representations{V λ}λ∈Λ contains the trivial representa-
tion. (If it does not, we can take the direct sum ofV with a one-
dimensional space on whichΓ acts trivially.) We will denote this
one-dimensional representation asV 0 and letb10 be a unit-vector
spanning this space (withγ(b10) = b10 for all γ ∈ Γ).

Finally, for simplicity, we will assume that the irreducible represen-
tations occur without multiplicity. That is, ifλ 6= λ̃ thenV λ and

V λ̃ are not isomorphic, for allλ, λ̃ ∈ Λ.

The Expected Value

Using the Fourier coefficients, we can express expected value of the
dot-product ofw with the vectorsv ∈ V as:

EP [〈w,v〉] =

∫

V

∑

λ∈Λ

nλ∑

m=1

ŵm
λ · v̂mλ · P(v) dv.

Using the homogeneity ofP , the expected value computed by in-
tegrating overV is the same as the expected value computed by
integrating overγ(V ). In particular, we can express the expected
value as the average:

EP [〈w,v〉] =
1

|Γ|

∫

Γ

∫

γ(V )

∑

λ∈Λ

nλ∑

m=1

ŵm
λ · v̂mλ · P(v) dv dγ

=
1

|Γ|

∫

Γ

∫

V

∑

λ∈Λ

nλ∑

m=1

ŵm
λ · γ̂(v)

m

λ · P(γ(v)) dv dγ

=

∫

V

∑

λ∈Λ

nλ∑

m=1

ŵm
λ

1

|Γ|



∫

Γ

〈γ(v), bmλ 〉 dγ


 · P(v) dv.

Sinceb10 is a unit vector on whichγ acts as the identity, we have:

EP [〈w,v〉] =

∫

V

∑

λ∈Λ

nλ∑

m=1

ŵm
λ ·

·
1

|Γ|



∫

Γ

〈γ(v), bmλ 〉 · 〈γ(b10), b
1
0〉 dγ


 · P(v) dv.

Using Lemmas 3.1 and 3.3, the facts thatV 0 is orthogonal and not
isomorphic toV λ for all λ 6= 0, and that dim(V 0) = 1, we have:

EP [〈w,v〉] =
∑

λ∈Λ

nλ∑

m=1

∫

V

ŵm
λ · 〈v, b10〉 · 〈b

m
λ , b10〉 · P(v) dv

=

∫

V

ŵ1
0 · v̂10 · P(v) dv

= ŵ1
0 ·

∫

V

v̂10 · P(v) dv.

That is, the expected value of the dot-product is the trivialFourier
coefficient ofw times the complex conjugate of the expected value
of the trivial Fourier coefficient of the vectorsv ∈ V :

EP [〈w,v〉] = ŵ1
0 · EP [v̂1

0]. (1)

The Variance

Using Equation (1), we can express the variance of the dot-product
of w with the vectorsv ∈ V as:

VarP(〈w,v〉) = EP

[
‖〈w,v〉‖2

]
−

∥∥ŵ1
0

∥∥2
·
∥∥EP

[
v̂
1
0

]∥∥2

and we are left with the problem of computingEP

[
‖〈w,v〉‖2

]
.

Expressing the dot-product in terms of the Fourier coefficients
gives:

EP

[
‖〈w,v〉‖2

]
=

∫

V

∥∥∥∥∥
∑

λ∈Λ

nλ∑

m=1

ŵm
λ · v̂mλ

∥∥∥∥∥

2

· P(v) dv

=

∫

V

∑

λ,λ̃∈Λ

nλ∑

m=1

n
λ̃∑

m̃=1

ŵm
λ · ŵm̃

λ̃
· v̂mλ · v̂m̃

λ̃
· P(v) dv.

As with the expected value, homogeneity implies that we can aver-
age the integrals over allγ(V ), giving:

EP

[
‖〈w,v〉‖2

]
=

∫

V

∑

λ,λ̃∈Λ

nλ∑

m=1

n
λ̃∑

m̃=1

ŵm
λ · ŵm̃

λ̃
·

·
1

|Γ|



∫

Γ

γ̂(v)
m

λ · γ̂(v)
m̃

λ̃ dγ


 · P(v) dv.

Using the fact that̂γ(v)
m

λ = 〈γ(v), bmλ 〉 in conjunction with Lem-
mas 3.1 and 3.3 and lettingπλ : V → V λ be the projection from
V onto the irreducible representationV λ, the summation simplifies
to:

EP

[
‖〈w,v〉‖2

]
=

∫

V

∑

λ∈Λ

nλ∑

m=1

‖ŵm
λ ‖2 ·

‖πλ(v)‖
2

dim(V λ)
· P(v) dv

=
∑

λ∈Λ

‖πλ(w)‖2 · EP

[
‖πλ(v)‖

2
]

dim(V λ)
.



This gives a closed-form expression for the variance as:

VarP(〈w,v〉) =
∑

λ∈Λ\{0}

‖πλ(w)‖2 · EP

[
‖πλ(v)‖

2
]

dim(V λ)
. (2)

Note that by taking the summation over all irreducible representa-
tions except for the trivial onewe subtract off the square-norm of
the expected value.

4.2 The Torus

In this case, the domain of integration and the group of motions are
both thed-dimensional torus,Ω = Γ = [0, 2π)d, and the represen-
tation is defined on the space of complex-valued functions onthe
torus,V = L2(Ω,C), with an elementγ ∈ Γ acting on a function
by translation:

[γ(F )](p) := F (p− γ).

The irreducible representations are all one-dimensional (since
the group is commutative) and are indexed by points on thed-
dimensional integer lattice,Λ = Z

d. Specifically, the spaceV λ

is spanned by a complex exponential with frequencyλ ∈ Z
d:

V λ = Span

{
b0λ(p) =

ei〈p,λ〉

(2π)d/2

}
.

Thus, Equation (1) gives the expected value of the integral of F as
the product of the DC component ofF times the complex conju-
gate of the expected value of the DC component ofS. As we are
considering Monte Carlo integration, the elements ofS are all the
average ofN delta-functions, so that:

EP [〈F,S〉] =

∫

Ω

F (p) dp,

and the estimate is unbiased.

From Equation (2) the variance in the estimate of the integral
can be obtained by taking the power spectrum ofF , multiplying
(frequency-wise) by the expected power spectrum ofS, and sum-
ming over all non-zero frequencies:

VarP(MC(F,S)) =
∑

λ∈Zd\{0}

‖F̂λ‖
2 · EP

[
‖Ŝλ‖

2
]
,

whereF̂l is thel-th Fourier coefficient ofF .

4.3 The Sphere

In this case, the domain of integration is the 2-sphere,Ω = S2,
the group of motions is the group of rotations in 3D,Γ = SO(3),
and the representation is defined on the space of complex-valued
functions on the sphere,V = L2(Ω,C), with an elementγ ∈ Γ
acting on a function by rotation:

[γ(F )](p) := F
(
γ−1(p)

)
.

In this case, the irreducible representations are indexed by the non-
negative integers,Λ = [0, · · · ,∞), and the irreducible representa-
tion V λ is a(2λ+ 1)-dimensional space:

V λ = Span
{
Y −λ
λ (θ, φ), · · · , Y λ

λ (θ, φ)
}
,

with Y m
l (θ, φ) the spherical harmonic of frequencyl and indexm.

As with the torus the integrator is unbiased, and the variance can
be computed by summing, over each non-zero spherical frequency,
the product of the power ofF and the expected power ofS in that
frequency, divided by the dimension of the frequency space:

VarP(MC(F,S)) =

∞∑

l=1

l∑

m=−l

‖F̂m
l ‖2 ·

l∑

m=−l

EP

[
‖Ŝm

l ‖2
]

2l + 1
,

whereF̂m
l is the(l,m)-th spherical harmonic coefficient ofF .

4.4 Euclidean Space

In this case, the domain of integration isd-dimensional Euclidean
space,Ω = R

d, the group is the group of Euclidean motions,
Γ = SE(d) = R

d × SO(d), and the representation is defined
on the space of complex-valued functions on Euclidean space,
V = L2(Ω,C), with an elementγ = (τ, σ) ∈ Γ acting on a
function by a combination of translation and rotation:

[γ(F )](p) := F
(
σ−1(p− τ )

)
.

Unfortunately, the analysis in Section 3 does not apply to this con-
text because we assumed that the group is compact. None-the-less,
we can formally carry over the results, replacing the notionof “di-
mension” with the the “size” of the irreducible representations.

In this case, the irreducible representations are indexed by the non-
negative real numbers,Λ = R

≥0 [Vilenkin 1978] and the spaceV λ

is the “span” of complex exponentials whose frequency has norm
λ:

V λ = Span|q|=λ

{
bqλ(p) = ei〈p,q〉

}
.

As above, the integrator is unbiased and, using the fact thatthe size
of theλ-th irreducible representation is the size of of the(d − 1)-
dimensional sphere with radiusλ, we get:

VarP(MC(F,S)) =

=

∫ ∞

0

∫

|q|=λ

‖F̂q‖
2
dq ·

∫

|q|=λ

EP

[
‖Ŝq‖

2
]
dq

λd−1 · |Sd−1|
dλ−

− ‖F̂0‖
2 · EP

[
‖Ŝ0‖

2
]
,

whereF̂p is thep-th Fourier coefficient ofF .
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