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Abstract—In binary images, the Distance Transformation (DT) and the geometrical skeleton extraction are classic tools for shape

analysis. In this paper, we present time optimal algorithms to solve the reverse Euclidean distance transformation and the reversible

medial axis extraction problems for d-dimensional images. We also present a d-dimensional medial axis filtering process that allows us

to control the quality of the reconstructed shape.
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d-dimensional shapes.
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1 INTRODUCTION

IN binary images, the distance transformation (DT) and the
geometrical skeleton extraction are classic tools for shape

analysis [1], [2]. The distance transformation consists of
labeling each pixel of an object with the distance to the
closest pixel of its complement (also called the background).
Obviously, a distance transformation algorithm is deeply
linked to the underlying metric and the objective when we
define a new metric or approximate the Euclidean distance
is to achieve isotropic behavior of the DT while preserving
efficient algorithms to compute the DT.

In the digital image literature, trade-offs were considered
between computation time and the quality of the Euclidean
distance approximation.

Hence, for the DT problem, we can consider distances
based on chamfer masks [2], [3], [4], [5] or sequences of
chamfer distances [1], [6], [7], the vector displacement-based
Euclidean distance [8], [9], [10], [11], the Voronoi diagram-
based Euclidean distance [12], [13], [14], [15], or the square of
the Euclidean distance [16], [17], [18]. From a computational
point of view, several of these methods lead to time optimal
algorithms to compute the error-free Euclidean Distance
Transformation (EDT) for d-dimensional binary images [12],
[14], [17], [18], [15]: The extension of these algorithms is
straightforward since they use separable techniques to
compute the DT; d one-dimensional operations—one per
direction of the coordinate axis—are performed.

The skeleton and the medial axis are usual and con-
venient representations for shape description or recognition
purposes [19], [20]. In continuous space, several equivalent
definitions of the skeleton exist: We can consider the prairie

fire model with a wavefront propagation initiated at the
shape boundary; then skeleton points are the locations of the
“self-intersections” of the wavefront. In this case, a
classification of skeleton points can be obtained while
identifying intersection and transition cases [21], [22].
Another approach is based on the detection of ridges and
peaks on the distance map surface. A third model defines
the skeleton as the set of center pixels of maximal disks
covering the shapes: A maximal disk is a disk contained in
the shape not entirely covered by another disk contained in
the shape.

From these definitions in continuous space came different
categories of methods in discrete space. From the detection of
symmetries came the Voronoi diagram approaches in
computational geometry [23]; from the detection of ridges
and peaks came some variational approaches [24], [25], [26],
[27]; from the prairie fire model came the iterative pealing
model providing binary skeletons (see [28] for a complete
bibliography on the subject). Finally, in the digital plane, we
have methods based on the discrete DT to extract the medial
axis (MA for short). Indeed, given a binary shape, the DT
value at a point p corresponds to the radius of the largest ball
centered at p contained in the shape. Many discrete
implementations of this approach have been proposed either
for chamfer distances [1], [3], [29], [30] or for the Euclidean
distance [31], [32], [33], [34]. In digital space, the MA is a
convenient tool to represent shapes since it is reversible: From
the MA points, we can exactly reconstruct the original shape.

In this paper, we focus on the study and new results in this
last category of methods. More precisely, we investigate the
d-dimensional medial axis extraction upon the error-free
Euclidean distance. An important problem related to the MA
extraction is the Reverse Euclidean Distance Transformation
(REDT). Furthermore, the resolution of these two problems
will be linked by our approach. Formally, given a set of points
associated with their Euclidean distance values, how can we
efficiently reconstruct the shape resulting from the over-
lapping of the corresponding balls? A time optimal algorithm
is proposed to solve this problem. Based on this process, we
also present a time optimal algorithm to compute a subset of
the medial axis on d-dimensional shapes: Even if the MA is
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a reversible representation of the shape, it may not be the
minimal set of disks necessary to reconstruct the shape [35],
[36] (a set is minimal if it contains the minimal number of
disks). We thus obtain a more compact representation with
disks of a discrete object than the classic MA. To achieve
generalization in higher dimensions, we investigate separ-
able techniques to solve the REDT or the MA extraction
problems.

In some applications, due to the sensitivity of the MA to
small changes in the object boundary, a nonreversible but
simplified description of binary objects may be of interest. In
that case, a simplification procedure can be used as a
postprocess [37], [23], [38]. Based on a discussion about the
REDT, the MA extraction, and classic tools in computational
geometry, we present a simple filtering process to simplify
d-dimensional MA.

In Section 2, we first evoke some algorithms to solve the
EDT problem for d-dimension in a linear time. Based on
these techniques, we optimize the REDT algorithm pro-
posed by Saito and Toriwaki [33] to obtain a time linear
algorithm in Section 3. Then, in Section 4, based on an
analysis of the literature, we present a time optimal
algorithm that extracts a reversible subset of the classic
medial axis. Finally, in Section 5, we discuss the links
between these algorithms and classic tools in computational
geometry, illustrated by an MA filtering procedure.

2 d-DIMENSIONAL EUCLIDEAN DISTANCE

TRANSFORMATION

We first detail separable techniques to compute the
Euclidean distance transformation of d-dimensional images.

In the 2D case: We consider a two-dimensional binary
image P of size n� n; �P denotes the complementary of P ,
i.e., the set of background pixels. The output of the
algorithm is a 2D image H ¼ fhði; jÞg storing the squared
distance transformation. For each point ði; jÞ of the image,
the squared distance transformation is given by:

hði; jÞ ¼ minfði� xÞ2 þ ðj� yÞ2; 0 � x; y < n

and ðx; yÞ 2 �Pg:
ð1Þ

This formulation of the problem leads to an efficient two-
pass process for the squared distance transformation (SDT
for short) labeling in 2D (see Fig. 1):

1. Build, from the source image P , a one-dimensional
EDT according to the first dimension (x-axis)
denoted by G ¼ fgði; jÞg, where, for a given row j:

gði; jÞ ¼ min
x
fji� xj; 0 � x < n and ðx; jÞ 2 �Pg : ð2Þ

2. Then, construct the image H ¼ fhði; jÞg with a y-axis
process:

hði; jÞ ¼ min
y
fgði; yÞ2 þ ðj� yÞ2; 0 � y < ng : ð3Þ

This formulation of the SDT provides a direct imple-
mentation of the d-dimensional SDT algorithm: We only
have to compute a one-dimensional EDT for the initializa-
tion step (Step 1 of the previous algorithm) and then add,
for each greater dimension, a mixing process (Step 2) that
merges results of the lower dimensions. From a computa-
tional cost point of view and given a d-dimensional binary
shape of size nd, the first step can be done in linear time in
the number of grid points, i.e., OðndÞ. For the second step,
the min operation corresponds to a lower envelope
computation of a set of parabolas. More precisely, let us
suppose that we have computed Step 1 of the algorithm (x-
axis SDT) and let fgði; yÞgð0 � y < n) be a column of G. If
we consider the set of parabolas F i

yðjÞ ¼ gði; yÞ
2 þ ðj� yÞ2,

the column fhði; yÞg after Step 2 is exactly the lower
envelope of fF i

yg with 0 � y < n (see Fig. 2).

In [16], the authors present an OðAvg:ndÞ algorithm that
computes each mixing step where Avg denotes the
average of the Euclidean distance values in the image
(Avg ¼ OðnÞ without any assumptions based on the input
image). In [17] and [18], Hirata and Meijster et al.
independently present optimal algorithms to solve the
min operation (Step 2) and thus propose a time optimal
algorithm for the SDT. The authors present an OðnÞ
algorithm to compute such a lower envelope using a
parabola elimination process. Finally, for a d-dimensional
image, the dimensional mixing processes are computed
in OðndÞ and, thus, the global cost to compute the SDT
based on this approach is OðndÞ. We recall, in Fig. 3, the
optimal Meijster et al.’s algorithm in dimension 2. To
detail the notations, F i

yðjÞ denotes the parabola gði; yÞ2 þ
ðj� yÞ2 (simply denoted F yðjÞ when the context fixes the
parameter i). The function Sepiðu; vÞ (or simply Sepðu; vÞ)
represents the coordinate of the intersection point between
two parabolas. Hence, according to [18],

Sepðu; vÞ ¼ ðv2 � u2 þ gði; vÞ2 � gði; uÞ2Þ div ð2ðv� uÞÞ: ð4Þ
For the second step of this algorithm, we use a stack

(denoted s½q�) to store the indexes of the parabolas on the
lower envelope. When we scan the rows for a given column i,
a new parabola may invalidate some parabolas in the lower
envelope stack (while loop in lines 4-6) and may be inserted
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Fig. 1. Illustration of the SDT algorithm: (a) the binary image P , (b) the
mapG resulting from Step 1 (absolute EDT), and (c) the final SDT mapH
after the last process along the y-axis.

Fig. 2. Illustration of the computation of the mixing step as a lower
envelope extraction: Let [4, 1, 2, 1] be a column of G after Step 1 (fifth
column in Fig. 1), (a) the set of parabolas gði; yÞ2 þ ðj� yÞ2 and (b) the
bold curve is the lower envelope. Thus, the result of the minimization
process is [2, 1, 2, 1].



into s½q� (line 12). To complete the SDT computation, we

perform a final scan of the lower envelope parabolas to set the

correct values to the distance map hði; jÞ (lines 16-21).

3 REVERSE EUCLIDEAN DISTANCE

TRANSFORMATION

3.1 Definitions

Let us consider L as a set of l points fðxm; ymÞg1�m�l and

rðxm; ymÞ the squared Euclidean distance value associated

with the pixel ðxm; ymÞ. In other words, a point ði; jÞbelongs to

P if it belongs to at least one disk whose center is a pointm of

L, with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðxm; ymÞ

p
. Hence, the REDT of L consists of

obtaining the set of points P such that

P ¼ fði; jÞ j ði� xÞ2 þ ðj� yÞ2 < rðx; yÞ; ðx; yÞ 2 Lg: ð5Þ
The question is to efficiently compute the REDT. Let F ¼

ffði; jÞg be a picture of size n� n such that fði; jÞ is set to

rði; jÞ if ði; jÞ belongs to L and 0 otherwise. In [33], the

authors show that (5) is equivalent to

P ¼ fði; jÞ j maxffðx; yÞ � ði� xÞ2 � ðj� yÞ2g > 0;

0 � x; y < n and ðx; yÞ 2 Fg:
ð6Þ

Hence, if we compute the map H ¼ fhði; jÞg such that

hði; jÞ ¼ maxffðx; yÞ � ði� xÞ2 � ðj� yÞ2;

0 � x; y < n and ðx; yÞ 2 Fg;
ð7Þ

we obtain P by extracting from H all pixels of strictly
positive values. So, to build H from F , we can decompose
the computation into two one-dimensional steps (see Fig. 4):

1. Build from the image F the picture G ¼ fgði; jÞg
such that

gði; jÞ ¼ max
x
ffðx; jÞ � ði� xÞ2; 0 � x < ng: ð8Þ

2. Build from G the picture H such that

hði; jÞ ¼ max
y
fgði; yÞ � ðj� yÞ2; 0 � y < ng: ð9Þ

To prove this decomposition, we have to substitute (8)
into (9) and we obtain (7). Note that this process can easily
be extended to d-dimensional images, we just have to
compute d one-dimensional maximization steps. An illus-
tration of the overall algorithm for d ¼ 2 is given in Fig. 4.

In [33], Saito and Toriwaki use their algorithm presented in
[16] to compute the REDT and they obtain a computational
cost in OðAvg:ndÞ for a d-dimensional image. Indeed, if we
change the minimization process in (3) to a maximization
procedure as in (8) or (9), the SDT algorithm can also be used
to solve the REDT problem.
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Fig. 3. Pseudocode of the optimal SDT: (a) Step 1 according the the x-axis and (b) Step 2 according to the y-axis.

Fig. 4. Illustration of the REDT algorithm: (a) the image F , where we only consider the set of disks, (b) the map G after the first step along the x-axis,
and (c) the final reconstruction H.



In the next section, we detail a new algorithm whose
complexity is OðndÞ to compute the REDT.

3.2 Optimal REDT Algorithm

The basic idea of the optimal REDT algorithm is to use the
parabola elimination process described in Section 2 to
compute maximization steps. We detail the optimization of
Step 1 defined by (8) all other steps can be easily deduced.
First of all, for a given column j of F , we define the function
describing a parabola as:

F j
xðiÞ ¼ fðx; jÞ � ði� xÞ

2: ð10Þ

We simply use the notation F xðiÞ when the context fixes
the parameter j. We also need the function that computes
the abscissa of the intersection between two parabolas.
Thus, point i such that F uðiÞ � F vðiÞ with u < v is given by:

Sepðu; vÞ ¼ ðu2 � v2 � fðu; jÞ þ fðv; jÞÞ div ð2ðu� vÞÞ: ð11Þ

Based on these elementary functions, the algorithm
presented in Fig. 5 computes the upper envelope of the
parabolas fF xg.

This algorithm is derived from the one presented in Fig. 3b
to compute the SDT: The array s contains the set of parabola
apexes of the upper envelope and t the intersection abscissa
between two consecutive parabolas in s. In lines 3–15, we
compute the upper envelope and those arrays s and t and, in
lines 16–21, we construct the map G using s and t. The
computational cost of this upper envelope extraction isOðnÞ if
n is the size of a row inF . Finally, we can use this algorithm to
compute (9) and constructP by thresholdingH inOðn2Þ ifF is
an n� n image. More generally, if we apply it for all one-
dimensional maximization steps, we have a global complex-
ity inOðndÞ for a d-dimensional image, which is time optimal.

This formulation of the REDT problem as a parabola
upper envelope computation will be also used in the next
section to extract the discrete medial axis.

4 EUCLIDEAN MEDIAL AXIS EXTRACTION

4.1 Definitions and State-of-the-Art

To characterize the medial axis as defined in the literature
(see, for example, [2]), we need the following definitions:

Definition 1 (Maximal ball). A maximal ball is a ball
contained in the shape not entirely covered by another ball
contained in the shape.

Based on this property, the medial axis is defined by:

Definition 2 (Medial axis). The medial axis of a shape is the set
of maximal ball centers contained in the shape.

It is obvious from this definition that MA is reversible.
Givenabinaryshape, theSDTvalueatapointpcorrespondsto
the square of the radius of the largest ball centered at p
contained in the shape. Hence, the MA is a subset of the set of
balls defined by the DT. The main bottleneck is thus the ball
inclusion test: Given a ball in the DT, we have to decide if the
ball is covered by another one or not. Of course, the MA is
dependent on the space—discrete or continuous—and on the
metric that is used. We continue in this section by the analysis
of the discrete medial axis based on the Euclidean metric.

In [32], the authors first present a test in dimension 2 to
decide if a disk A covers another disk B. Then, they use this
inclusion test on each couple of disks defined in the SDT to

extract the MA. Even if the authors provide optimization to
reduce the number of inclusion tests, the computational cost
is high: In the worst case, the computational cost of the
inclusion test is proportional to the radii of the disks and we
haveN2 inclusion tests ifN is the number of points in the SDT.

In [31], [34], the authors use a lookup table to implement
the inclusion test. This table is indexed by the radius of the
disk B with center p and a direction ~v and contains the
minimum radius of the disk A with center pþ~v such that A
covers B. This lookup table is widely used to extract the
chamfer metric-based medial axis [2], [3], [4]. In that case,
the set of directions is finite and given by the mask
directions. Using the Euclidean metric, if we suppose that
values of the SDT are less than a given number R2

max, the
authors of [34] present an algorithm to compute the lookup
table in dimensions 2 and 3. The main drawbacks of this
method are that the entire precomputed table must be
loaded into the memory and that the size of this table
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Fig. 5. Pseudocode of the (a) optimal one-dimensional upper envelope
parabola computation and (b) an illustration of the notations and an
example in one dimension.



considerably increases with the number Rmax and the
dimension. Indeed, the Euclidean metric makes the set of
directions f~vg unbounded: No local test exists to detect if a
disk is maximal based on the SDT.

If the SDT values are greater than R2
max, the MA may

contains nonmaximal balls.
In the next sections, we present time optimal separable

techniques to extract the MA whatever the dimension.
Instead of considering local inclusion tests, the proposed
algorithm performs a global extraction of maximal balls.

4.2 Medial Axis and Upper Envelope of Elliptic
Paraboloids in the Continuous Space

In [33], Saito and Toriwaki define what they called a
geometrical Euclidean skeleton based on elliptic paraboloids
in dimension 2. Such an elliptic paraboloid of center ði; jÞ and
height qði; jÞ is given by the following equation:

0 � z < qði; jÞ � ðx� iÞ2 � ðy� jÞ2: ð12Þ

The intersection between such a domain and the plane z ¼ 0
is a disk of center ði; jÞ and radius

ffiffiffiffiffiffiffiffiffiffiffiffi
qði; jÞ

p
. We say that an

elliptic paraboloid is contained in a shape S if the disk of
center ði; jÞ and radius

ffiffiffiffiffiffiffiffiffiffiffiffi
qði; jÞ

p
is contained in S. Note that

the authors use the term skeleton to describe a geometric
object when, usually, skeleton means topology preserving
representation.

Let Q ¼ fqði; jÞg be a SDT of the shape. The Saito and
Toriwaki’s skeleton, denoted Sk, is defined by

Sk ¼ fði; jÞ j 9ðx; yÞ; ði� xÞ2 þ ðj� yÞ2 < qði; jÞ;
and max

ðu;vÞ
fqðu; vÞ � ðx� uÞ2 � ðy� vÞ2g

¼ qði; jÞ � ðx� iÞ2 � ðy� jÞ2g:

ð13Þ

In other words, Sk is the set of elliptic paraboloids that
belong to the upper envelope (in dimension 2) of all of the
elliptic paraboloids whose heights are given by the squared
distance transformation.

In the following, we first prove that Saito and Toriwaki’s
skeleton is a subset of the medial axis in the continuous
plane (see Fig. 6).

Definition 3 (Maximal elliptic paraboloid). A maximal
elliptic paraboloid is an elliptic paraboloid contained in the shape
not entirely covered by another elliptic paraboloid contained in
the shape.

Note that this object can be generalized to d-dimension
shapes.

Proposition 1. Let ði; jÞ be a point in a continuous shape and qði; jÞ
be a number. The disk D of center ði; jÞ and radius

ffiffiffiffiffiffiffiffiffiffiffiffi
qði; jÞ

p
is

maximal if and only if the elliptic paraboloidP of center ði; jÞ and
height qði; jÞ is maximal.

Proof. Note that D is the intersection between P and z ¼ 0.
We first prove the left to right implication. If we suppose
that P is not maximal, there exists another elliptic
paraboloid P 0 such that P 0 contains P . Thus, the
intersection D0 between P 0 and the plane z ¼ 0 contains
the intersection D between P and the same plane. Hence,
there exists a disk D00 contained in the shape that
contains D and, so, D is not maximal.

Conversely, we suppose that D is not maximal.
Hence, there exists a disk D00 such that D00 contains D.
We denote by P 00 the elliptic paraboloid, uniquely
defined by D00, such that D00 is the intersection between
P 00 and z ¼ 0. If we suppose that P 00 does not contain P ,
there exists a point p 2 P such that p =2 P 00. Let us
consider the intersections between P and P 00 in the plane
H perpendicular to z ¼ 0 that contains p and the center of
P 00. In the plane H and using the elliptic paraboloid
definition, P (respectively, P 00) leads to the domain

0 � z < fðuÞ � ðx� uÞ2 resp: 0 � z < fðvÞ � ðx� vÞ2
� �

;

ð14Þ

with u; v; fðuÞ; fðvÞ 2 IR (see Fig. 7). Since H contains the
center ofP 00 and p, these domains are not empty. Using the
notations of Fig. 7,D00 containsD implies that bothm andn
belong to D00. Furthermore, since p does not belong to P 00,
the two parabolas given by (14) must have two intersection
points a and b. However, using (14), such parabolas only
have one intersection point if u 6¼ v. Since the upper parts
of the parabolas are excluded, u ¼ v implies that the
intersection is empty. Hence, such a point p does not exist
and, thus,P 00 containsP , which finally proves thatP is not
maximal. Note that this proof can be generalized to other
dimensions since we have transformed the problem into a
one dimension parabola intersection. tu
Hence, in the continuous plane, maximal balls and

maximal elliptic paraboloids coincide. Using Proposition 1,
we can deduce the following corollary:

Corollary 1. In the continuous plane, Sk is a subset of the
medial axis. Furthermore, the original figure can be
reconstructed by Sk.

Proof. First of all, all elliptic paraboloids that belong to the
upper envelope are maximal by the definition of such an
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Fig. 6. Illustration of the equivalence in the continuous plane between

maximal disks and maximal elliptic paraboloids.

Fig. 7. Notations for the proof of Proposition 1.



envelope. Since maximal elliptic paraboloids and max-
imal balls coincide, the points in Sk belong to the medial
axis. Some maximal elliptic paraboloids may not belong
to Sk, as illustrated in Fig. 8 in the 1D case: The parabolas
fA;B;Cg belong to the medial axis, whereas only the
parabolas A and C belong to Sk (B is covered by the
union of A and C). To prove the second statement, we
note that the definition of Sk strictly coincides with the
reverse distance transformation equations of Section 3.
Once Sk is computed, if we consider the strictly positive
height values of the upper envelope elliptic paraboloids,
we obtain the original shape. tu

4.3 Reduced Discrete Medial Axis Extraction

In Section 4.2, we have proven that the skeleton Sk is a subset
of the medial axis in the continuous case. We first illustrate in
this section that this property does not hold in the discrete
case and present a process to transform Sk points into
maximal ball centers in the discrete case.

First, if we consider a binary shape in dimension d, we can
easily transform the REDT algorithm to extract points in Sk:
We first consider the image F as the SDT of a binary object.
Then, we apply the REDT algorithm in which we mark the
upper envelope elliptic paraboloids to construct Sk. This
labeling can easily be performed dimension after dimension
since the array s in Fig. 5 contains one-dimensional parabolas
in the upper envelope.

In [33], Saito andToriwaki use theOðAvg:ndÞREDT process
to extract the skeleton Sk. Using the optimal REDT algorithm
proposed in the previous section, we obtain an algorithm to
compute Sk inOðndÞ, which is optimal for the problem.

In the 2D case, let us consider a binary shape and its
skeleton Sk. We denote by fF xðiÞgi¼0::N the sequence of
parabolas given by the intersection between the Sk elliptic
paraboloids and the column j of the image. Hence, each
parabola is such that F xðiÞ ¼ fðx; jÞ � ði� xÞ2. In this one-
dimensional case, the differences between Sk and the
discrete medial axis (DMA for short) are illustrated in
Fig. 9a: fD;Eg belong to Sk, whereas only D belongs to the
discrete medial axis. Another illustration of the differences
between DMA and Sk is presented in Fig. 10.

In the following, we detail a time optimal algorithm to
extract a discrete medial axis from Sk.

We denote by Dx the disk associated with F xðiÞ (i.e., a
segment in the one-dimensional case). Furthermore, we
consider the discrete disk Dx associated with Dx as the set
of discrete points contained in Dx. To consider discrete
maximal disk in Sk, we have to remove all points x such that
Dx is not maximal. Given two parabolas of centers x and x0,
we have a simple test, denoted Inclðx; x0Þ, to decide if Dx

contains Dx0 (we just compare the ends of the segments). Let
us denote by ½ly; ry� the interval given by a disk Dy. We
consider the list L of parabolas sorted according to the left
extremity of the segments. If some parabolas have the same
left extremity coordinate, we sort such parabolas according to
the right extremity position (see Fig. 9a, right ). Ifndenotes the
size of the column j in the image, the listL can be computed in
OðnÞ (we store the extremities in two arrays of size n during
the scan of the parabolas). If two segments are identical, we
remove one of them and we label the other one with a flag
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Fig. 8. Illustration for Corollary 1: The maximal ball defined by B does

not belong to Sk. Fig. 9. An illustration of the difference between the skeleton Sk and the
discrete medial axis. (a) Dashed segments indicate Euclidean balls
fDxg and plain segments represent the discrete balls fDxg.
(b) Pseudocode for the reduction process of Sk points and illustration
of the algorithm (arrows indicate the order in L or in s).

Fig. 10. (a) From left to right, a simple binary shape with its SDT, the points in Sk, and its discrete medial axis. (b) Illustration of the elliptic

paraboloids in Sk.



“double” (see Definition 4). Using L, we have a simple
algorithm, presented in Fig. 9b, to remove all points that do
not belong to the DMA from the set fF xðiÞg. In this process,
we scan the parabolas according to theLorder and we test the
inclusion of two consecutive parabolas in a greedy algorithm.
Hence, the computational cost of this algorithm is OðnÞ and
the resulting set of parabolas is stored in the array s. The
correctness of this algorithm is given by the following
proposition:

Proposition 2. The associated disk of a parabola is maximal if
and only if the parabola belongs to s at the end of the process.

Proof. First of all, if the list L is reduced to one parabola, the
associated disk is maximal and it belongs to s. We prove
the proposition by induction. Let us consider the step k
(k � 1) in the algorithm in Fig. 9b. We suppose that, at this
point, s contains the maximal disk of the parabolas in
fLðiÞg0�i�k and we consider the disk ½u; v� of the parabola
Lðkþ 1Þ. Note that the order of parabola in s is the same as
the order of parabola inL. We denote by ½m;n� the segment
associated with s½q� (last inserted parabola in s). If the test
Inclðs½q�;Lðkþ 1Þ) is true, the segment ½m;n� contains the
segment ½u; v� and, so, Lðkþ 1Þ is not maximal and this
parabola is not inserted in s. If we suppose that the
inclusion test fails, Lðkþ 1Þ is inserted in s. First of all, the
segment ½u; v� cannot contain a segment in s. Indeed, by the
definition ofL, if a parabolaxprecedes the parabolax0 inL,
then the segment associated with x0 cannot contain the
segment associated with x. Hence, Lðkþ 1Þ does not
change the maximal property of the segments in s. To
complete the proof, we show that, if the test fails, no
segment in s contains the segment ½u; v�. Let us consider a
segment ½a; b� in s such that ½a; b� contains ½u; v� and such
that the segment ½a; b� is not associated with s½q�. So, we
have b � v and a � u. If the inclusion test fails between
½u; v�and ½m;n�, then v > n (we haveu � mby construction
ofL). Hence, we have b > v. This leads to the contradiction
that ½a; b� contains ½m;n� because the segments in s are
supposed to be maximal. Finally, it is sufficient to consider
the inclusion test between Lðkþ 1Þ and the last inserted
parabola in s to construct the set of maximal disks from the
set fLðiÞg0�i�kþ1. tu

In higher dimensions, we apply this process to each
dimension and we define the reduced discrete medial axis
as follows:

Definition 4 (Reduced Discrete Medial Axis). Let P be a
binary shape in dimensiond andQ the SDT ofP . We considerSk
the Saito and Toriwaki’s skeleton of P . The reduced medial axis
(RDMA for short) is the set of points ði; jÞ such that there exists
at least one row in one of the d dimensions in which the parabola
associated with ði; j; qði; jÞÞ is preserved and not labeled
“double” during the one-dimensional reduction process.

Theorem 1. Let P be a binary shape in an image of dimension d
with nd grid points; the RDMA is a subset of the discrete medial
axis of the shape, it has the reversibility property and the RDMA
extraction is in OðndÞ.

Proof. According to Corollary 1, Sk is a subset of the
continuous medial axis of the shape. Let us consider a
discrete ballB, we prove that, ifB is preserved at the end of
the reduction process, then B belongs to the discrete

medial axis. If we suppose that B is not maximal in the
discrete case, there exists another ball B0 such that B0

contains B. During the process, in each dimension, the
segments associated with B will either be removed or
labeled “double” because they are contained in B0 seg-
ments. Hence, the ballBwill be removed from Sk. Finally,
all resulting balls are maximal in the discrete plane.
Furthermore, since the parabola removal process between
two parabolas maintains the reversibility property, the
final result allows us to reconstruct the shape. Concerning
the computational cost, the Sk computation is done in
OðndÞ and, for each row in each dimension, the one-
dimensional step computational cost is linear in the
number of parabolas in the row. Hence, the global cost of
the reduction process is linear in the number of points inP ,
which is optimal for the problem. tu

4.4 Results

For both the REDT and skeleton extraction algorithms in
dimensions 2 and 3, Figs. 11 and 12 present results on several
2D and 3D shapes. In these figures, we compare the RDMA
proposed in Section 4.3 to the Sk set presented in Section 4.2.

The overall process can be sketched as follows: Given an
input object, we first compute the SDT using the algorithm
presented in Fig. 3. Then, we use the REDT algorithm of Fig. 5
and the parabola upper envelope computation process to
construct the Sk set. Finally, we use the RDMA extraction
process presented in Section 4.3 to obtain the final set of balls.
All of these algorithms have time optimal computational
costs and C++ implementations are available.1

As expected, the RDMA contains fewer points and, thus,
is a more compact reversible representation of the binary
shapes. Table 1 gives details on the efficiency of the RDMA
representation in the number of necessary information to
have a lossless encoding of binary input shapes.

5 DISCUSSION

In this section, we link the REDT computation and RDMA
extraction to classic tools in computational geometry and

COEURJOLLY AND MONTANVERT: OPTIMAL SEPARABLE ALGORITHMS TO COMPUTE THE REVERSE EUCLIDEAN DISTANCE... 7

1. http://liris.cnrs.fr/david.coeurjolly/Code/DistanceTransformation.

Fig. 11. Results of medial axis extraction in 2D: The first row presents
the input binary shapes, the second row shows the Sk sets (white
pixels), and last the row shows the RDMA points.



we will adapt some methods and objects from the
computational geometry field for shape filtering.

5.1 Computational Geometry in the DT and MA
Extraction Problems

First, we detail the links between the EDT and the
construction of a Voronoi diagram [12], [14], [15].

Given a set of sitesS ¼ fsig in IR2, the Voronoi diagram is a
decomposition of the plane into cells C ¼ fcig (one cell ci �
IR2 per site si) such that, for each point p in the (open) cell ci,
we have dðp; siÞ < dðp; sjÞ for i 6¼ j. In other words, p is closer
to the site si than to any other site sj [39]. Let VS denotes the
Voronoi diagram of S. We define the Voronoi labeling denoted
VS as the intersection between ZZ2 and VS . In other words, we
assign to each grid point of the plane the index of the Voronoi
cell containing it. We also consider the closed cells defined by
c�i ¼ fp 2 IR2; dðp; siÞ � dðp; sjÞg. The cell boundaries corre-
spond to the loci of points equidistant to two or more sites. In
the discrete plane, we can define a Voronoi labeling by
assigning to each grid point the index of a Voronoi cell
containing it. For grid points which are situated on the

boundaries of the Voronoi diagram, the index of one of the

neighboring cells is chosen arbitrarily.
If we now consider now a binary object P and its

background �P , it is clear that, from the Voronoi labeling V �P

of grid pointsP , we can extract the EDT ofP . Indeed, if p 2 P :

EDT ðpÞ ¼ dðp; V �P ðpÞÞ: ð15Þ

Hence, in the literature, we may find algorithms that

compute the EDT based on a Voronoi labeling construction

[12], [13], [15], [40]. We may also find algorithms that extract

the Voronoi labeling from the EDT [16], [41].
In the following, we show that both the REDT computa-

tion and the RDMA extraction are based on a Power diagram

(also known as the Laguerre diagram) construction [42]. First,

we consider a set of sites S ¼ fsig such that each point si is

associated with a radius fðiÞ. The power �iðpÞ of a point p in

the plane according to the site si is given by:

�iðpÞ ¼ dðp; siÞ � fðiÞ2: ð16Þ

If �iðpÞ < 0, p belongs to the disk of center si and radius fi. If

�iðpÞ > 0, p is outside the disk. The power diagram is a kind of

Voronoi diagram based on the metric induced by �. Hence,

the power diagram V0S is a decomposition of the plane into

cells C0 ¼ fc0ig associated with each site si such that:

c0i ¼ fp 2 IR2 : �iðpÞ < �jðpÞ; i 6¼ jg: ð17Þ

Note that the cell c0i associated with a site si may be empty;

otherwise, c0i is a convex cell (see Fig. 13). The power

diagram is a common tool in computational geometry when

a geometry of spheres or hyperspheres must be taken into

account [42], [43], [44].
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Fig. 12. Results of medial axis extraction on 3D objects: The first row
presents the input binary shapes, the second one shows the Sk sets,
and the last one shows the RDMA points.

TABLE 1
Efficiency of the RDMA Representation of the

3D Binary Objects Presented in Fig. 12

Fig. 13. (a) Power diagram of two sites with associated radii. (b) Illustration of the power diagram using elliptic paraboloids.



In the following, we define the power labeling V 0S as the
power diagram labeling of grid points. More precisely, we
assign to each grid point of the plane the index of the cell
containing it in the power diagram V0S . Let us consider a

binary shape P and its discrete medial axis (or RDMA)L (see
Section 3). Note that a radius is associated with each point inL.

Proposition 3. Let p be a discrete point and i the index of the cell
V 0LðpÞ, p belongs to the shape P iff:

�iðpÞ < 0: ð18Þ

Proof. The proof is straightforward since (10) is the opposite
of (16). Furthermore, (6) can be rewritten as:

P ¼ fp 2 ZZ2 j f��iðpÞg > 0g: ð19Þ

tu

Using Proposition 3, we can link the REDT to the
computation of nonempty cells in the power labeling.

There is another strong analogy between the power
diagram and RDMA extraction: As depicted in Fig. 13b, the
power diagram can be constructed by the intersection
between the plane z ¼ 0 and the lower envelope of elliptic
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Fig. 14. The bisector angle at a point s of the MA is defined by the angle

dp0sp1, where p0 and p1 are the contact points between the maximal ball

centered at s, with radius �ðsÞ and the shape boundary.

Fig. 15. Illustration of the filtering process in 2D: (a) The filtering graph (the x-axis represents the normalized � values and the y-axis is the normalized

� values are the covering and radius measures). (b) The original shape with its RDMA (38 points), the power labeling (pixels with same gray value

belong to the same cell), and fine to coarse reconstructions (with 9, 2 points and 1 point).

Fig. 16. Illustration of the filtering process in 3D: Distribution of RDMA points according to the values �ðpÞ and �ðpÞ and coarse to fine reconstructions.

The thresholds are given in Table 2.



paraboloids defined by the power functions in (16). This
illustration corresponds to the RDMA extraction algorithm
in which we consider opposite elliptic paraboloids. Further-
more, if a disk A (with center pa and radius fðaÞ) contains a
disk B (with center pb and radius fðbÞ), then the cell of pb is
empty in the power diagram of points pa and pb. Hence, we
have an equivalence between maximal disks in the
continuous plane and empty cells in the power diagram.

Finally, if P is a discrete shape where pixels are
associated with their SDT and if V0P is the power diagram
of such points, then the set Sk as defined in Section 4 is the
set of sites in V 0P such that V0P \ P 6¼ ;.

Finally, the RDMA corresponds to a subset of these sites
according to the filtering procedure detailed in Section 4.3.

5.2 An Application to the Euclidean Discrete Medial
Axis Filtering

In this section, we illustrate the use of the power diagram to
process DMA points. In this case, we propose a efficient
filtering process of MA points whatever the dimension is. In
some applications, the MA or the DMA suffer from the
presence of nonsignificant branches due to noises on the
object boundary. If we consider nonreversible characteriza-
tions of the object, it may be interesting to filter MA balls up to
a relevance criterion. Usually, the radius of the balls is one of
these criterions. In dimensions 2 and 3, the bisector angle can
also be used [37], [23] (see Fig. 14). However, generalizations
to higher dimensions are not trivial. Note that the filtering
processes discussed here do not provide a control on the
global connectivity of the reconstructed shape.

In this paper, we propose a simple filtering process
based on two criteria defined whatever the dimension.
Given an object P and for each point p in the RDMA, we
define two measurements:

. the thickness, �ðpÞ, is the radius of the ball;

. the covering, �ðpÞ, corresponds to the number of grid
points in the cell associated with p in the power
labeling of all RDMA points in P .

The thickness allows us to remove small balls, whereas
the covering measurement �ðpÞ represents the importance
of the ball in the shape according to all other balls: If the
area of the cell at p is small, then the ball centered at p is
covered by the neighboring balls. If we remove p from the
RDMA, the difference in the number of grid points between
the original object and the reconstructed one is bounded by
�ðpÞ. This geometrical interpretation of the �ðpÞ values is
interesting to control the filtering quality.

Note that �ðpÞ can be normalized by the diameter of the

shape and �ðpÞ by the area of P .
The filtering process considers two thresholds, �0 and �0,

and a ball centered at p belongs to the filtered medial axis if:

�ðpÞ � �0 and �ðpÞ � �0: ð20Þ

Given a binary object in an image of dimension d with
nd grid, we have presented in Section 4.3 an OðndÞ algorithm
to extract the RDMA. Since the power labeling of RDMA
points in P corresponds to the extraction of the upper
envelope of d-dimensional elliptic paraboloids, the measure-
ments � and � can be computed in linear time in the number
of grid points.

Figs. 15 and 16 present some results of the filtering
process in dimensions 2 and 3. In Fig. 15, the rectangular

areas in graphs contain the RDMA points that are removed
during the filtering. The thresholds used and the obtained
number of balls are presented in Table 2. On 3D examples,
Table 2 also contains the size of the reconstructed shapes in
the number of voxels.

6 CONCLUSION

In this paper, we first have optimized the REDT computation
algorithm and have obtained a computation cost inOðndÞ for a
d-dimensional image which is time optimal (nd is the total
number of grid points). Then, we have presented a
d-dimensional reversible RDMA extraction algorithm in
OðndÞ. We have proven that the proposed RDMA is a subset
of the classic discrete medial axis of the shape. Beside these
theoretical results, we have also detailed algorithms and
provided a reference to C++ implementations. In the
discussion, we have illustrated the strong links between the
DT and the MA problems and classic problems in computa-
tional geometry. Based on these results, we have proposed a
simple but efficient filtering process of d-dimensional RDMA
using two parameters to control the shape of the recon-
structed object.

In future works, we expect other optimizations of the
RDMA extraction process to reduce the number of points. The
final goal of this optimization should be to compute the
optimal reversible skeleton of a shape (in the sense of having a
minimal number of points, see [35], [36] for related papers).
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TABLE 2
Results in Number of RDMA Points of the Filtering Process

of the Objects in Fig. 15a and in Fig. 16, right

Note that if thresholds are (0, 0), no RDMA points are removed.



Furthermore, the presented links between MA and computa-

tional geometry objects suggest many other developments to

improve the description of a shape using different metrics or

high-level features based on the union of maximal balls.
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