A Privacy Preserving Prediction-based Routing Protocol for Mobile Delay Tolerant Networks

Omar Hasan, Jingwei Miao, Sonia Ben Mokhtar, Lionel Brunie

University of Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France E-mail: {omar.hasan, jingwei.miao, sonia.benmokhtar, lionel.brunie}@insa-lyon.fr

October 18, 2013

Probability that Alice will Encounter another User

User	Probability
Bob	20%
Carol	80%
Dave	0%
Eve	90%
Frank	50%

- Mobile Delay Tolerant Networks (MDTNs)
- The Privacy Challenge
- Privacy Preserving Prediction-based Routing (3PR)
- Experimental Evaluation
- Onclusion and Future Work

Characteristics

- Nodes are mobile
- Nodes communicate via short range wireless communication technologies, e.g., Bluetooth
- Fixed communication infrastructure is not utilized
- An end-to-end routing path may not exist between the source node and the destination node of a message

Store-Carry-and-Forward

• A message is stored by intermediary nodes and forwarded to nodes closer and closer to the destination node until it is eventually reached

Direct Delivery

- The source node forwards the message only to the destination node
- Low delivery ratio and latency
- Low delivery cost: only one message copy

Epidemic

- A node forwards a copy of the message to every other node that it encounters
- High delivery ratio and latency
- High delivery cost: large number of message copies

Prediction-Based Routing Protocols

• Try to predict the shortest path based on the mobility patterns of nodes

Routing Mechanism

- A node *u* forwards the message to a node *v* if the probability of *v* encountering the destination node *d* is higher than the probability of *u* encountering *d*
- The probability that a node with a copy of the message will encounter the destination node continues to rise until the message is delivered

Literature

- Bubble [Hui et al. 2011], Habit [Mashhadi et al. 2009], PRoPHET [Lindgren et al. 2003]
- Prediction-based routing protocols perform better than other protocols when nodes exhibit well known mobility patterns [Chaintreau et al. 2007]

Loss of Private Information

- Prediction-based routing protocols compromise the privacy of nodes by revealing their mobility patterns
- Nodes must divulge the probability that they will encounter the destination

Our Objective

• Take advantage of prediction-based routing, however, reduce the loss of private information

Communities

- 3PR is intended for environments in which nodes belong to communities
- Assumption: the nodes in a community are frequently physically collocated and thus the probability of successful message delivery within the community is high

Basic Ideas of 3PR

- 3PR hides the probability that a node will encounter the destination node
- Nodes compare the maximum of probabilities that nodes in their communities will encounter the destination node instead of comparing individual probabilities

Intra-Community Routing

- 3PR disseminates messages inside a community using the epidemic protocol
- Preserves the privacy of nodes by construction
- Efficient for small communities

Inter-Community Routing

- Nodes from different communities compare the **maximum probability in their community** that a given node will encounter the destination
- The maximum probability in a community is periodically computed by the nodes that belong to that community using our Private Maximum protocol

Loss of Private Information bounded by the Maximum

- The adversary learns that node *u*'s probability of encountering the destination node is no higher than the maximum
- However, the adversary can learn whether node *u* is the one who has the maximum, no better than a random guess with probability 1/h, where *h* is the number of honest nodes in the community

Private Maximum

• Take a private input from each node and find the **maximum** without revealing any of the private inputs

- Private inputs: 90, 92, 79
- Maximum: 92

Literature for Private Maximum and Private Sum

- Kreitz et al. 2010
- Sheikh and Mishra 2010
- Hasan et al. 2012

Challenges

- No Trusted Third Parties (TTPs) can be assumed
- Nodes have no prior knowledge of connected nodes (the nodes that they will encounter)
- Messages may arrive after long and variable delays

Protocol: Step 1

Each node represents its private number in binary form

Node	Private	Binary			
	Number				
u	90	1011010			
V	92	1011100			
W	79	1001111			

Protocol: Steps 2–7

- Occupate the sum of the Most Significant Bits (MSBs)
- I A node *u* does not have the maximum if its MSB is zero but the sum is not zero
- Sode u submits zero to all subsequent sums
- Occupie the sum of the next MSBs
- Ontinue until the least significant bit
- O The node with the maximum learns this fact

Nodo	Privato	Binary	Most Significant Bit Subm					itted	
Noue Private	ыпагу	6 th	5 th	4 th	3 rd	2 nd	1 st	0 th	
и	90	1011010	1	0	1	1	0	0	0
V	92	1011100	1	0	1	1	1	1	0
W	79	1001111	1	0	0	0	0	0	0
Sum of Bits:		3	0	2	2	1	1	0	

Protocol: Steps 8–10

- Ocompute the sum of the private numbers; the node with the maximum submits its true input
- **O** Compute the sum of the private numbers; the node with the maximum submits zero
- Occupie the difference of the two sums to obtain the maximum

Node	Private Number
и	90
V	92
W	79
Sum Round 1 (Node v inputs the maximum):	261
Sum Round 2 (Node v inputs 0):	169
Difference = Maximum:	261 - 169 = 92

Private Sum

• Take a private input from each node and compute the **sum** without revealing any of the private inputs

- Private inputs: 90, 92, 79
- Sum: 261

Protocol: Steps 1–3

- The initiating node floods an *init* message to all nodes in the community
- **(a)** When a node *u* encounters another node *v* in its community, *u* sends a random number r_{uv} to *v*, and *u* receives a random number r_{vu} from *v*
- After node u has encountered k nodes, the node computes the sum of its private number and all random numbers received minus all random numbers sent

Node *u*'s Individual Sum

$$\sigma_u = p_u + \sum_{j=1}^k r_{vu} - \sum_{j=1}^k r_{uv}$$

Protocol: Steps 4-6

- Node u sends σ_u to the initiating node
- O The initiating node waits for individual sums from all nodes in the community
- O The initiating node computes the final sum

Mobility Model

- Simulations based on a well established community-based mobility model [Spyropoulos et al. 2006, Dang et al. 2010]
- Each community is associated with a geographical area
- The movement of a node consists of a sequence of *local* and *roaming* epochs

State Transition between Local and Roaming Epochs

Simulation Settings

Parameter	Value
Simulation area	$3000 \times 1500 \text{ m}^2$
Transmission range	10 m
Simulation duration	12 hours + TTL
Message generation rate	1 message every 30 seconds
Number of communities	12
Number of nodes in a community	Between 10 and 50
Node speed	1.34 m/s
PI	0.8
P _r	0.2

Delivery Ratio

Delivery Cost

Delivery Latency

Conclusion

- Nodes compare the maximum probabilities that nodes in their communities will encounter the destination node instead of comparing individual probabilities
- Private Maximum and Private Sum protocols that do not rely on trusted third parties, do not assume prior knowledge of neighbor nodes, and assume long and variable message delays
- Comparable performance to existing prediction-based routing protocols

Future Work

- Analysis of the house keeping costs
- A protocol that hides even the maximum probability
- A protocol that compares the probability that any given node in a community will encounter the destination node