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Context

● Data security
○ Confidentiality, Integrity,  Availability,…

● Materialized views

○ Used in decision and distributed systems: Data 
warehouses, Mediators, …

○ Store the results returned by a query
■ They can be used as any other table.

➔ Ensuring confidentiality of materialized view data is 
also important.
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Problem Statement

● How to ensure Security at the materialized view level?
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Related Work
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Granularity Derived access control 

policies

[Ros&Sci IFIP’01] Coarse Defined on base relations

[Cuz&al. IDEAS’10] Fine Defined on base relations

Our approach Fine Defined on MVs



Our approach
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Desired Properties
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● Security: The generated views should not give access to 
information that are not allowed by the basic authorization 
views. 

● Maximality: Generated views should return as much 
information as possible, while satisfying the secure property.



Access control policies

● Fine grained Access Control model based on 
“Authorization Views” [Riz&al. SIGMOD’04].
○  Authorization views are logical tables that specify exactly 

the accessible data, either drawn from a single table or 
from multiple tables.

○ An authorization view can be a traditional relational view 
or a parameterized view
■ Allowing fine grained authorization at the cell-level.
■ Parameterized views provide an efficient and powerful way of 

expressing fine grained authorization policies.
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Access control policies - Example

Relations:
patients (IdP, IdD, Snum, Pname, Pfname, Disease).

Create authorization view  patients_info  as
SELECT Pname, Pfname 

FROM patients

WHERE Snum = 1;

Datalog:
patients_info (Pname, Pfname) ← 

patients (IdP, IdD, Snum, Pname, Pfname, Disease),
Snum = 1;

 8



Access control policies

●  Authorization-transparent querying 
○ A Query makes reference to base relations 
○ System can

■ Accept the query,  if it can rewrite it using only authorization views

■ Reject the query

● Directly Querying only the authorization views

● Our proposal is independent of the way the MV(s) are 
accessed.
○ We assume in our approach that the user can query only the authorization 

views.
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Information non-disclosure

 

● Determine which set of tuples can be accessed 
without disclosure information.

Authorization view:
 av(x’) ← patients(x’,y’).

Materialized view definition:
mv(x) ← patients(x,y), emergency(x,y).

Authorization view on the materialized view:
   avmv(x) ← mv(x).

● There is no authorized access to mv to ensure the information 
non-disclosure.
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HMiniCon Algorithm

 

● Adaptation of a query rewriting algorithm to the 
security context.

● MiniCon algorithm:  proposed as an efficient method 
for answering queries using views [Pot&Lev VLDB’00] .
○  It takes as input a query q and a set of views V and 

calculates all possible rewritings of q using views in V, such 
that:

rw c q
● Condition: Each rewriting must have the same head 

variables as the query.
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Why adapt MiniCon?
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Query:
q(x,y) ← patients(x,y).

Views:
 v(x’) ← patients(x’,y’).

● For the traditional MiniCon Algorithm, this view is not 
relevant.
○ The condition regarding the head variables is not satisfied.

● In the security context, this view is relevant
○ Conjunctive rewriting: rw(x) ← v(x).

➔ First adaptation:  Relaxing the condition on the head variables.
➔ Second adaptation:  Adding variables that are newly 

introduced in the rewriting as head variables.



Double rewriting
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● It Exploits a double query rewriting based on the 
HMiniCon query rewriting algorithm.

● It takes as input a set Q of queries to be rewritten and 
two sets of views AV and MV
➔ Q:  Complete queries on MV
➔ AV:  Authorization views
➔ MV:  Materialized views definitions



HMiniCon+

14 

Subsumption test :
If rw contains q

Queries (Full access on MV)

For each query q

For each rewriting rw

No

Yes

Generated views

A
dd

 rw
 to

 q
ue

rie
s

Rewriting using AV

Rewriting using MV



Properties of HMiniCon+ Algorithm
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Security property
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Property: Given the three sets AV, MV and AVMV (the set 
of generated views by HMiniCon+ algorithm), For each 
query  on AVMV,  there exists: 

qAVMV ≡ qAV et 

qAVMV  ≡  qMV



Termination
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● Rewriting tree
● Atom tree
● History of a node



Rewriting Tree
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● Let q be a query to rewrite, AV and 
MV are two sets of views. The 
rewriting tree associated with q is 
defined as follows:
○ The root is the query q.
○ The nodes of depth k+1 are rewritings 

generated by the HMiniCon  

algorithm by rewriting nodes of 
depth k using the set  AV or MV.  

○ A node nk+1is a child of a node nk if 
nk+1 is a rewriting of nk.

Views returned by 
the algorithm

q

rw12

rw23

rw32

rw41

rw13rw11

rw21 rw22

rw31



Atom tree
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● Given a branch X = B0,B1,... of 
a rewriting tree RT , the atom 
tree AT of RT is defined as:
○ The root is an anonymous 

node r.
○ Nodes at depth k+1 are 

occurrences of atoms of Bk, 
noted gk.

○ gk+1is a child of gk of type:
➔ Direct:  If it is mapped to gk at the 

construction of the rewriting
➔ Indirect: If gk+1 belongs to the 

expansion of view v used to 
rewrite gk and gk+1 has no Direct 
parent.

patients (x,y)

treatments (y1, z2)patients (x, y1)

patients (x, y1) treatments (y1, z3)     doctors (z3, t1)

Direct child

Indirect child

Anonymous node

q

rw12

rw23



Potential infinite loop in the rewriting process 
Example 1
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MV: 
mv1 (x,y) ← r1 (x,y).
mv2 (x,y) ← r2(x,y),r1(y,z).

AV: 
av1 (x,y) ← r1(x,y),r2(y,z).
av2 (x,y) ← r2(x,y).

 

r1 (x,y)

r1 (x, y1) r2 (y1, y2)

r1 (x, y1) r2 (y1, y3) r1 (y3, y4)

r1 (x, y5) r2 (y5, y3) r1 (y3, y6) r2 (y6, y7)

r1 (x, y5) r2 (y5, y8) r1 (y8, y6) r2 (y6, y9) r1 (y9, y10)

av1 

mv2 

av1 

mv2 



 21

 MV: 
mv1(x,y) ← r1(x,y),r3(y,z).
mv2(x,y) ← r2(x,y).
mv3(x,y) ← r3(x,y).

AV: 
av1(x,y) ← r1(x,y),r2(y,z).
av2(x,y) ← r2(x,y).
av3(x,y) ← r3(x,y).

r1 (x,y) r3 (y,z1)

r1 (x,y) r2 (y, z2) r3 (y, z1)

r3 (y, z3) r2 (y, z2) r3 (y, z1)

r2 (y, z4)

r1 (x,y) r3 (y, z5) r2 (y, z4)

r2 (y, z2)

r2 (y, z2)

r3 (y, z1)

r3 (y, z1)

r3 (y, z3)

r3 (y, z3)

r1 (x,y)

r1 (x,y)

av1 

mv1 

av1 

mv1 

Potential infinite loop in the rewriting process 
Example 2



Node information
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● For each node, we have:
○ view(gk+1) = v;
○ cpos(gk+1) the position of 

the atom matching gk+1in v;
○ ppos(gk+1) the position of 

the atom matching gk in v;
○ type(gk+1) = Direct or 

Indirect

patients (x,y)

treatments (y1, z2)patients (x, y1)

patients (x, y1) treatments (y1, z3)     doctors (z3, t1)

Direct child

Indirect child

View: av1

Cpos: 2
Ppos:1

Anonymous node



History of nodes

● For each node g in AT except for the root, History(g) is 
a list defined as follows:
○ if g is a child of the root, then History(g) = [pos] where pos 

is the position of g in the query;
○ if type(g) = Indirect then: 
History(g) = History(parent(g)) + [(view(g),cpos(g),ppos(g))]

○ otherwise, History(g) = History(parent(g))
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History of nodes - Example
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r1 (x,y)

r1 (x, y1) r2 (y1, y2)

r1 (x, y1) r2 (y1, y3) r1 (y3, y4)

r1 (x, y5) r2 (y5, y3) r1 (y3, y6) r2 (y6, y7)

r1 (x, y5) r2 (y5, y8) r1 (y8, y6) r2 (y6, y9) r1 (y9, y10)

[1,[av1,1,2]]

[1,[av1,1,2],[mv2,1,2] ,[av1,1,2]]

[1]

[1]

[1,[mv1,1,2],[av2,1,2]]

av1 

mv2 

mv2 

av1 



Real VS Virtual nodes
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r1 (x,y) r3 (y,z1)

r1 (x,y) r2 (y, z2) r3 (y, z1)

r3 (y, z3) r2 (y, z2) r3 (y, z1)

r2 (y, z4)

r1 (x,y) r3 (y, z5) r2 (y, z4)

r2 (y, z2)

r2 (y, z2)

r3 (y, z1)

r3 (y, z1)

r3 (y, z3)

r3 (y, z3)

r1 (x,y)

r1 (x,y)

Real node

Virtual node

[1,[mv1,1,2]]



Termination under constraints
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Theorem 1 Let us consider a query q and two sets of 
views AV and MV. If for every branch X of the effective 
rewriting tree RT (q) generated by HMiniCon+(q, AV, MV) 
and for every node g of the atom tree AT of X, History
(g) does not contain any duplicate triple, then RT is 
finite.



Maximality property

 27

Property: Given the three sets AV, MV and AVMV (the set 
of generated views by HMiniCon+ algorithm) and for each 
query on AV and each query on MV, such that: 

qAV≡ qMV

Then, there exists a query on AVMV, such that:

qAVMV ≡ qAV ≡ qMV



Conclusion
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● An automated method to generate access control 
policies for materialized views.

● An adaptation of a query rewriting algorithm.
● Conjunctive queries with equalities
● A secure and maximal approach

● Study the maximality property in case of infinite 
rewrting trees

● Queries with aggregate functions..
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