
Securing Materialized Views:
a Rewriting-Based Approach

Sarah Nait Bahloul, Emmanuel Coquery and Mohand-Saïd Hacid

Université de Lyon, France

 First Franco-American Workshop Security

Outline

� Context
� Problem statement
� Related work
� Authorization views
� Rewriting-based approach
� Approach properties

� Security
� Termination
� Maximality

� Conclusion

1

Context

● Data security
○ Confidentiality, Integrity, Availability,…

● Materialized views

○ Used in decision and distributed systems: Data
warehouses, Mediators, …

○ Store the results returned by a query
■ They can be used as any other table.

➔ Ensuring confidentiality of materialized view data is
also important.

 2

Problem Statement

● How to ensure Security at the materialized view level?

 3

DB

Access
Control

Policies on DB

Query

User

Query
EvaluationQuery

MV

Views Definition

Access
Control

Policies on MV

Inference

Related Work

 4

Granularity Derived access control

policies

[Ros&Sci IFIP’01] Coarse Defined on base relations

[Cuz&al. IDEAS’10] Fine Defined on base relations

Our approach Fine Defined on MVs

Our approach

 5

DB
Authorization
views on DB

(AV) MV ?

Definition of MVs

HMiniCon+ Algorithm

Query evaluation

➔ Relational framework
➔ Conjunctive queries by

allowing equalities

Definition of MV

Set of authorization views based on MV

Authorization
views on MV

➔ HMiniCon: MiniCon
algorithm in the security
context

Desired properties: Secure and Maximum

Desired Properties

 6

● Security: The generated views should not give access to
information that are not allowed by the basic authorization
views.

● Maximality: Generated views should return as much
information as possible, while satisfying the secure property.

Access control policies

● Fine grained Access Control model based on
“Authorization Views” [Riz&al. SIGMOD’04].
○ Authorization views are logical tables that specify exactly

the accessible data, either drawn from a single table or
from multiple tables.

○ An authorization view can be a traditional relational view
or a parameterized view
■ Allowing fine grained authorization at the cell-level.
■ Parameterized views provide an efficient and powerful way of

expressing fine grained authorization policies.

 7

Access control policies - Example

Relations:
patients (IdP, IdD, Snum, Pname, Pfname, Disease).

Create authorization view patients_info as
SELECT Pname, Pfname

FROM patients

WHERE Snum = 1;

Datalog:
patients_info (Pname, Pfname) ←

patients (IdP, IdD, Snum, Pname, Pfname, Disease),
Snum = 1;

 8

Access control policies

● Authorization-transparent querying
○ A Query makes reference to base relations
○ System can

■ Accept the query, if it can rewrite it using only authorization views

■ Reject the query

● Directly Querying only the authorization views

● Our proposal is independent of the way the MV(s) are
accessed.
○ We assume in our approach that the user can query only the authorization

views.

 9

Information non-disclosure

● Determine which set of tuples can be accessed
without disclosure information.

Authorization view:
 av(x’) ← patients(x’,y’).

Materialized view definition:
mv(x) ← patients(x,y), emergency(x,y).

Authorization view on the materialized view:
 avmv(x) ← mv(x).

● There is no authorized access to mv to ensure the information
non-disclosure.

 10

HMiniCon Algorithm

● Adaptation of a query rewriting algorithm to the
security context.

● MiniCon algorithm: proposed as an efficient method
for answering queries using views [Pot&Lev VLDB’00] .
○ It takes as input a query q and a set of views V and

calculates all possible rewritings of q using views in V, such
that:

rw c q
● Condition: Each rewriting must have the same head

variables as the query.

 11

Why adapt MiniCon?

 12

Query:
q(x,y) ← patients(x,y).

Views:
 v(x’) ← patients(x’,y’).

● For the traditional MiniCon Algorithm, this view is not
relevant.
○ The condition regarding the head variables is not satisfied.

● In the security context, this view is relevant
○ Conjunctive rewriting: rw(x) ← v(x).

➔ First adaptation: Relaxing the condition on the head variables.
➔ Second adaptation: Adding variables that are newly

introduced in the rewriting as head variables.

Double rewriting

 13

● It Exploits a double query rewriting based on the
HMiniCon query rewriting algorithm.

● It takes as input a set Q of queries to be rewritten and
two sets of views AV and MV
➔ Q: Complete queries on MV
➔ AV: Authorization views
➔ MV: Materialized views definitions

HMiniCon+

14

Subsumption test :
If rw contains q

Queries (Full access on MV)

For each query q

For each rewriting rw

No

Yes

Generated views

A
dd

 rw
 to

 q
ue

rie
s

Rewriting using AV

Rewriting using MV

Properties of HMiniCon+ Algorithm

 15

Security property

 16

Property: Given the three sets AV, MV and AVMV (the set
of generated views by HMiniCon+ algorithm), For each
query on AVMV, there exists:

qAVMV ≡ qAV et

qAVMV ≡ qMV

Termination

 17

● Rewriting tree
● Atom tree
● History of a node

Rewriting Tree

 18

● Let q be a query to rewrite, AV and
MV are two sets of views. The
rewriting tree associated with q is
defined as follows:
○ The root is the query q.
○ The nodes of depth k+1 are rewritings

generated by the HMiniCon

algorithm by rewriting nodes of
depth k using the set AV or MV.

○ A node nk+1is a child of a node nk if
nk+1 is a rewriting of nk.

Views returned by
the algorithm

q

rw12

rw23

rw32

rw41

rw13rw11

rw21 rw22

rw31

Atom tree

 19

● Given a branch X = B0,B1,... of
a rewriting tree RT , the atom
tree AT of RT is defined as:
○ The root is an anonymous

node r.
○ Nodes at depth k+1 are

occurrences of atoms of Bk,
noted gk.

○ gk+1is a child of gk of type:
➔ Direct: If it is mapped to gk at the

construction of the rewriting
➔ Indirect: If gk+1 belongs to the

expansion of view v used to
rewrite gk and gk+1 has no Direct
parent.

patients (x,y)

treatments (y1, z2)patients (x, y1)

patients (x, y1) treatments (y1, z3) doctors (z3, t1)

Direct child

Indirect child

Anonymous node

q

rw12

rw23

Potential infinite loop in the rewriting process
Example 1

 20

MV:
mv1 (x,y) ← r1 (x,y).
mv2 (x,y) ← r2(x,y),r1(y,z).

AV:
av1 (x,y) ← r1(x,y),r2(y,z).
av2 (x,y) ← r2(x,y).

r1 (x,y)

r1 (x, y1) r2 (y1, y2)

r1 (x, y1) r2 (y1, y3) r1 (y3, y4)

r1 (x, y5) r2 (y5, y3) r1 (y3, y6) r2 (y6, y7)

r1 (x, y5) r2 (y5, y8) r1 (y8, y6) r2 (y6, y9) r1 (y9, y10)

av1

mv2

av1

mv2

 21

 MV:
mv1(x,y) ← r1(x,y),r3(y,z).
mv2(x,y) ← r2(x,y).
mv3(x,y) ← r3(x,y).

AV:
av1(x,y) ← r1(x,y),r2(y,z).
av2(x,y) ← r2(x,y).
av3(x,y) ← r3(x,y).

r1 (x,y) r3 (y,z1)

r1 (x,y) r2 (y, z2) r3 (y, z1)

r3 (y, z3) r2 (y, z2) r3 (y, z1)

r2 (y, z4)

r1 (x,y) r3 (y, z5) r2 (y, z4)

r2 (y, z2)

r2 (y, z2)

r3 (y, z1)

r3 (y, z1)

r3 (y, z3)

r3 (y, z3)

r1 (x,y)

r1 (x,y)

av1

mv1

av1

mv1

Potential infinite loop in the rewriting process
Example 2

Node information

 22

● For each node, we have:
○ view(gk+1) = v;
○ cpos(gk+1) the position of

the atom matching gk+1in v;
○ ppos(gk+1) the position of

the atom matching gk in v;
○ type(gk+1) = Direct or

Indirect

patients (x,y)

treatments (y1, z2)patients (x, y1)

patients (x, y1) treatments (y1, z3) doctors (z3, t1)

Direct child

Indirect child

View: av1

Cpos: 2
Ppos:1

Anonymous node

History of nodes

● For each node g in AT except for the root, History(g) is
a list defined as follows:
○ if g is a child of the root, then History(g) = [pos] where pos

is the position of g in the query;
○ if type(g) = Indirect then:
History(g) = History(parent(g)) + [(view(g),cpos(g),ppos(g))]

○ otherwise, History(g) = History(parent(g))

 23

History of nodes - Example

 24

r1 (x,y)

r1 (x, y1) r2 (y1, y2)

r1 (x, y1) r2 (y1, y3) r1 (y3, y4)

r1 (x, y5) r2 (y5, y3) r1 (y3, y6) r2 (y6, y7)

r1 (x, y5) r2 (y5, y8) r1 (y8, y6) r2 (y6, y9) r1 (y9, y10)

[1,[av1,1,2]]

[1,[av1,1,2],[mv2,1,2] ,[av1,1,2]]

[1]

[1]

[1,[mv1,1,2],[av2,1,2]]

av1

mv2

mv2

av1

Real VS Virtual nodes

 25

r1 (x,y) r3 (y,z1)

r1 (x,y) r2 (y, z2) r3 (y, z1)

r3 (y, z3) r2 (y, z2) r3 (y, z1)

r2 (y, z4)

r1 (x,y) r3 (y, z5) r2 (y, z4)

r2 (y, z2)

r2 (y, z2)

r3 (y, z1)

r3 (y, z1)

r3 (y, z3)

r3 (y, z3)

r1 (x,y)

r1 (x,y)

Real node

Virtual node

[1,[mv1,1,2]]

Termination under constraints

 26

Theorem 1 Let us consider a query q and two sets of
views AV and MV. If for every branch X of the effective
rewriting tree RT (q) generated by HMiniCon+(q, AV, MV)
and for every node g of the atom tree AT of X, History
(g) does not contain any duplicate triple, then RT is
finite.

Maximality property

 27

Property: Given the three sets AV, MV and AVMV (the set
of generated views by HMiniCon+ algorithm) and for each
query on AV and each query on MV, such that:

qAV≡ qMV

Then, there exists a query on AVMV, such that:

qAVMV ≡ qAV ≡ qMV

Conclusion

 28

● An automated method to generate access control
policies for materialized views.

● An adaptation of a query rewriting algorithm.
● Conjunctive queries with equalities
● A secure and maximal approach

● Study the maximality property in case of infinite
rewrting trees

● Queries with aggregate functions..

Bibliography

 29

� [Ros&Sci CAISE’00] A. Rosenthal and E. Sciore. View security as the basis
for data warehouse security.

� [Cuz&al. IDEAS’10] A. Cuzzocrea, M.-S. Hacid, and N. Grillo. Effectively
and efficiently selecting access control rules on materialized views over
relational databases.

� [Pot&Lev VLDB’00] R. Pottinger and A. Y. Levy. A scalable algorithm for
answering queries using views.

� [Riz&al. SIGMOD’04] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P.
Roy. Extending query rewriting techniques for fine-grained access control.

 THANK YOU FOR YOUR ATTENTION

