
Robust BFT Protocols
Sonia Ben Mokhtar, LIRIS, CNRS, Lyon

Joint work with

Pierre Louis Aublin, Grenoble university

Vivien Quéma, Grenoble INP

18/10/2013

Who am I?
 CNRS reseacher, LIRIS lab, DRIM research group
 Fault-tolerant distributed systems

 Byzantine fault tolerance
 State machine replication (BFT)(e.g., robust BFT[ICDCS'13])

 Byzantine fault detection
 Accountability (e.g., accountable mobile systems,

performance issues in accountable systems[ongoing])
 Robustness against selfish behavior

 Game theory (e.g., RR spam filtering[SRDS'10], RR
anonymous communication[ICDCS'13], RR live
streaming[ongoing])

Who am I?
 CNRS reseacher, LIRIS lab, DRIM research group.
 Fault-tolerant distributed systems

 Byzantine fault tolerance
 State machine replication (BFT)(e.g., robust BFT[ICDCS'13])

 Byzantine fault detection
 Accountability (e.g., accountable mobile systems,

performance issues in accountable systems[ongoing])
 Robustness against selfish behavior

 Game theory (e.g., RR spam filtering[SRDS'10], RR
anonymous communication[ICDCS'13], RR live
streaming[ongoing])

 → Privacy (mobile systems, reputation/recommender
systems, systems enforcing accountability)

4

Outline

 What is BFT?

 BFT under attack: the robustness problem

 Existing robust BFT protocols

 Can we do better?

5

State machine replication

Clients

6

State machine replication

Clients

7

State machine replication

Clients

8

State machine replication

Clients

(1) Place copies of a deterministic state machine on multiple,
independent servers.

9

State machine replication

Clients

(2) Receive client requests (inputs to the state machine).

10

State machine replication

Clients

Agreement protocol

(3) Define an ordering for the inputs and execute them in the
chosen order on each server.

11

State machine replication

Clients

Agreement protocol

(4) Respond to clients with the output from the state machine.

12

BFT state machine replication

 BFT = Byzantine Fault Tolerance

 The term Byzantine dates back to the seminal paper by Lamport,
Shostak, Pease: The Byzantine Generals Problem, ACM TPLS, 1982.

 Byzantine failure = arbitrary failure

 BFT state machine replication = state machine replication that
tolerates Byzantine failures

+

crash-stop malicious

13

BFT evolution

 Lamport, Shostak, Pease: The Byzantine
generals problem, 1982

 Castro, Liskov: Practical BFT [OSDI'99]
 BFT in 2011 (a decade+ later)

 Efficient BFT: Q/U [SOSP’05], HQ [OSDI’06], Zyzzyva [SOSP’07],
Chain and Quorum [EuroSys’10]

 Cheap BFT: zz [Umass Eurosys'11]

 Robust BFT: Aardvark [NSDI'09], Spinning [SRDS'09], Prime
[DSN'08], RBFT[ICDCS'13]

14

BFT with an example: PBFT

 Message-passing with unreliable communication links

 Byzantine faults
 Any number of clients
 Less than 1/3 of replicas are faulty (optimal)

 Cryptographic techniques cannot be violated

 Eventual synchrony

15

PBFT: protocol steps

Client sends a
request

to the primary

16

PBFT: protocol steps

The primary
assigns a
seqno to the
request

17

PBFT: protocol steps

Replicas agree
on the assigned
seqno

18

PBFT: protocol steps

Replicas know 2f+1
replicas that agreed
on the proposed
seqno

19

PBFT: protocol steps

Replicas execute
the request and
reply to the client

20

Outline

 What is BFT?

 BFT under attack: the robustness problem

 Existing robust BFT protocols

 Can we do better?

21

BFT under attack: the robustness
problem

”BFT protocols do not tolerate Byzantine faults
very well” [NSDI'09]

System Peak
throughput
(req/s)

Throughput
under attack
(req/s)

PBFT 61710 0

Q/U 23850 0

HQ 7629 N/A

Zyzzyva 65999 0

22

Outline

 What is BFT?

 BFT under attack: the robustness problem

 Existing robust BFT protocols

 Can we do better?

23

Robust BFT state machine replication

 Guarantees a lower bound on performance
during uncivil executions

 Uncivil executions:
 Synchronous network
 Up to f servers and any number of clients are Byzantine

 Lower bound:
 k% of the theoretical maximum (with the same workload)
 k should be as high as possible

24

Malicious primary

25

Malicious primary

D
E
L
A
Y

26

Aardvark [NSDI'09]

 Principle: Regular primary changes
 Increasing throughput expectations
 Monitoring of the current throughput
 Change the primary when the current throughput is below

the expected thourhgput

27

Aardvark

 A malicious primary is bounded in:
 The delay it can add to requests
 The amount of time it acts as a primary

Only works under constant load

Attack

28

Aardvark under fluctuating load

29

Spinning [SRDS'09]

 Principle:
 Each primary orders a fixed number of requests
 The primary is changed if no request is ordered

before a timeout

r1

r2

r3
r4

30

Spinning

 Spinning throughput with a malicious primary that delays
client requests by up to timeout:

 1/(1+F*timeout)*tpeak

r1

r2

r3
r4

timeout

31

Prime [DSN'08]

 Principle:
 The primary periodically sends messages of the same

size in the network (fixed workload)
 Replicas monitor the primary

Distributed pre-ordering phase Leader-based global ordering phase

32

Prime

 The latency of any update initiated by a correct client is
bounded

 Only if the network guarantees bounded variance

Distributed pre-ordering phase Leader-based global ordering phase

D
E
L
A
Y

33

Outline

 What is BFT?

 BFT under attack: the robustness problem

 Existing robust BFT protocols

 Can we do better?

34

What is wrong with existing
protocols?

 The primary is a single point of failure
 Aardvark and Prime: monitor the primary
 Spinning: bound the time spent with a faulty primary

 Robustness conditions are strong:
 Aardvark: constant load
 Prime: bounded variance

35

What is wrong with existing
protocols?

 The primary is a single point of failure
 Aardvark and Prime: monitor the primary
 Spinning: bound the time spent with a faulty primary

 Robustness conditions are strong:
 Aardvark: constant load
 Prime: bounded variance

Question: Can we run multiple instances of a
protocol simultaneously?

36

The RBFT protocol

Node 0 Node 1 Node 2 Node 3
Master
Protocol
Instance

Backup
Protocol
Instance

Primary

Primary Replica Replica Replica

ReplicaReplicaReplica

Clients

37

The RBFT protocol

Node 0 Node 1 Node 2 Node 3
Master
Protocol
Instance

Backup
Protocol
Instance

Primary

Primary Primary

Primary

Primary change

38

RBFT Redundant Agreement

PRE-PREPARE PREPARE COMMIT

3 4 5

PRE-PREPARE PREPARE COMMIT

3 4 5

REQUEST REPLY
Client

Node 0

Node 1

1 62

PROPAGATE

Node 2

Node 3

Redundant agreement performed by the replicas

39

RBFT Node Design

40

RBFT Performance

41

RBFT under attack

42

Conclusion

 We need BFT protocols (to tolerate arbitrary
faults)

 Current BFT protocols are either:
 Robust (e.g., RBFT) or
 Efficient (e.g., Chain, Quorum)

 Future work
 Dynamic switching: can we design a BFT protocol

that smartly combines robustness and efficiency?

43

Thank you!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43

