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Who am I?
 CNRS reseacher, LIRIS lab, DRIM research group
 Fault-tolerant distributed systems

 Byzantine fault tolerance
 State machine replication (BFT)(e.g., robust BFT[ICDCS'13])

 Byzantine fault detection
 Accountability (e.g., accountable mobile systems, 

performance issues in accountable systems[ongoing])
 Robustness against selfish behavior

 Game theory (e.g., RR spam filtering[SRDS'10], RR 
anonymous communication[ICDCS'13], RR live 
streaming[ongoing])
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 → Privacy (mobile systems, reputation/recommender 
systems, systems enforcing accountability)
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Outline

 What is BFT?

 BFT under attack: the robustness problem

 Existing robust BFT protocols

 Can we do better?
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State machine replication

Clients
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State machine replication

Clients

(1) Place copies of a deterministic state machine on multiple, 
independent servers.
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State machine replication

Clients

(2) Receive client requests (inputs to the state machine).
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State machine replication

Clients

Agreement protocol

(3) Define an ordering for the inputs and execute them in the 
chosen order on each server.
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State machine replication

Clients

Agreement protocol

(4) Respond to clients with the output from the state machine.
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BFT state machine replication

 BFT = Byzantine Fault Tolerance

 The term Byzantine dates back to the seminal paper by Lamport, 
Shostak, Pease: The Byzantine Generals Problem, ACM TPLS, 1982.

 Byzantine failure = arbitrary failure

 BFT state machine replication = state machine replication that 
tolerates Byzantine failures

+

crash-stop malicious
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BFT evolution

 Lamport, Shostak, Pease: The Byzantine 
generals problem, 1982

 Castro, Liskov: Practical BFT [OSDI'99]
 BFT in 2011 (a decade+ later)

 Efficient BFT: Q/U [SOSP’05], HQ [OSDI’06], Zyzzyva [SOSP’07], 
Chain and Quorum [EuroSys’10]

 Cheap BFT: zz [Umass Eurosys'11]

 Robust BFT: Aardvark [NSDI'09], Spinning [SRDS'09], Prime 
[DSN'08], RBFT[ICDCS'13]
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BFT with an example: PBFT

 Message-passing with unreliable communication links

 Byzantine faults
 Any number of clients
 Less than 1/3 of replicas are faulty (optimal)

 Cryptographic techniques cannot be violated

 Eventual synchrony
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PBFT: protocol steps

Client sends a 
request 

to the primary
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PBFT: protocol steps

The primary 
assigns a 
seqno to the 
request
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PBFT: protocol steps

Replicas agree 
on the assigned 
seqno
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PBFT: protocol steps

Replicas know 2f+1 
replicas that agreed 
on the proposed 
seqno 
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PBFT: protocol steps

Replicas execute 
the request and 
reply to the client
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BFT under attack: the robustness 
problem

”BFT protocols do not tolerate Byzantine faults 
very well” [NSDI'09]

System Peak 
throughput 
(req/s)

Throughput 
under attack 
(req/s)

PBFT 61710 0

Q/U 23850 0

HQ 7629 N/A

Zyzzyva 65999 0
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Robust BFT state machine replication

 Guarantees a lower bound on performance 
during uncivil executions

 Uncivil executions:
 Synchronous network
 Up to f servers and any number of clients are Byzantine

 Lower bound:
 k% of the theoretical maximum (with the same workload)
 k should be as high as possible
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Malicious primary
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Malicious primary
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Aardvark [NSDI'09]

 Principle: Regular primary changes
 Increasing throughput expectations  
 Monitoring of the current throughput
 Change the primary when the current throughput is below 

the expected thourhgput
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Aardvark

 A malicious primary is bounded in:
 The delay it can add to requests
 The amount of time it acts as a primary


Only works under constant load 

Attack
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Aardvark under fluctuating load
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Spinning [SRDS'09]

 Principle:
 Each primary orders a fixed number of requests
 The primary is changed if no request is ordered 

before a timeout

r1

r2 

r3 
r4 
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Spinning

 Spinning throughput with a malicious primary that delays 
client requests by up to timeout:

                                      1/(1+F*timeout)*tpeak

r1

r2 

r3 
r4 

timeout
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Prime [DSN'08]

 Principle: 
 The primary periodically sends messages of the same 

size in the network (fixed workload)
 Replicas monitor the primary

Distributed pre-ordering phase Leader-based global ordering phase
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Prime

 The latency of any update initiated by a correct client is 
bounded

 Only if the network guarantees bounded variance

Distributed pre-ordering phase Leader-based global ordering phase

D
E
L
A
Y
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What is wrong with existing 
protocols?

 The primary is a single point of failure
 Aardvark and Prime: monitor the primary
 Spinning: bound the time spent with a faulty primary

 Robustness conditions are strong: 
 Aardvark: constant load
 Prime: bounded variance
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What is wrong with existing 
protocols?

 The primary is a single point of failure
 Aardvark and Prime: monitor the primary
 Spinning: bound the time spent with a faulty primary

 Robustness conditions are strong: 
 Aardvark: constant load
 Prime: bounded variance

Question: Can we run multiple instances of a 
protocol simultaneously?
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The RBFT protocol

Node 0 Node 1 Node 2 Node 3
Master
Protocol
Instance

Backup
Protocol 
Instance

Primary

Primary Replica Replica Replica

ReplicaReplicaReplica

Clients
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The RBFT protocol

Node 0 Node 1 Node 2 Node 3
Master
Protocol
Instance

Backup
Protocol 
Instance

Primary

Primary Primary

Primary

Primary change
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RBFT Redundant Agreement

PRE-PREPARE PREPARE COMMIT

3 4 5

PRE-PREPARE PREPARE COMMIT

3 4 5

REQUEST REPLY
Client

Node 0

Node 1

1 62

PROPAGATE

Node 2

Node 3

Redundant agreement performed by the replicas
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RBFT Node Design
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RBFT Performance
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RBFT under attack
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Conclusion

 We need BFT protocols (to tolerate arbitrary 
faults)

 Current BFT protocols are either:
 Robust (e.g., RBFT) or
 Efficient (e.g., Chain, Quorum)

 Future work
 Dynamic switching: can we design a BFT protocol 

that smartly combines robustness and efficiency?
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Thank you!
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