
Resilient Cloud Services

By

Hemayamini Kurra, Glynis Dsouza, Youssif

Al Nasshif, Salim Hariri

University of Arizona
First Franco-American Workshop on Cybersecurity

18th October, 2013

Presentation Outline
Motivations and Background

Resilient Cloud Services – Architecture
– Moving Target Defense

Resilient Cloud Application Services-
 Architecture

Resilient Cloud Data Storage Services-
 Architecture

Experimental Results

Quantification of Security and Resiliency

Conclusions and Future Work

Motivations and Background

Cybersecurity Challenges
• Current cybersecurity technologies failed to secure and protect our cyberspace

resources and services

• They are mainly signature based, manual intensive and ad-hoc;

• According to the future of Cloud Computing Survey 2011, the main inhibitor to

cloud adoption is security.

• 43% of companies globally currently using a cloud computing service reported a

data security lapse or issue with the cloud service their company is using within

the last 12 months

• 15% of the data centers don’t have data backup and recovery plans.

• Cyber attacks can get costly if not resolved quickly. The average time to resolve

a cyber attack is 18 days, with an average cost to participating organizations of

$415,748. Results show that malicious insider attacks can take more than 45

days on average to contain.

• The cost of the data center outage is calculated as average of $505502 per

incident

Challenging research problem due to many

interdependent tasks

Concerns

– Securing Data-in-Transit

– Using the same Parameters (Key, Encryption length) for

encryption of data

– Lack of randomness

– Software Monoculture

Organizations give control to cloud provider

Security is of major concern for the adoption of cloud

computing

Cloud Security Challenges

Current software systems are static

Easy for attacker to study behavior of system

and generate attacks

Vulnerabilities in one software can propagate

to a great extent

Software Monoculture

The top threats to cloud computing given by

CSA (Cloud Security Alliance) states that

Insecure interfaces and API’s is one of the top

threats to cloud computing.

Ensuring strong authentication and access

controls in addition to encrypted transmission is

one of the remedies.

Data which is in transit is more vulnerable to

attacks when compared to the data which is at

rest.

Security of Data-in-Transit

Randomness

Information gathering about the system

to attack it is the first step in any attack

Randomness in the system will not let

attacker have enough time to gather

information about the system.

Resilience

We cannot build systems that will not be

attacked

Attack efforts will always be present

Cyber resilient techniques are most promising

There is a need to change the game to

advantage the defender over the attacker

Need for Resilience

Vision

– Create, evaluate and deploy mechanisms and

strategies that are diverse, continually shift,

and change over time to increase complexity

and costs for attackers, limit the exposure of

vulnerabilities and opportunities for attack,

and increase system resiliency (Source:”CyberSecurity Game-

Change Research and Development Recommendations”)

Moving Target Defense (MTD)

10

Resilient Cloud Services

Moving Target Defense (MTD)

Resilient Cloud Application

Services-Architecture

Architectural Components

Closed loop architecture

Continuous feedback

Architectural Components

Self- Management
Observer

 - Monitoring

 - Analysis of current

 state

Controller

 - Management of

 cyber operations

 - Enforcement of

 resilient

 operational policies

Self-Management architecture

Source:

S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri and S. Rao, "AUTONOMIA: An Autonomic Computing Environment," in International Performance

Computing and Communications Conference, 2003.

Software Behavior Encryption

Diversity

– Hot Shuffling software variants at runtime

– Variants are functionally equivalent, behaviorally

different

Redundancy

– Multiple replicas on different physical hardware

Shuffling

Software Behavior Encryption

Experimental Results

Quad core Memory Storage

S
e

lf
-M

a
n

a
g

e
m

e
n

t

A

p

A

s
Runtime

Monitoring

: :

V1

Hooks

S
e

lf
-M

a
n

a
g

e
m

e
n

t

A

p

A

s
Runtime

Monitoring

: :

V2

Hooks

S
e

lf
-M

a
n

a
g

e
m

e
n

t

A B

Runtime

Monitoring

: :

Vs

Hooks

Testbed Configuration

IBM BladeCenter HS22 based Private Cloud

University of Arizona’s Autonomic Computing Lab

Evaluated on a three node cluster

Each node has multiple versions

Version consists of combination of:

– Operating System

– Programming Language

– E.g. <Linux, C++>, <Windows, Java>

Experimental Environment

Large-Scale Data Processing

MapReduce provides

– Automatic parallelization & distribution

MapReduce Wordcount program

Application 1 – MapReduce (MR)

Case 1: Resilience against Dos

Attacks

Denial of Service attack on Windows VM-6

 Response Time (in seconds)

 Without DoS attack With DoS attack

Without MTD 95 615

With MTD 105 105

 Case 2:Resilience against Insider

Attacks

 Response Time (in seconds)

 Without Insider attack With Insider attack

Without MTD 95 No response

With MTD 105 105

% increase in response time with
MTD 11%

Compromise attack on Linux VM-1

Need for Automated checkpointing

Need for transferring state between diverse

environments

Checkpointing and Portability

Compiler for Portable

Checkpointing (CPPC)

24

Periodically saves computation state to stable storage

Automated checkpoint insertion in C, C++, Fortran codes

Ability to resume application execution by resuming state

on different operating systems and programming

languages

Source:

G. Rodríguez, M. Martín, P. González, J. Touriño and R. Doallo, "CPPC: A compiler-assisted tool for portable checkpointing of message-passing

applications," Concurrency and Computation: Practice & Experience, vol. 22, no. 6, pp. 749-766, 2010.

Application 2 - Jacobii’s Iterative

Linear Equation Solver

Application 2 - Flowchart for

each phase

Start Phase Timer

 SBE Machine

Application 2 - Flowchart for

each phase

End Phase

Timer

Checkpoint
Checkpoint

Checkpoint

End Phase Timer

 SBE Machine

Application 2 - Overhead

Application 2 - Overhead

 Execution time with SBE in seconds

Executio

n Time in

seconds

without

SBE

2 phases 3 phases 4 phases

Time OH Time OH Time OH

200 218 9% 248 24% 276 38%

800 838 5% 890 11% 988 24%

1500 1568 5% 1624 8% 1663 11%

3600 3671 2% 3847 7% 3890 8%

C programs from six categories

Each category targets a specific area of the embedded

market

Programs used for testing

 - Basicmath (Automotive and Industrial category)

 - Dijkstra’s algorithm (Network category)

Setup is the same as Application 2

Diversity in the form of operating systems

Application 3 – MiBench

Application 3 - Overhead

0%

5%

10%

15%

20%

25%

30%

0 2000 4000 6000

O
v
e

rh
e

a
d

Number of iterations

Overhead

0%

5%

10%

15%

20%

25%

30%

10000 20000 40000 80000

O
v

er
h

ea
d

 P
er

ce
n

ta
g

e

Number of iterations

2 phases

3 phases

4 phases

Dijkstra’s algorithm
Basicmath

Resilient Cloud Data Storage

Services-Architecture

A resilient approach to secure the communications

between client and storage server using Key Hopping

technique with file partitions.

By using shorter keys and hopping them in time we can

achieve better performance and security than that

traditional method that uses a long key with no hopping.

Storage Dynamic Encryption

33

Architecture

 Components

Secure Communications

Access Control

Self-Management

Main functions

Key Generation

Key Distribution to clients

File Partitioning

Key Hopping

Encryption and Decryption

SDE Approach

- Diverse Keys

- Diverse File Parts

- Diverse Layers of

Authentication

SDE{(FilePartA, DESkey1 + B, 2 +

C,3),RSAKey1} TimeWindowA

SDE{(FilePartA,

DESkey1+B,2+C,3), RSAkey2}

TimeWindowB

Long key for long time

 Security Breach +

less Performance

Short Key + Hopping

 Resiliency + High

Performance

Secure Communications
Client – Server communication initiated by SMM (Self-

Management Module) with DH key exchange protocol

Key is generated between SMM and SMA (Storage

Management Agent)

It is then distributed to client after certificate verification

(useful to avoid Man-In-The-Middle attack)

The access control list is then updated and communication

starts between the client and cloud system.

The key generated once will be valid only for that particular

time window and whenever the key time expires the SMM

(Self-Management Module) will again launch the DH key

protocol.

Access Control

The cloud service provider should limit the access of

user account to only authorized users.

So in RCDS the authorization of the client is verified

using CA certificate authority and is then added

permanently to the access control list.

If any client that tried to request the server and failed to

prove its authenticity, it is added to the block list by SMM

and is unlisted only after it proves its authenticity.

Self-signed CA certificates are generated and are

checked before key distribution.

Key Hopping
Using the same key for a long time is not secure and incurs high

overhead. To overcome this problem, we use shorter keys to reduce

the time it takes to encrypt data, but change them randomly as it is

done in frequency hopping in order to increase the security of the

storage service.

The SM module keeps track of the time window and triggers the

client and the server at the starting of the time window and when the

time window ends. Thus the client and server follow the time window

provided by the SM module

Once the time window ends, the keys that are used during that

period will expire and SM initiates the generation of keys and

distribution of them to various Storage Management Agents.

File Partitioning:

In May 2011, a popular file sharing service Dropbox

was accused in a complaint to the Federal Trade

Commission of using “a single encryption key for all the

user data the company stores.”

The concern is that if a hacker was able to break into

Dropbox’s servers and obtain the key, it could gain

access to all of the Dropbox’s user data.

So to improve the resiliency of stored data, it is

important to partition data into several parts and use

different keys for each data partition.

Experimental Results

RCSS approach:

DH key exchange protocol

Self-Signed CA certificates

OpenSSL library – C programmed

DES(Data Encryption Standard) in CFB

mode (Cipher Feedback Mode) for Data

encryption

RSA algorithm for encrypting DES keys

IBM BladeCenter HS22 based Private Cloud

University of Arizona’s Autonomic Computing

Lab

Evaluated on a three node cluster

Programmed in C

OpenSSL library

Certificates programmed in OpenSSL library

Experimental Environment

Performance Improvement Factor

To quantify the performance gain from using key hopping, we introduce the

Performance Improvement Factor (PIF), which can be computed as:

 RTssl = No of sessions * Time taken for SSl protocol

 RTRCS = (TDH protocol + Tkeydistribution)*No of hops + (No of

sessions * Time for DESen+decryption)

 Where,

 RTssl is the response time for system only with SSL.

 RTRCS is the response time for the system with RCS

implementation.

 TDH protocol is time of execution for DH protocol.

 Tkeydistribution is the time taken for client key distribution.

Based on our assumption in terms of number of sessions, the performance

improvement (PIF) is at 74%.

Results:

Performance overhead Vs (Key size and number of Hops)

File Partitioning Results:

File Size Vs overhead time for different keys.

Results 2:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 parts(100KB) 2 parts(50KB) 3 parts(34KB)

O
ve

rh
e

ad
 T

im
e

 in
 m

s

File parts

512-key (2hops)

2048-key (no hop)

File parts Vs overhead time for different keys.

What could be the maximum extent in

providing the security?

Does a normal system requires high

resiliency level?

How do we recommend users about the

security they should take for their system?

Quantification of Security and

Resiliency
STEP 1: System Self Assessment

• This step is to find the attack vectors of both

application and the system by using multiple

source code analysis tools like Cppcheck,

Flawfinder etc., Checking the vulnerabilities using

multiple tools will reduce the error possibilities by

collecting all types of vulnerabilities

STEP 2:
• Identifying the attack vectors for applications with

respect to the system attack vectors.

STEP 3 Vulnerability Quantification:
• There are many methods specified to estimate the

effort required by the attacker to exploit the

vulnerabilities in the system

• Here in our approach, we have considered the

impact values given by CVE database using CVSS

(Common Vulnerability Scoring System)

SBE based Mitigation:
• In SBE the execution time of the application is

divided in to phases and multiple operating

systems are used in each stage.

• Thus the attacker will have less time to exploit the

vulnerabilities. By the time he succeeds exploiting

the application is taken for execution on another

system.

• Also by using diverse systems which has mutually

exclusive attack vectors, the attack surface is

reduced by SBE.

Conclusions and Future Work

Conclusions

We cannot build perfect cloud security systems

RCS architecture can overcome most of the security

challenges with less overhead.

RCS implements MTD architecture which makes it

extremely difficult for an attacker to succeed in attacking

the system

Thank You

