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Introduction 

• Access control aims at preventing unauthorized users 
from getting sensitive information. 

 

• Access control protects data against unauthorized 
disclosure via direct access. 

 

• Beyond access control: the inference problem 

– Preventing against indirect disclosure of data 

– Inferring sensitive information from non sensitive 
ones by resorting to semantic constraints 
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• Many data sources. 

• Each  one with its own data schema. 

• Each source has its own privacy policies defined on its own schema. 

• Global As View (GAV) integration approach. 
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The inference problem [1] 

• The inference problem is the ability to deduce 
sensitive information from non sensitive one. 

 

• Two methods to make an inference : 

– Obtaining information about individuals from 
information about a population (e.g. statistics). 

– Combining non sensitive information with 
semantic constraints (e.g. metadata)  to obtain 
sensitive information. 
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Access control of association 

• Access to a set of attributes simultaneously is more 
sensitive than accessing each attribute individually. 

 

• Example: consider the attributes SSN and Disease 

– The individual access to SSN or Disease could be allowed, 
whereas access to both attributes simultaneously is 
denied. 

– The association patient-disease is sensitive. 
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Motivating example 
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Sources 
S1(SSN, Diagnosis, Doctor). 
S2(SSN, AdmissionDate). 
S3(SSN, Service). 

Authorization policy at S1  
Nurses are prohibited from accessing the association of  SSN and Diagnosis. 
 
 
Authorization rule 
(SSN, Diagnosis) :- S1(SSN, Diagnosis, Doctor), role = nurse.  



Motivating example 
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Mediator 
M(SSN, Diagnosis, Doctor, AdmissionDate, Service) :-  
S1(SSN, Diagnosis, Doctor) , S2(SSN, AdmissionDate), 
S3(SSN, Service). 

Functional dependencies 
FD1 :  AdmissionDate, Service ⟶ SSN 
FD2 :  AdmissionDate, Doctor⟶ Diagnosis 

Authorization policy at the mediator (Propagation) 
Nurses are prohibited from accessing the association of  SSN and Diagnosis. 
Authorization rule 
 (SSN, Diagnosis) :- M(SSN, Diagnosis, Doctor, AdmissionDate, Service),  
    role = nurse.  



Motivating example 
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• A malicious user could execute the following queries :  
Q1 (SSN, AdmissionDate, Service). 
Q2(Diagnosis, AdmissionDate ,Service). 

• Combining the results of the two queries by a join and taking 
advantage of FD1, a malicious user will obtain SSN and diagnosis, 
thus will violate the authorization policy 

• Q3(SSN, Diagnosis)  :-   Q1 (SSN, AdmissionDate, Service), 
             Q2(Diagnosis, AdmissionDate ,Service). 
 



Motivating example 

• The issue arises from the following 

– New semantic constraints appear at the mediator 
(e.g., FD1). 

– No source could have considered this new semantic 
constraints while defining its policy. 

• Propagating and combining the sources’ policies is not 
sufficient.  

 

     ⇒ The need for a methodology that considers both 
combination and new semantic constraints that appear 
at the mediator. 
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Goal 

• Help/advise the administrator defining the 
mediator’s policy such that: 

– Each source policy has to be preserved. 

– Prevent against illegal accesses 

• Direct access : ask for sensitive information. 

• Indirect access : infer sensitive information. 

– Maximize the availability at the mediator level. 
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State of the art 

• To deal with the inference problem two main 
approaches have been proposed 

– At the design time 
• Modifies the schema or the policy in such a way that no inference 

could appear. 

– At the execution time 
• Keeps track of the previous queries and use them to make a 

decision about the current query. 
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State of the art 

• At the design time [2] 

– Considers functional dependencies. 

– Assumes that if X ⟶ Y then Y is “computable” 
from X. 

– Propagates the constraints of Y to X. 

– Does not consider association of information. 
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State of the art 

• At the execution time [3] 

– Considers past queries to make a decision about 
the current query. 

– Does not consider functional dependencies. 

– Does not consider access to associations. 

14 

[3] MB Thuraisingham. Security checking in relational database management systems 
augmented with inference engines. Computers & Security, 6(6):479-492, 1987 



Contribution 
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Assumptions 

• Relational model & conjunctive queries. 

• Global As View (GAV) integration approach 
– Each virtual relation of the mediator is constructed by a conjunctive 

query over the sources’ relations. 

– e.g., M (SSN, Diagnosis, Doctor, AdmissionDate, Service) :-    
 S1(SSN, Diagnosis, Doctor) , S2(SSN, AdmissionDate),  

       S3(SSN, Service). 

 

• Authorization rules expressing prohibition 
– e.g., (SSN, Diagnosis) :- S1(SSN, Diagnosis, Doctor), role = nurse.  

 

• Semantic constraints : functional dependencies. 
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Methodology  
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Methodology  

• Detection phase 

– Transition graph construction. 

– Violating transactions generation. 

• (Re)configuration phase  

– Solution 1 : Policy revision.   

– Solution 2 : Query tracking. 
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Detection phase : problem definition 

• Inputs 

– Sources’ policies propagated to the mediator. 

– Functional dependencies that hold at the 
mediator level. 

 

• Output 

– The set of all the transactions that could induce 
privacy violations.  
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Graph construction 
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Functional dependencies 
FD1 : AdmissionDate, Service ⟶ SSN 
FD2 : AdmissionDate, Doctor ⟶ Diagnosis 

 (SSN, Diagnosis)  



Graph construction 
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Functional dependencies  
FD1 : AdmissionDate, Service ⟶ SSN 
FD2 : AdmissionDate, Doctor ⟶ Diagnosis 

 (SSN, Diagnosis)  

Q1 (AdmissionDate, Service, Diagnosis)  

FD1 



Graph construction 
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Functional dependencies  
FD1 : AdmissionDate, Service ⟶ SSN 
FD2 : AdmissionDate, Doctor ⟶ Diagnosis 
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 Q1(AdmissionDate, Service, Diagnosis)  Q2 (SSN, AdmissionDate, Doctor)  

FD1 FD2 



Graph construction 
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Functional dependencies  
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Graph construction 
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Functional dependencies  
FD1 : AdmissionDate, Service ⟶ SSN 
FD2 : AdmissionDate, Doctor ⟶ Diagnosis 
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Upper bound & termination 

• Assumption 

– WLOG, each FD has a RHS of one attribute.  

• n: the number of attributes of the policy. 

• m : the number of functional dependencies in FD+ 
that have an attribute of the policy as RHS. 

• The upper bound  of the order (number of nodes) of 
the graph is :  

 

⇒ The graph construction algorithm terminates. 
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Generation of violating transactions (1/4) 
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 (SSN, Diagnosis)  

 Q1(AdmissionDate, Service, Diagnosis)  Q2 (SSN, AdmissionDate, Doctor)  

Q3 (AdmissionDate, Service, Doctor)  

FD1 

FD1 

FD2 

FD2 

How to generate the violating transactions? 
• Each path between the initial node and a node  Qi represents 
a transaction. 
• A transaction is composed of all FDs on the path and the 
query of the node Qi.   



Generation of violating transactions (2/4) 
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 (SSN, Diagnosis)  

 Q1(AdmissionDate, Service, Diagnosis)  Q2 (SSN, AdmissionDate, Doctor)  

Q3 (AdmissionDate, Service, Doctor)  

FD1 

FD1 

FD2 

FD2 

Correspond to the query 
FDQ1: (AdmissionDate, Service, SSN) 

Transactions 
T1 ={FDQ1, Q1} 



Generation of violating transactions (3/4) 
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 (SSN, Diagnosis)  

 Q1(AdmissionDate, Service, Diagnosis)  Q2 (SSN, AdmissionDate, Doctor)  

Q3 (AdmissionDate, Service, Doctor)  

FD1 

FD1 

FD2 

FD2 

Transactions 
T1 ={FDQ1, Q1} 
T2 ={FDQ2, Q2} 



Generation of violating transactions (4/4) 
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 (SSN, Diagnosis)  

 Q1(AdmissionDate, Service, Diagnosis)  Q2 (SSN, AdmissionDate, Doctor)  

Q3 (AdmissionDate, Service, Doctor)  

FD1 

FD1 

FD2 

FD2 

Transactions 
T1 ={FDQ1, Q1} 
T2 ={FDQ2, Q2} 
T3 ={FDQ1, FDQ2, Q3} 



(Re)configuration phase  

• How to use these violating transactions? 

 

– At the design time : Policy revision 

• Add a new set of authorization rules. 

• No transaction could be completed. 

 

– At the execution time : Query tracking 

• Keep track of the user’s queries. 

• Avoid the execution of the queries of a single 
transaction. 
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Solution 1 : Policy revision 

• In the previous phase we have generated a set of 
transactions. 

 

 

 

• If we add new authorization rules such that for any Ti 
at least one  Qj is denied, then the policy will be 
preserved. 

• Query cancellation problem : find the minimum set 
of Qj. 
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T1={Q1, Q2, Q3} 
T2={Q3, Q4} 
T3={Q5, Q6} 
T4={Q7, Q6} 

Q={Q3, Q6} 



Query cancellation : problem 
definition 

• Input : A set of violating transactions 

 

 

 

 

• Output : a set Q of queries such that: 

– ∀i, Ti ⋂ Q ≠ ∅ 

–  Q is minimal (∄ Q’ st∀i, Ti ⋂ Q’ ≠ ∅  and 
|Q’|<|Q|) 
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Complexity study 

• Query cancelation problem is NP-complete. 

– Proof by reduction from the minimum dominating set 
problem. 

 

• The associated optimization problem is NP-hard. 

 

⇒ These results induce the use of exponential 
algorithm to obtain an exact solution. 
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Policy revision 

• Find the minimum set of queries to be denied 

– Add a new rule for each query. 

– Ensure, at the design time, that no violating 
transaction could be completed. 

• Finding the minimum set of queries increases the 
availability at the mediator level. 
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Solution 2 : Query tracking 

• History based solution 

– Consider past queries to take a decision about the 
current query. 

• Problem definition 

– Input 

• Past queries. 

• A set of violating transactions. 

• Current query. 

– Output 

• Decision about the current query (accept or deny). 
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Example 

• Let T ={Q1, Q2, Q3} be a transaction. 

• Let Qu={Qu
1, Qu

2, Qu
3, Qu

4} be a sequence of 
user’s queries. 
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User’s queries Transaction Evaluation 
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Labeling method 

• A query Qi could be simulated by a set of 
user’s queries. 

• If we modify the previous example as follows: 
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Labeling method 
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Labeling method 
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Query tracking 

• Importance of the labeling method. 

 

• Consider combination of user’s queries to simulate a 
query of a transaction. 

 

• We have defined a specific operator that considers 
these combination while building the user history. 
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Comparison of the two solutions 

• Policy revision 

– Advantage : all the processing is achieved at design time. 

– Drawback : could be too restrictive. 

 

• Query tracking 

– Advantage : maximizes the availability at the mediator 
level. 

– Drawback : maintaining the history of all users. 
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Experiments 

• The proposed approach has been 
implemented and some experiments 
conducted: 

– We generated a mediator schema. 

– We generated a set of authorization rules. 

– We generated a set of functional dependencies. 
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Experiments 
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Experiments 
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Conclusion 

• We have proposed a methodology that helps 
the administrator to define the mediator 
policy. 

 

• We studied different theoretical aspects of the 
approach 
– Upper bound of the constructed graph. 

– NP-completness of the query cancellation 
problem. 

 

• We conducted some experiments on synthetic 
data that show the practicability of the 
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Perspectives 

• Other kinds of dependencies 

– Inclusion dependencies. 

– Interaction between FDs and IDs. 

 

• Other kinds of data integration (e.g., LAV). 

 

• Mediator’s policy already defined 

– Consistency between the defined policy and the 
generated policy. 
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