
Access control for data integration in
presence of data dependencies

Mehdi Haddad, Mohand-Saïd Hacid

1

Outline

• Introduction

• Motivating example

• Related work

• Approach

– Detection phase

– (Re)configuration phase

• Conclusion

2

Introduction

• Access control aims at preventing unauthorized users
from getting sensitive information.

• Access control protects data against unauthorized
disclosure via direct access.

• Beyond access control: the inference problem

– Preventing against indirect disclosure of data

– Inferring sensitive information from non sensitive
ones by resorting to semantic constraints

3

Business Intelligence

Context

4

Data Warehousing
System

R
ep

o
rtin

g U
I

• Many data sources.

• Each one with its own data schema.

• Each source has its own privacy policies defined on its own schema.

• Global As View (GAV) integration approach.

Privacy Policy
Enforcement Point

Data Sources Mediator Data Consumers

The inference problem [1]

• The inference problem is the ability to deduce
sensitive information from non sensitive one.

• Two methods to make an inference :

– Obtaining information about individuals from
information about a population (e.g. statistics).

– Combining non sensitive information with
semantic constraints (e.g. metadata) to obtain
sensitive information.

5

[1] Csilla Farkas, Sushil Jajodia: The Inference Problem: A Survey.
SIGKDD Explorations 4(2): 6-11 (2002)

Access control of association

• Access to a set of attributes simultaneously is more
sensitive than accessing each attribute individually.

• Example: consider the attributes SSN and Disease

– The individual access to SSN or Disease could be allowed,
whereas access to both attributes simultaneously is
denied.

– The association patient-disease is sensitive.

6

Motivating example

7

Sources
S1(SSN, Diagnosis, Doctor).
S2(SSN, AdmissionDate).
S3(SSN, Service).

Authorization policy at S1
Nurses are prohibited from accessing the association of SSN and Diagnosis.

Authorization rule
(SSN, Diagnosis) :- S1(SSN, Diagnosis, Doctor), role = nurse.

Motivating example

8

Mediator
M(SSN, Diagnosis, Doctor, AdmissionDate, Service) :-
S1(SSN, Diagnosis, Doctor) , S2(SSN, AdmissionDate),
S3(SSN, Service).

Functional dependencies
FD1 : AdmissionDate, Service ⟶ SSN
FD2 : AdmissionDate, Doctor⟶ Diagnosis

Authorization policy at the mediator (Propagation)
Nurses are prohibited from accessing the association of SSN and Diagnosis.
Authorization rule
 (SSN, Diagnosis) :- M(SSN, Diagnosis, Doctor, AdmissionDate, Service),
 role = nurse.

Motivating example

9

• A malicious user could execute the following queries :
Q1 (SSN, AdmissionDate, Service).
Q2(Diagnosis, AdmissionDate ,Service).

• Combining the results of the two queries by a join and taking
advantage of FD1, a malicious user will obtain SSN and diagnosis,
thus will violate the authorization policy

• Q3(SSN, Diagnosis) :- Q1 (SSN, AdmissionDate, Service),
 Q2(Diagnosis, AdmissionDate ,Service).

Motivating example

• The issue arises from the following

– New semantic constraints appear at the mediator
(e.g., FD1).

– No source could have considered this new semantic
constraints while defining its policy.

• Propagating and combining the sources’ policies is not
sufficient.

 ⇒ The need for a methodology that considers both
combination and new semantic constraints that appear
at the mediator.

10

Goal

• Help/advise the administrator defining the
mediator’s policy such that:

– Each source policy has to be preserved.

– Prevent against illegal accesses

• Direct access : ask for sensitive information.

• Indirect access : infer sensitive information.

– Maximize the availability at the mediator level.

11

State of the art

• To deal with the inference problem two main
approaches have been proposed

– At the design time
• Modifies the schema or the policy in such a way that no inference

could appear.

– At the execution time
• Keeps track of the previous queries and use them to make a

decision about the current query.

12

State of the art

• At the design time [2]

– Considers functional dependencies.

– Assumes that if X ⟶ Y then Y is “computable”
from X.

– Propagates the constraints of Y to X.

– Does not consider association of information.

13

[2] Tzong-An Su, Gultekin Özsoyoglu: Data Dependencies and Inference Control
in Multilevel Relational Database Systems. IEEE Symposium on Security and
Privacy 1987: 202-211

State of the art

• At the execution time [3]

– Considers past queries to make a decision about
the current query.

– Does not consider functional dependencies.

– Does not consider access to associations.

14

[3] MB Thuraisingham. Security checking in relational database management systems
augmented with inference engines. Computers & Security, 6(6):479-492, 1987

Contribution

15

Assumptions

• Relational model & conjunctive queries.

• Global As View (GAV) integration approach
– Each virtual relation of the mediator is constructed by a conjunctive

query over the sources’ relations.

– e.g., M (SSN, Diagnosis, Doctor, AdmissionDate, Service) :-
 S1(SSN, Diagnosis, Doctor) , S2(SSN, AdmissionDate),

 S3(SSN, Service).

• Authorization rules expressing prohibition
– e.g., (SSN, Diagnosis) :- S1(SSN, Diagnosis, Doctor), role = nurse.

• Semantic constraints : functional dependencies.

16

Methodology

17

(Re)configuration phase

Functional
dependencies

Mediator
policy

Mediator
schema

{Q1, Q3, Q4}
{Q1, Q5}

{Q2, Q3, Q5}
{Q2, Q4}

{Q3, Q4, Q5}

Detection phase

Transition graph
construction

Transactions
generation

P = P ⋃ {p(Q4), p(Q5)}

Policy modification

Query tracking

{Q1, Q3, Q4}
{Q1, Q5}

{Q2, Q3, Q5}
{Q2, Q4}

Methodology

• Detection phase

– Transition graph construction.

– Violating transactions generation.

• (Re)configuration phase

– Solution 1 : Policy revision.

– Solution 2 : Query tracking.

18

Detection phase : problem definition

• Inputs

– Sources’ policies propagated to the mediator.

– Functional dependencies that hold at the
mediator level.

• Output

– The set of all the transactions that could induce
privacy violations.

19

Graph construction

20

Functional dependencies
FD1 : AdmissionDate, Service ⟶ SSN
FD2 : AdmissionDate, Doctor ⟶ Diagnosis

 (SSN, Diagnosis)

Graph construction

21

Functional dependencies
FD1 : AdmissionDate, Service ⟶ SSN
FD2 : AdmissionDate, Doctor ⟶ Diagnosis

 (SSN, Diagnosis)

Q1 (AdmissionDate, Service, Diagnosis)

FD1

Graph construction

22

Functional dependencies
FD1 : AdmissionDate, Service ⟶ SSN
FD2 : AdmissionDate, Doctor ⟶ Diagnosis

 (SSN, Diagnosis)

 Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)

FD1 FD2

Graph construction

23

Functional dependencies
FD1 : AdmissionDate, Service ⟶ SSN
FD2 : AdmissionDate, Doctor ⟶ Diagnosis

 (SSN, Diagnosis)

Q1 (AdmissionDate, Service, Diagnosis) Q2(SSN, AdmissionDate, Doctor)

Q3 (AdmissionDate, Service, Doctor)

FD1 FD2

FD2

Graph construction

24

Functional dependencies
FD1 : AdmissionDate, Service ⟶ SSN
FD2 : AdmissionDate, Doctor ⟶ Diagnosis

 (SSN, Diagnosis)

 Q1(AdmissionDate, Service, Diagnosis) Q2(SSN, AdmissionDate, Doctor)

 Q3(AdmissionDate, Service, Doctor)

FD1

FD1

FD2

FD2

Upper bound & termination

• Assumption

– WLOG, each FD has a RHS of one attribute.

• n: the number of attributes of the policy.

• m : the number of functional dependencies in FD+
that have an attribute of the policy as RHS.

• The upper bound of the order (number of nodes) of
the graph is :

⇒ The graph construction algorithm terminates.

25

𝒎

𝒏

𝒏

Generation of violating transactions (1/4)

26

 (SSN, Diagnosis)

 Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)

Q3 (AdmissionDate, Service, Doctor)

FD1

FD1

FD2

FD2

How to generate the violating transactions?
• Each path between the initial node and a node Qi represents
a transaction.
• A transaction is composed of all FDs on the path and the
query of the node Qi.

Generation of violating transactions (2/4)

27

 (SSN, Diagnosis)

 Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)

Q3 (AdmissionDate, Service, Doctor)

FD1

FD1

FD2

FD2

Correspond to the query
FDQ1: (AdmissionDate, Service, SSN)

Transactions
T1 ={FDQ1, Q1}

Generation of violating transactions (3/4)

28

 (SSN, Diagnosis)

 Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)

Q3 (AdmissionDate, Service, Doctor)

FD1

FD1

FD2

FD2

Transactions
T1 ={FDQ1, Q1}
T2 ={FDQ2, Q2}

Generation of violating transactions (4/4)

29

 (SSN, Diagnosis)

 Q1(AdmissionDate, Service, Diagnosis) Q2 (SSN, AdmissionDate, Doctor)

Q3 (AdmissionDate, Service, Doctor)

FD1

FD1

FD2

FD2

Transactions
T1 ={FDQ1, Q1}
T2 ={FDQ2, Q2}
T3 ={FDQ1, FDQ2, Q3}

(Re)configuration phase

• How to use these violating transactions?

– At the design time : Policy revision

• Add a new set of authorization rules.

• No transaction could be completed.

– At the execution time : Query tracking

• Keep track of the user’s queries.

• Avoid the execution of the queries of a single
transaction.

30

Solution 1 : Policy revision

• In the previous phase we have generated a set of
transactions.

• If we add new authorization rules such that for any Ti
at least one Qj is denied, then the policy will be
preserved.

• Query cancellation problem : find the minimum set
of Qj.

31

T1={Q1, Q2, Q3}
T2={Q3, Q4}
T3={Q5, Q6}
T4={Q7, Q6}

Q={Q3, Q6}

Query cancellation : problem
definition

• Input : A set of violating transactions

• Output : a set Q of queries such that:

– ∀i, Ti ⋂ Q ≠ ∅

– Q is minimal (∄ Q’ st∀i, Ti ⋂ Q’ ≠ ∅ and
|Q’|<|Q|)

32

T1={Q1
1, Q1

2, … Q1
n1}

T2={Q2
1, Q2

2, … Q2
n2}

…
Tn={Qn

1, Qn
2, … Qn

nn}

Complexity study

• Query cancelation problem is NP-complete.

– Proof by reduction from the minimum dominating set
problem.

• The associated optimization problem is NP-hard.

⇒ These results induce the use of exponential
algorithm to obtain an exact solution.

33

Policy revision

• Find the minimum set of queries to be denied

– Add a new rule for each query.

– Ensure, at the design time, that no violating
transaction could be completed.

• Finding the minimum set of queries increases the
availability at the mediator level.

34

Solution 2 : Query tracking

• History based solution

– Consider past queries to take a decision about the
current query.

• Problem definition

– Input

• Past queries.

• A set of violating transactions.

• Current query.

– Output

• Decision about the current query (accept or deny).
35

Example

• Let T ={Q1, Q2, Q3} be a transaction.

• Let Qu={Qu
1, Qu

2, Qu
3, Qu

4} be a sequence of
user’s queries.

36

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆ Qu
4

Example

37

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆ Qu
4

Example

38

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Qu
2 T ={Q1, Q2, Q3} Qu

2 is accepted

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆ Qu
4

Example

39

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Qu
2 T ={Q1, Q2, Q3} Qu

2 is accepted

Qu
3 T ={Q1, Q2, Q3} Qu

3 is accepted

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆ Qu
4

Example

40

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Qu
2 T ={Q1, Q2, Q3} Qu

2 is accepted

Qu
3 T ={Q1, Q2, Q3} Qu

3 is accepted

Qu
4 T ={Q1, Q2, Q3} Qu

4 is denied

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆ Qu
4

Labeling method

• A query Qi could be simulated by a set of
user’s queries.

• If we modify the previous example as follows:

41

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆Qu
1 ⋈ Qu

2 ⋈ Q
u

3

Q3 ⊆ Qu
4

Labeling method

42

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆Qu
1 ⋈ Qu

2 ⋈ Q
u

3

Q3 ⊆ Qu
4

Labeling method

43

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Qu
2 T ={Q1, Q2, Q3} Qu

2 is accepted

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆Qu
1 ⋈ Qu

2 ⋈ Q
u

3

Q3 ⊆ Qu
4

Labeling method

44

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Qu
2 T ={Q1, Q2, Q3} Qu

2 is accepted

Qu
3 T ={Q1, Q2, Q3} Qu

3 is denied

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆Qu
1 ⋈ Qu

2 ⋈ Q
u

3

Q3 ⊆ Qu
4

Labeling method

45

User’s queries Transaction Evaluation

Qu
1 T ={Q1, Q2, Q3} Qu

1 is accepted

Qu
2 T ={Q1, Q2, Q3} Qu

2 is accepted

Qu
3 T ={Q1, Q2, Q3} Qu

3 is denied

Qu
4 T ={Q1, Q2, Q3} Qu

1 is denied

Relationship between Qi and Qu
i

Q1 ⊆ Qu
1

Q2 ⊆ Qu
2

Q3 ⊆Qu
1 ⋈ Qu

2 ⋈ Q
u

3

Q3 ⊆ Qu
4

Query tracking

• Importance of the labeling method.

• Consider combination of user’s queries to simulate a
query of a transaction.

• We have defined a specific operator that considers
these combination while building the user history.

46

Comparison of the two solutions

• Policy revision

– Advantage : all the processing is achieved at design time.

– Drawback : could be too restrictive.

• Query tracking

– Advantage : maximizes the availability at the mediator
level.

– Drawback : maintaining the history of all users.

47

Experiments

• The proposed approach has been
implemented and some experiments
conducted:

– We generated a mediator schema.

– We generated a set of authorization rules.

– We generated a set of functional dependencies.

48

Experiments

49

Experiments

50

Conclusion

• We have proposed a methodology that helps
the administrator to define the mediator
policy.

• We studied different theoretical aspects of the
approach
– Upper bound of the constructed graph.

– NP-completness of the query cancellation
problem.

• We conducted some experiments on synthetic
data that show the practicability of the

51

Perspectives

• Other kinds of dependencies

– Inclusion dependencies.

– Interaction between FDs and IDs.

• Other kinds of data integration (e.g., LAV).

• Mediator’s policy already defined

– Consistency between the defined policy and the
generated policy.

52

Thank you for your attention

53

