Graph similarity and matching

Many applications involve measuring objects similarity:

- Searching and classifying documents
- Case based Reasoning
- Pattern recognition
- ...

⇒ a soft, quantitative, qualitative and customized measure
Graph similarity and matching

Many applications involve measuring objects similarity:
- Searching and classifying documents
- Case based Reasoning
- Pattern recognition

Match components that may not be identical
- find the best matching!
- allow “multivalent” matchings
- walls ‘e’ and ‘f’ correspond to wall ‘5’

Evaluate the quantity of common features
- ratio w.r.t. the total number of features
- identify the common features

...to explain differences and commonalities

Adapt criteria w.r.t. the considered application
...and the goal of the user

⇒ a soft, quantitative, qualitative and customized measure
Graph similarity and matching

Many applications involve measuring objects similarity:
- Searching and classifying documents
- Case based Reasoning
- Pattern recognition
...

⇒ a soft, quantitative, qualitative and customized measure

- Match components that may not be identical
 ⇝ find the best matching!

- Allow “multivalent” matchings
 ⇝ walls ’e’ and ’f’ correspond to wall ’5’
Graph similarity and matching

Many applications involve measuring objects similarity:
- Searching and classifying documents
- Case based Reasoning
- Pattern recognition

⇒ a soft, quantitative, qualitative and customized measure

- Evaluate the quantity of common features
 ⇔ ratio w.r.t. the total number of features
- Identify the common features
 ...to explain differences and commonalities
Graph similarity and matching

Many applications involve measuring objects similarity:
- Searching and classifying documents
- Case based Reasoning
- Pattern recognition

...to explain differences and commonalities

Match components that may not be identical
→ find the best matching!

Allow "multivalent" matchings
→ walls 'e' and 'f' correspond to wall '5'

Evaluate the quantity of common features
→ ratio w.r.t. the total number of features

Identify the common features

Adapt criteria w.r.t. the considered application
...and the goal of the user

⇒ a soft, quantitative, qualitative and customized measure
Similarity and graph matchings

Describing objects by labelled graphs

- Object components \rightsquigarrow Graph vertices
- Relationships between components \rightsquigarrow Graph edges
- Component and relation features \rightsquigarrow Vertex and edge labels

Measuring object similarity \rightsquigarrow Matching graph vertices

Existing graph matchings and similarity measures

- Graph isomorphism \rightsquigarrow Equivalence
- Subgraph isomorphism \rightsquigarrow Inclusion
- Largest common subgraph \rightsquigarrow Intersection
- Graph edit distance \rightsquigarrow Cost of transformation

Limitations of these existing matchings

- Univalent matchings
- Hardly customizable
Similarity and graph matchings

Describing objects by labelled graphs

- Object components \sim Graph vertices
- Relationships between components \sim Graph edges
- Component and relation features \sim Vertex and edge labels

Measuring object similarity \sim Matching graph vertices

Existing graph matchings and similarity measures

- Graph isomorphism \sim Equivalence
- Subgraph isomorphism \sim Inclusion
- Largest common subgraph \sim Intersection
- Graph edit distance \sim Cost of transformation

Limitations of these existing matchings

- Univalent matchings
- Hardly customizable
Similarity and graph matchings

Describing objects by labelled graphs
- Object components \leadsto Graph vertices
- Relationships between components \leadsto Graph edges
- Component and relation features \leadsto Vertex and edge labels

Measuring object similarity \leadsto Matching graph vertices

Existing graph matchings and similarity measures
- Graph isomorphism \leadsto Equivalence
- Subgraph isomorphism \leadsto Inclusion
- Largest common subgraph \leadsto Intersection
- Graph edit distance \leadsto Cost of transformation

Limitations of these existing matchings
- Univalent matchings
- Hardly customizable
Overview of the talk

Description of a similarity measure
- Based on multivalent matchings
- Customizable

Description of two algorithms for computing this measure
- Reactive Tabu Search
- Ant Colony Optimization

Experimental comparison on two different test suites
- Randomly generated multivalent graph matching problem
- Multivalent graph matching problem of [Boeres et al. 2004]
Describing objects with labelled graphs

Let L_V and L_E be sets of vertex and edge labels.
A labelled graph is defined by a triple $\langle V, r_V, r_E \rangle$ s.t.

- $V \rightsquigarrow$ graph vertices
- $r_V \subseteq V \times L_V \rightsquigarrow$ vertex labelling
- $r_E \subseteq V \times V \times L_E \rightsquigarrow$ edge labelling
Let L_V and L_E be sets of vertex and edge labels. A labelled graph is defined by a triple $\langle V, r_V, r_E \rangle$ s.t.

- $V \rightsquigarrow$ graph vertices
- $r_V \subseteq V \times L_V \rightsquigarrow$ vertex labelling
- $r_E \subseteq V \times V \times L_E \rightsquigarrow$ edge labelling

Vertices: $V = \{a, b, c, d, e, f\}$
Describing objects with labelled graphs

Let L_V and L_E be sets of vertex and edge labels. A labelled graph is defined by a triple $\langle V, r_V, r_E \rangle$ s.t.

- $V \rightsquigarrow$ graph vertices
- $r_V \subseteq V \times L_V \rightsquigarrow$ vertex labelling
- $r_E \subseteq V \times V \times L_E \rightsquigarrow$ edge labelling

Vertex labels: $L_V = \{beam, I, wall\}$

$r_V = \{(a, beam), (b, beam), (c, beam), (d, beam), (a, I), (b, I), (c, I), (d, I), (e, wall), (f, wall)\}$
Let L_V and L_E be sets of vertex and edge labels.
A labelled graph is defined by a triple $\langle V, r_V, r_E \rangle$ s.t.

- $V \leadsto$ graph vertices
- $r_V \subseteq V \times L_V \leadsto$ vertex labelling
- $r_E \subseteq V \times V \times L_E \leadsto$ edge labelling

Edge labels: $L_E = \{next, on\}$

$r_E = \{(a, b, next), (b, c, next), (c, d, next), (a, e, on), (b, e, on), (c, f, on), (d, f, on)\}$
Let $G_1 = \langle V_1, r_{V_1}, r_{E_1} \rangle$ and $G_2 = \langle V_2, r_{V_2}, r_{E_2} \rangle$ be 2 graphs such that $V_1 \cap V_2 = \emptyset$

- A matching of G_1 and G_2 = a relation $m \subseteq V_1 \times V_2$
Let $G_1 = \langle V_1, r_{V_1}, r_{E_1} \rangle$ and $G_2 = \langle V_2, r_{V_2}, r_{E_2} \rangle$ be 2 graphs such that $V_1 \cap V_2 = \emptyset$

- A matching of G_1 and G_2 = a relation $m \subseteq V_1 \times V_2$

$$m = \{ (a, 1), (b, 2), (c, 3), (d, 4), (e, 5), (f, 5) \}$$
Common features w.r.t. a matching

\[G_1 \cap_m G_2 = \{ f \in r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} \mid f \text{ common to } G_1 \text{ and } G_2 \text{ via } m \} \]
Common features w.r.t. a matching

\[G_1 \cap_m G_2 = \{ f \in r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} / f \text{ common to } G_1 \text{ and } G_2 \text{ via } m \} \]

\[m = \{(a,1), (b,beam), (1,beam), \}

\[G_1 \cap_m G_2 = \{(a,beam), (1,beam), \} \]
Common features w.r.t. a matching

\[G_1 \cap_m G_2 = \{ f \in r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} / f \text{ common to } G_1 \text{ and } G_2 \text{ via } m \} \]
Common features w.r.t. a matching

\[G_1 \cap_m G_2 = \{ f \in r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} \mid f \text{ common to } G_1 \text{ and } G_2 \text{ via } m \} \]

\[m = \{(a,1), (b,2), (c,3), \]
\[G_1 \cap_m G_2 = \{ (a,\text{beam}), (1,\text{beam}), (b,\text{beam}), (2,\text{beam}), (a,b,\text{next}), (1,2,\text{next}), (c,\text{beam}), (3,\text{beam}), (b,c,\text{next}), (2,3,\text{next}), \]
Common features w.r.t. a matching

\[G_1 \cap_m G_2 = \{ f \in r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} / f \text{ common to } G_1 \text{ and } G_2 \text{ via } m \} \]

\[m = \{(a,1), (b,2), (c,3), (d,4), \]
\[G_1 \cap_m G_2 = \{(a,beam), (1,beam), (b,beam), (2,beam), (a,b,next), (1,2,next), (c,beam), (3,beam), (b,c,next), (2,3,next), (d,beam), (4,beam), (c,d,next), (3,4,next), \]
Common features w.r.t. a matching

\[G_1 \cap_m G_2 = \{ f \in r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} / f \text{ common to } G_1 \text{ and } G_2 \text{ via } m \} \]

\[m = \{(a,1), (b,2), (c,3), (d,4), (e,5), \]
\[G_1 \cap_m G_2 = \{(a,\text{beam}), (1,\text{beam}), (b,\text{beam}), (2,\text{beam}), (a,b,\text{next}), (1,2,\text{next}), (c,\text{beam}), (3,\text{beam}), (b,c,\text{next}), (2,3,\text{next}), (d,\text{beam}), (4,\text{beam}), (c,d,\text{next}), (3,4,\text{next}), (e,\text{wall}), (5,\text{wall}), (a,e,\text{on}), (b,e,\text{on}), (1,5,\text{on}), (2,5,\text{on})\} \]
Common features w.r.t. a matching

\[
G_1 \cap_m G_2 = \{ f \in r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} / f \text{ common to } G_1 \text{ and } G_2 \text{ via } m \}
\]

\[
m = \{(a,1), (b,2), (c,3), (d,4), (e,5), (f,5)\}
\]

\[
G_1 \cap_m G_2 = \{(a,\text{beam}), (1,\text{beam}), (b,\text{beam}), (2,\text{beam}), (a,b,\text{next}), (1,2,\text{next}), (c,\text{beam}), (3,\text{beam}), (b,c,\text{next}), (2,3,\text{next}), (d,\text{beam}), (4,\text{beam}), (c,d,\text{next}), (3,4,\text{next}), (e,\text{wall}), (5,\text{wall}), (a,e,\text{on}), (b,e,\text{on}), (1,5,\text{on}), (2,5,\text{on}), (f,\text{wall}), (c,f,\text{on}), (d,f,\text{on}), (3,5,\text{on}), (4,5,\text{on})\}
\]
Similarity of two graphs

Similarity of G_1 and G_2 w.r.t. a matching m

$$\text{sim}_m(G_1, G_2) = \frac{f(G_1 \cap_m G_2) - g(\text{splits}(m))}{f(r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2})}$$
Similarity of two graphs

Similarity of G_1 and G_2 **w.r.t. a matching** m

$$sim_m(G_1, G_2) = \frac{f(G_1 \cap_m G_2) - g(splits(m))}{f(r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2})}$$

$G_1 \cap_m G_2 =$ features common to G_1 and G_2 via m
Similarity of two graphs

Similarity of G_1 and G_2 w.r.t. a matching m

$$sim_m(G_1, G_2) = \frac{f(G_1 \cap_m G_2) - g(splits(m))}{f(r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2})}$$

$G_1 \cap_m G_2 =$ features common to G_1 and G_2 via m

$splits(m) =$ set of vertices that are matched to several vertices
Similarity of two graphs

Similarity of G_1 and G_2 w.r.t. a matching m

\[
sim_m(G_1, G_2) = \frac{f(G_1 \cap_m G_2) - g(splits(m))}{f(r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2})}
\]

$G_1 \cap_m G_2 = \text{features common to } G_1 \text{ and } G_2 \text{ via } m$

$splits(m) = \text{set of vertices that are matched to several vertices}$

$r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2} = \text{set of all features of } G_1 \text{ and } G_2$
Similarity of two graphs

Similarity of G_1 and G_2 w.r.t. a matching m

$$sim_m(G_1, G_2) = \frac{f(G_1 \cap_m G_2) - g(splits(m))}{f(r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2})}$$

- $G_1 \cap_m G_2$ = features common to G_1 and G_2 via m
- $splits(m)$ = set of vertices that are matched to several vertices
- $r_{V_1} \cup r_{E_1} \cup r_{V_2} \cup r_{E_2}$ = set of all features of G_1 and G_2
- f and g = similarity functions \leadsto customization
Similarity of two graphs

Similarity of G_1 **and** G_2 **w.r.t. a matching** m

$$sim_m(G_1, G_2) = \frac{f(G_1 \cap_m G_2) - g(splits(m))}{f(r_{V_1 \cup E_1} \cup r_{V_2 \cup E_2})}$$

$G_1 \cap_m G_2 =$ features common to G_1 and G_2 via m

$splits(m) =$ set of vertices that are matched to several vertices

$r_{V_1 \cup E_1} \cup r_{V_2 \cup E_2} =$ set of all features of G_1 and G_2

f and $g =$ similarity functions \rightsquigarrow customization

Similarity of G_1 **and** G_2

$$sim(G_1, G_2) = \max_{m \subseteq V_1 \times V_2} sim_m(G_1, G_2)$$

Measuring the similarity of G_1 and G_2

\rightsquigarrow find $m \subseteq V_1 \times V_2$ that maximizes $f(G_1 \cap_m G_2) - g(splits(m))$
A generic and customizable measure

Similarity functions f and g

- Allow one to express similarity knowledge
- May be defined by weighted sums

Solving univalent matching problems...

- Graph isomorphism
- (Partial) Subgraph isomorphism
- Largest (partial) common subgraph
- Graph edit distance

...and multivalent graph matching problems

- Extended graph edit distance [Ambauen & al. 2003]
- Non bijective matchings [Boeres & al. 2004]
A generic and customizable measure

Similarity functions f and g
- Allow one to express similarity knowledge
- May be defined by weighted sums

Solving univalent matching problems...
- Graph isomorphism
- (Partial) Subgraph isomorphism
- Largest (partial) common subgraph
- Graph edit distance

...and multivalent graph matching problems
- Extended graph edit distance [Ambauen & al. 2003]
- Non bijective matchings [Boeres & al. 2004]
A generic and customizable measure

Similarity functions \(f \) and \(g \)
- Allow one to express similarity knowledge
- May be defined by weighted sums

Solving univalent matching problems...
- Graph isomorphism
- (Partial) Subgraph isomorphism
- Largest (partial) common subgraph
- Graph edit distance

...and multivalent graph matching problems
- Extended graph edit distance [Ambauen & al. 2003]
- Non bijective matchings [Boeres & al. 2004]
Algorithms for measuring graph similarity

A new combinatorial problem

- Goal = find \(m \subseteq V_1 \times V_2 \) that maximizes
 \[
 \text{score}(m) = f(G_1 \cap_m G_2) - g(\text{splits}(m))
 \]
- \(\mathcal{NP} \)-hard problem \(\leadsto 2^{|V_1| \cdot |V_2|} \) states to explore

Solving with a complete approach

- Structure the search space with a lattice...
- ...but the score function is not monotonic w.r.t. inclusion
 \(\leadsto \) limited to very small graphs

Solving with incomplete approaches

- Greedy: incremental construction of a matching
- Tabu: improvement of a matching by exploring its neighborhood
- ACO: using ants to guide greedy constructions
Algorithms for measuring graph similarity

A new combinatorial problem

- Goal = find \(m \subseteq V_1 \times V_2 \) that maximizes
 \[
 \text{score}(m) = f(G_1 \cap_m G_2) - g(\text{splits}(m))
 \]

- \(\mathcal{NP} \)-hard problem \(\leadsto 2^{\mid V_1 \mid \cdot \mid V_2 \mid} \) states to explore

Solving with a complete approach

- Structure the search space with a lattice...
- ...but the score function is not monotonic w.r.t. inclusion

 \(\leadsto \) limited to very small graphs

Solving with incomplete approaches

- Greedy: incremental construction of a matching
- Tabu: improvement of a matching by exploring its neighborhood
- ACO: using ants to guide greedy constructions
A new combinatorial problem

- Goal = find \(m \subseteq V_1 \times V_2 \) that maximizes

\[
\text{score}(m) = f(G_1 \cap_m G_2) - g(\text{splits}(m))
\]

- \(\mathcal{NP} \)-hard problem \(\sim \) \(2^{|V_1| \cdot |V_2|} \) states to explore

Solving with a complete approach

- Structure the search space with a lattice...
- ...but the score function is not monotonic w.r.t. inclusion

\(\sim \) limited to very small graphs

Solving with incomplete approaches

- Greedy: incremental construction of a matching
- Tabu: improvement of a matching by exploring its neighborhood
- ACO: using ants to guide greedy constructions
Greedy algorithm

Greedy construction of a matching \(m \)

- \(m \leftarrow \emptyset \)
- **Iterate**
 - \(\text{Cand} \leftarrow V_1 \times V_2 - m \)
 - Choose \((u_1, u_2) \in \text{Cand}\) that maximizes the \(\text{score} \) function
 \(\leadsto \) break ties randomly
 - **Exit when** \(\text{score}(m \cup \{(u_1, u_2)\}) < \text{score}(m) \)
 - \(m \leftarrow m \cup \{(u_1, u_2)\} \)
- **End iterate**

Properties

- Polynomial complexity \(\mathcal{O}(\left| V_1 \right| \cdot \left| V_2 \right|)^2 \)
- Non optimal
- Non deterministic \(\leadsto \) may be iterated
Reactive Tabu Search

Exploration of the neighborhood of a matching m

- $m \leftarrow \text{Greedy}(G_1, G_2)$
- **While** $\text{score}(m) < Q$ **and** time limit not reached
 - Choose $m' \in \text{Neighborhood}(m)$ so that
 - the move $m \leadsto m'$ is not “Tabu”
 - m' maximizes the score function
 - $m \leftarrow m'$
 - Record the move $m' \leadsto m$ as “Tabu”
- **End while**
Reactive Tabu Search

Exploration of the neighborhood of a matching \(m \)

1. \(m \leftarrow \text{Greedy}(G_1, G_2) \)
2. **While** \(\text{score}(m) < Q \text{ and } \) time limit not reached
 - Choose \(m' \in \text{Neighborhood}(m) \) so that
 - the move \(m \rightsquigarrow m' \) is not “Tabu”
 - \(m' \) maximizes the score function
 - \(m \leftarrow m' \)
 - Record the move \(m' \rightsquigarrow m \) as “Tabu”
3. **End while**

Greedy: Local search is started from a matching built by Greedy

⇒ May be iterated from \(\neq \) starting points computed by Greedy
Reactive Tabu Search

Exploration of the neighborhood of a matching m

- $m \leftarrow Greedy(G_1, G_2)$
- While $score(m) < Q$ and time limit not reached
 - Choose $m' \in Neighborhood(m)$ so that
 - the move $m \sim m'$ is not “Tabu”
 - m' maximizes the score function
 - $m \leftarrow m'$
 - Record the move $m' \sim m$ as “Tabu”
- End while

Neighborhood(m) = set of matchings obtained by removing or adding a couple of vertices from m
Reactive Tabu Search

Exploration of the neighborhood of a matching m

- $m \leftarrow Greedy(G_1, G_2)$
- **While** $\text{score}(m) < Q$ and time limit not reached
 - Choose $m' \in \text{Neighborhood}(m)$ so that
 - the move $m \leadsto m'$ is not "Tabu"
 - m' maximizes the score function
 - $m \leftarrow m'$
 - Record the move $m' \leadsto m$ as "Tabu"
- **End while**

Tabu principle \leadsto prevent the search from cycling

- Memorize the k last moves in a tabu list
- k determines intensification/diversification of the search
 - decreasing $k \leadsto$ intensifying
 - increasing $k \leadsto$ diversifying
- Reactive search \leadsto dynamically adapt k
ACO algorithm for the graph matching problem

- Define pheromone trails and initialize them to τ_{max}
- **repeat**
 - 1. Each ant builds a matching
 - 2. Perform greedy local search on the best matching
 - 3. Update pheromone trails
- **until** optimal matching found or stagnation
ACO algorithm for the graph matching problem

- Define pheromone trails and initialize them to τ_{max}
- repeat
 1. Each ant builds a matching
 2. Perform greedy local search on the best matching
 3. Update pheromone trails
- until optimal matching found or stagnation

Pheromone trails

Let $G_1 = \langle V_1, r_{V_1}, r_{E_1} \rangle$ and $G_2 = \langle V_2, r_{V_2}, r_{E_2} \rangle$ be 2 graphs
Associate a pheromone trail with each couple $(u, v) \in V_1 \times V_2$
$\tau(u, v) = $ learnt desirability of matching u with v
ACO algorithm for the graph matching problem

- Define pheromone trails and initialize them to τ_{max}
- \textbf{repeat}
 - \textbf{1} Each ant builds a matching
 - \textbf{2} Perform greedy local search on the best matching
 - \textbf{3} Update pheromone trails
- \textbf{until} optimal matching found or stagnation

Greedy randomized construction of a matching by an ant

- Let $m =$ current matching and $\text{cand} = V_1 \times V_2 - m$
- Choose $(u, v) \in \text{cand}$ w.r.t. the probability

\[
p(u, v) = \frac{\left[\tau(u, v) \right]^\alpha \cdot \left[\eta_m(u, v) \right]^\beta}{\sum_{(u', v') \in \text{cand}} \left[\tau(u', v') \right]^\alpha \cdot \left[\eta_m(u', v') \right]^\beta}
\]
ACO algorithm for the graph matching problem

- Define pheromone trails and initialize them to τ_{max}
- repeat
 1. **Each ant builds a matching**
 2. Perform greedy local search on the best matching
 3. Update pheromone trails
- until optimal matching found or stagnation

Greedy randomized construction of a matching by an ant

- Let $m =$ current matching and $\text{cand} = V_1 \times V_2 - m$
- Choose $(u, v) \in \text{cand}$ w.r.t. the probability

$$
p(u, v) = \frac{[\tau(u, v)]^\alpha \cdot [\eta_m(u, v)]^\beta}{\sum_{(u', v') \in \text{cand}} [\tau(u', v')]^\alpha \cdot [\eta_m(u', v')]^\beta}
$$

- $\tau(u, v) \sim$ past experience of the colony w.r.t. choosing (u, v)
ACO algorithm for the graph matching problem

- Define pheromone trails and initialize them to τ_{max}

repeat

1. **Each ant builds a matching**
2. Perform greedy local search on the best matching
3. Update pheromone trails

until optimal matching found or stagnation

Greedy randomized construction of a matching by an ant

- Let $m =$ current matching and $\text{cand} = V_1 \times V_2 - m$
- Choose $(u, v) \in \text{cand}$ w.r.t. the probability

\[
p(u, v) = \frac{[\tau(u, v)]^{\alpha} \cdot [\eta_m(u, v)]^{\beta}}{\sum_{(u', v') \in \text{cand}} [\tau(u', v')]^{\alpha} \cdot [\eta_m(u', v')]^{\beta}}
\]

$\eta_m(u, v) \sim$ heuristic factor, proportional to the score function
ACO algorithm for the graph matching problem

- Define pheromone trails and initialize them to τ_{max}
- repeat
 1. Each ant builds a matching
 2. Perform greedy local search on the best matching
 3. Update pheromone trails
- until optimal matching found or stagnation

Greedy randomized construction of a matching by an ant

- Let $m =$ current matching and $cand = V_1 \times V_2 - m$
- Choose $(u, v) \in cand$ w.r.t. the probability

$$p(u, v) = \frac{[\tau(u, v)]^\alpha \cdot [\eta_m(u, v)]^\beta}{\sum_{(u', v') \in cand} [\tau(u', v')]^\alpha \cdot [\eta_m(u', v')]^\beta}$$

$\alpha, \beta \sim$ factor weights (parameters)
ACO algorithm for the graph matching problem

<table>
<thead>
<tr>
<th>Define pheromone trails and initialize them to τ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>repeat</td>
</tr>
<tr>
<td>1. Each ant builds a matching</td>
</tr>
<tr>
<td>2. Perform greedy local search on the best matching</td>
</tr>
<tr>
<td>3. Update pheromone trails</td>
</tr>
<tr>
<td>until optimal matching found or stagnation</td>
</tr>
</tbody>
</table>

Greedy Local Search from the best matching m

<table>
<thead>
<tr>
<th>Iterate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove the 3 worse couples of m</td>
</tr>
<tr>
<td>Add new couples to m in a greedy way</td>
</tr>
<tr>
<td>Until m is locally optimal</td>
</tr>
</tbody>
</table>

Use a tabu list to prevent the local search from cycling
ACO algorithm for the graph matching problem

- Define pheromone trails and initialize them to T_{max}
- repeat
 1. Each ant builds a matching
 2. Perform greedy local search on the best matching
 3. Update pheromone trails
- until optimal matching found or stagnation

Update pheromone trails

- Evaporate: multiply pheromone trails by $(1 - \rho)$
 $\Rightarrow \rho = $ evaporation factor such that $0 \leq \rho \leq 1$
- Reward: add pheromone trails on the couples of the best matching in a quantity proportional to the score
- Bound pheromone trails within $[T_{min}; T_{max}]$
 \Rightarrow prevent stagnation
A first version of ANT-GM has been presented at EvoCOP’05

Improvements introduced in ANT-GM’06

1. New pheromonal components
 - ANT-GM’05 lays pheromone on edges: $\tau((u, u'), (v, v'))$
 \leadsto desirability of matching together u with u' and v with v'
 - ANT-GM’06 lays pheromone on vertices: $\tau(u, u')$
 \leadsto desirability of matching u with u'
 \Rightarrow Better results obtained quicker

2. New ACO strategy
 - ANT-GM’05 based on Ant System
 - ANT-GM’06 based on MAX-MIN Ant System
 \Rightarrow favor exploration \Rightarrow better results

3. ANT-GM’06 integrates local search to improve ant solutions
Experimental Comparison

Test Suites
- Test suite 1: Randomly generated instances
- Test suite 2: Instances of [Boeres et al. 2004]

Considered algorithms
- ANT-GM’06 \rightarrow ACO without local search
- ANT-GM’06 + LS \rightarrow ACO combined with local search
- RTS \rightarrow Reactive Tabu Search

\rightarrow 20 runs of each algorithm on each instance
Test suite 1: Randomly generated instances

Random generation of couples of similar graphs

- Generation of a couple of similar graphs \((G_1, G_2)\):
 - Random generation of \(G_1\)
 - Apply 15 modifications on \(G_1\) to obtain \(G_2\)

- Non-labelled graphs \(\rightarrow\) harder instances

- Generate 100 couples... and keep the 13th hardest ones

Experimental settings

- ACO: \(\alpha=1, \beta=10, \rho=0.98, nbAnts=20, nbCycles=1000\)

- RTS:
 - \(10 \leq \text{tabuLength} \leq 50, \text{freqUpdate}=1000, \Delta_{\text{tabuLength}}=15\)
 - \(nbMaxMoves=50000\)
 - Iteration on \(\neq\) starting points
 - Until CPU time = time spent by ACO
Test suite 1: Experimental results

| Problem (|V₁|, |E₁|) | RTS | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | Best | Avg | Time |
| (80, 200) | 511 | 511.00 | 57 | 511 | 511.00 | 131 | 512 | 511.10 | 140 |
| (80, 240) | 644 | 644.00 | 60 | 644 | 644.00 | 266 | 644 | 644.00 | 230 |
| (80, 320) | 821 | 820.97 | 279 | 821 | 820.50 | 498 | 822 | 821.20 | 660 |
| (80, 340) | 753 | 753.00 | 55 | 753 | 753.00 | 111 | 753 | 753.00 | 130 |
| (80, 360) | 856 | 855.97 | 187 | 855 | 855.00 | 321 | 855 | 855.00 | 249 |
| (80, 360) | 863 | 863.00 | 21 | 863 | 863.00 | 187 | 864 | 863.94 | 565 |
| (90, 300) | 762 | 762.00 | 98 | 762 | 762.00 | 326 | 762 | 762.00 | 213 |
| (90, 320) | 780 | 780.00 | 51 | 780 | 780.00 | 572 | 780 | 780.00 | 409 |
| (90, 320) | 816 | 816.00 | 69 | 816 | 815.45 | 546 | 816 | 815.45 | 602 |
| (100, 260) | 697 | 696.63 | 628 | 697 | 696.90 | 976 | 697 | 697.00 | 812 |
| (100, 300) | 780 | 780.00 | 148 | 780 | 780.00 | 278 | 780 | 780.00 | 279 |
| (100, 320) | 828 | 828.00 | 46 | 828 | 828.00 | 286 | 828 | 828.00 | 218 |
| (100, 360) | 915 | 915.00 | 90 | 915 | 915.00 | 267 | 915 | 915.00 | 152 |

For each algo: **Best** = best score over 20 runs
Avg = average score over 20 runs
Time = average time to find the best score of each run
Test suite 1: Experimental results

| Problem $(|V_1|, |E_1|)$ | RTS | | &n
Test suite 1: Experimental results

Problem (V₁	,	E₁)	RTS	ANT-GM’06	ANT-GM’06+LS		
	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time
(80, 200)	511	511.00	57	511	511.00	131	512	511.10	140
(80, 240)	644	644.00	60	644	644.00	266	644	644.00	239
(80, 320)	821	820.97	279	821	820.50	498	822	821.20	660
(80, 340)	753	753.00	55	753	753.00	111	753	753.00	130
(80, 360)	856	855.97	187	855	855.00	321	855	855.00	249
(80, 360)	863	863.00	21	863	863.00	187	864	863.94	565
(90, 300)	762	762.00	98	762	762.00	326	762	762.00	213
(90, 320)	780	780.00	51	780	780.00	572	780	780.00	409
(90, 320)	816	816.00	69	816	815.45	546	816	815.45	602
(100, 260)	697	696.63	628	697	696.90	976	697	697.00	812
(100, 300)	780	780.00	148	780	780.00	278	780	780.00	279
(100, 320)	828	828.00	46	828	828.00	286	828	828.00	218
(100, 360)	915	915.00	90	915	915.00	267	915	915.00	152

Comparison of RTS with ANT-GM’06 without LS

RTS obtains slightly better results... much quicker
Test suite 1: Experimental results

Problem $(V_1	,	E_1)$	RTS	ANT-GM’06	ANT-GM’06+LS		
	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time
(80, 200)	511	511.00	57	511	511.00	131	512	511.10	140
(80, 240)	644	644.00	60	644	644.00	266	644	644.00	239
(80, 320)	821	820.97	279	821	820.50	498	822	821.20	660
(80, 340)	753	753.00	55	753	753.00	111	753	753.00	130
(80, 360)	856	855.97	187	855	855.00	321	855	855.00	249
(80, 360)	863	863.00	21	863	863.00	187	864	863.94	565
(90, 300)	762	762.00	98	762	762.00	326	762	762.00	213
(90, 320)	780	780.00	51	780	780.00	572	780	780.00	409
(90, 320)	816	816.00	69	816	815.45	546	816	815.45	602
(100, 260)	697	696.63	628	697	696.90	976	697	697.00	812
(100, 300)	780	780.00	148	780	780.00	278	780	780.00	279
(100, 320)	828	828.00	46	828	828.00	286	828	828.00	218
(100, 360)	915	915.00	90	915	915.00	267	915	915.00	152

Comparison of ANT-GM’06 without LS and ANT-GM’06 with LS

Introducing LS improves ANT-GM’06 without increasing CPU-time.
Test suite 1: Experimental results

Problem $(V_1	,	E_1)$	RTS	ANT-GM’06	ANT-GM’06+LS		
	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time
(80, 200)	511	511.00	57	511	511.00	131	512	511.10	140
(80, 240)	644	644.00	60	644	644.00	266	644	644.00	239
(80, 320)	821	820.97	279	821	820.50	498	822	821.20	660
(80, 340)	753	753.00	55	753	753.00	111	753	753.00	130
(80, 360)	856	855.97	187	855	855.00	321	855	855.00	249
(80, 360)	863	863.00	21	863	863.00	187	864	863.94	565
(90, 300)	762	762.00	98	762	762.00	326	762	762.00	213
(90, 320)	780	780.00	51	780	780.00	572	780	780.00	409
(90, 320)	816	816.00	69	816	815.45	546	816	815.45	602
(100, 260)	697	696.63	628	697	696.90	976	697	697.00	812
(100, 300)	780	780.00	148	780	780.00	278	780	780.00	279
(100, 320)	828	828.00	46	828	828.00	286	828	828.00	218
(100, 360)	915	915.00	90	915	915.00	267	915	915.00	152

Comparison of RTS with ANT-GM’06 with LS

ANT-GM’06+LS often obtains better results... but needs more time.
Test suite 2: instances of [Boeres et al. 2004]

7 non-bijective graph matching instances

Match a model graph G_1 to an over-segmented image graph G_2

Find a multivalent mapping m such that:

- Each vertex of G_1 is matched to at least one vertex
- Each vertex of G_2 is matched to exactly one vertex
- Only connected set of vertices of G_2 are merged
- Maximize a weighted sum w.r.t. given similarity matrices

Experimental settings

- ACO: $\alpha=2$, $\beta=10$, $\rho=0.98$, $nbAnts=20$, $nbCycles=1000$
- RTS:
 - $15 \leq tabuLength \leq 50$, $freqUpdate=5000$, $\Delta_{tabuLength}=15$
 - $nbMaxMoves=50000$
 Only one starting point (Greedy is deterministic)
Test suite 2: Experimental results

| Problem (| | V₁ |, | V₂ |) | LS+ | RTS | ANT-GM’06 | ANT-GM’06+LS |
|---------|---------|-----|---------|---------|
| | Best | Best| Time | Best | Avg | Time | Best | Avg | Time |
| (10, 30)| .5474 | .5481| 0.9 | .5601 | .5598 | 16 | .5608 | .5604 | 15 |
| (10, 30)| .5435 | .5529| 4.6 | .5638 | .5638 | 10 | .5645 | .5641 | 7 |
| (12, 95)| .4248 | .4213| 0.0 | .4252 | .4251 | 211 | .4252 | .4251 | 215 |
| (14, 28)| .6319 | .6333| 2.1 | .6369 | .6369 | 7 | .6376 | .6369 | 5 |
| (30, 100)| .5186 | .5210| 1.3 | .5229 | .5226 | 462 | .5232 | .5228 | 229 |
| (30, 100)| .5222 | .5245| 1.3 | .5263 | .5261 | 456 | .5269 | .5264 | 241 |
| (50, 250)| .5187 | .5199| 81.7 | .5201 | .5201 | 4133 | .5203 | .5202 | 2034 |

- ACO and RTS are (nearly always) better than LS+, the local search approach proposed in [Boeres et al. 04] for this problem.
- ACO obtains better results than RTS but needs much more time.
Two different approaches for the graph matching problem

- **Ant Colony Optimization**
 - New pheromonal strategy
 - Hybridation with LS
 - Obtains better results on harder instances...
 - ...but is time consuming

- **Reactive Tabu Search**
 - Local search guided by a Tabu list
 - The length of the Tabu list is dynamically adapted...
 - ...but other parameters still have to be adapted!
 - Much quicker, but slightly worse results on « hard » instances
Further work

- Improve algorithms
 - Try other local searches for ACO
 - Diversify the search of RTS by iterating from more different starting points

- Compare algorithms on other kinds of GM problems
 - Subgraph isomorphism problems
 - Maximum common subgraph problems
 - Extended graph edit distance

- Applications
 - Measuring the similarity of documents described with RDF
 - Measuring the similarity of images
 - ...