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A general approach to implement propagation and simplification of constraints consists of applying
rules over these constraints. However, a difficulty that arises frequently when writing a constraint
solver is to determine the constraint propagation algorithm. In this paper, we propose a method
for generating propagation and simplification rules for constraints over finite domains defined
extensionally by e.g. a truth table or their tuples. The generation of rules is performed in two
steps. First, propagation rules are generated. Propagation rules do not rewrite constraints but
add new ones. Thus, the constraint store may contain superfluous constraints. Removing these
constraints not only allows saving of space but also decreases the cost of constraint solving.
Constraints can be removed using simplification rules. Thus, in a second step some propagation
rules are transformed into simplification rules.

Furthermore, we show that our approach performs well on various examples, including Boolean
constraints, multi-valued logic, and Allen’s qualitative approach to temporal logic. Moreover, an
application taken from the field of digital circuit design shows that our approach is of practical
use.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Logic and constraint programming; I.2.6 [Artificial Intelligence]: Learn-
ing—Induction

General Terms: Algorithms, Design

Additional Key Words and Phrases: Rule-Based Constraint Programming, Generation of Solvers,
Finite Domains

1. INTRODUCTION

Rule-based formalisms are ubiquitous in computer science, and even more in con-
straint reasoning and programming. In constraint reasoning, algorithms are often
specified using inference rules, rewrite rules, sequents, or first-order axioms written
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as implications [Apt 1998; Kirchner and Ringeissen 1998; Apt and Monfroy 2001].
In the context of constraint programming, advanced programming languages like
ELAN [Kirchner et al. 1993], CLAIRE [Caseau et al. 1999], and Constraint Han-
dling Rules (CHR) [Frühwirth 1998], have shown that the concept of rules could be
of major interest as a programming tool for constraint solvers.
However, a difficulty that arises frequently when specifying or programming a con-
straint solver in a rule-based language is to determine rules to simplify constraints
and rules to propagate new constraints. The first kind of rules, called simplifica-
tion rules, are rules that rewrite constraints to simpler constraints while preserving
logical equivalence (e.g. X≤Y, Y ≤X ⇔ X=Y ). While the rules of the second
kind, called propagation rules, are used to add new constraints, which are logically
redundant but which may cause further simplification (e.g. X≤Y, Y ≤Z ⇒ X≤Z).
In this work, we propose a method to generate automatically the propagation and
simplification rules and to implement them in the language Constraint Handling
Rules (CHR) to obtain a running rule-based constraint solver. However, the gener-
ation techniques proposed in this paper can be adapted to other languages. Using
our method the user has the possibility to specify the form of the rules she/he wants
to generate. The method allows any kind of constraints in the left hand side of rules
and in their right hand side as well. The generation of rules is performed in two
steps. In a first step, only propagation rules are generated using a method inspired
by techniques used in the field of knowledge discovery and data mining [Toivonen
et al. 1995]. In a second step, some propagation rules are transformed into sim-
plification rules. In general, simplification rules reduce the number of constraints
by replacing constraints by ”‘simpler”’ ones and thus improve the time and space
behavior of constraint solving. Of course this transformation step adds some cost
to the whole rule generation process. However, solvers are generated once to solve
different problems or different instances of the same problem. Thus the time needed
for the generation step is not so crucial while it is important to produce reasonably
efficient solvers.
Consider the following example: we want to generate a constraint solver for the
boolean conjunction and(X, Y, Z), where X and Y are the input arguments and Z
is the output argument, and for the boolean negation neg(A, B), where A is the
input argument and B is the output argument. The relation and can be defined
extensionally by the triples {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and the relation neg
can be defined by the pairs {(0, 1), (1, 0)}, where 1 stands for truth and 0 for falsity.
In the first step, only propagation rules are generated, e.g.

and(0, Y, Z) ⇒ Z=0.

and(1, Y, Z) ⇒ Y =Z.

and(X, X, Z) ⇒ X=Z.

neg(X, 0) ⇒ X=1.

neg(X, X) ⇒ false.

and(X, Y, Z), neg(X, Y ) ⇒ Z=0.

In a second step, some propagation rules are transformed into simplification rules:

and(0, Y, Z) ⇔ Z=0.
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and(1, Y, Z) ⇔ Y =Z.

and(X, X, Z) ⇔ X=Z.

neg(X, 0) ⇔ X=1.

neg(X, X) ⇒ false.

and(X, Y, Z), neg(X, Y ) ⇔ Z=0, neg(X, Y ).

Now, the last rule says that the constraints and(X, Y, Z), neg(X, Y ) can be simply
replaced by the equality constraint Z=0 and the constraint neg(X, Y ), and thus
will lead in general to more efficient constraint solving. This set of rules, generated
automatically, corresponds to the well-known rules that can be found in several
papers describing the propagation and simplification of boolean constraints, e.g. in
form of demons [Dincbas et al. 1988], conditionals [van Hentenryck et al. 1992],
CHR rules [Frühwirth 1998] or proof systems [Codognet and Diaz 1993; Apt 2000].
The paper is organized as follows: In section 2, we present the algorithm for the gen-
eration of propagation rules and give some soundness, correctness and termination
results. Then, we give more examples of the use of this algorithm. In section 3, we
present a method to transform propagation rules into simplification rules and give
some properties of the transformation. In Section 4, we present an example show-
ing the practical usefulness of the method developed in this paper. We review the
related work in Section 5, and we conclude with a summary. This paper is a revised
and homogenized presentation of separate contributions presented in [Abdennadher
and Rigotti 2000] and in [Abdennadher and Rigotti 2001b].

2. GENERATION OF PROPAGATION RULES

In this section, we present the algorithm PropMiner dedicated to the generation of
propagation rules for constraints over finite domains. First, before the description
of the algorithm, we give a definition of the class of rules that are generated.

2.1 Class of Generated Rules

Let A be a set of atomic constraints. The set of all constraints over A, i.e. the set
of all non-empty finite subsets of A, is noted L(A). The set of variables appearing
in A is denoted by V ar(A).
Let CT be a constraint theory and let σ be a ground substitution. σ is a solution
of a constraint C if CT |= σ(C).

Definition 2.1. Let Alhs and Arhs be two sets of atomic constraints not con-
taining false1. The set of propagation rules over 〈Alhs,Arhs〉 is the set of all rules
of the form C1 ⇒ C2, where C1 ∈ L(Alhs) and C2 ∈ L(Arhs) ∪ {{false}} and
C1 ∩ C2 = ∅. C1 is called the left hand side ( lhs) and C2 the right hand side ( rhs)
of the rule. A failure rule is a propagation rule of the form C1 ⇒ {false}.

Definition 2.2. A propagation rule C1 ⇒ C2 is valid if for any ground substi-
tution σ, if σ is a solution of C1 then σ is a solution of C2. The rule C1 ⇒ {false}
is valid if C1 has no solution.

1false will be used as a particular rhs for the rules.
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Since the number of valid rules may become quite large, we consider that the rules
that are in some sense the most general will be the most interesting to build a
solver. We consider only a syntactical notion of rule generality which is inspired by
the notion of structural covering used in association rule mining [Toivonen et al.
1995]. Intuitively this notion can be seen as a kind of subsumption between sets of
rules.

Definition 2.3. Let R and R′ be two sets of propagation rules. R′ is a lhs-
cover of R if for all (C1 ⇒ C2) ∈ R there exists (C′

1 ⇒ C′
2) ∈ R′, such that

C′
1 ⊆ C1 and C2 ⊆ C′

2.

Note that all propagations that can be made using rules in R, can also be done
with rules in R′.

Example 2.1. Let and be a ternary constraint corresponding to the Boolean
conjunction used in Section 1. {{and(X, Y, Z), X=0} ⇒ {Z=0}} is a lhs-cover of
{{and(X, Y, Z), X=0} ⇒ {Z=0}, {and(X, Y, Z), X=0, Y =0} ⇒ {Z=0}}.

The algorithm PropMiner presented in Section 2.2 will generate a lhs-cover of
the set of valid propagation rules over 〈Alhs,Arhs〉. However, many lhs are of little
interest to build solvers based on propagation rules. To filter out such rules we
consider that the user has in mind a particular pattern of constraints over which
she/he wants to obtain propagations. Suppose that a user wants to generate inter-
action rules between the Boolean operations conjunction (and) and negation (neg),
then we will restrict the search to rules having at least the constraint and(X, Y, Z)
together with neg(A, B) in their lhs.
Additionally, it is in general useless to look for rules such that some atomic con-
straints are not related to the others by variable sharing. For example
{and(X, Y, Z), neg(A, B), Y =1} ⇒ {Z=X} contains an isolated atomic constraint
neg(A, B) in its lhs and is likely to be useless since it is redundant wrt. to the simpler
rule {and(X, Y, Z), Y =1} ⇒ {Z=X}. Of course some rules having such indepen-
dent atomic constraints in their lhs can be non-redundant, as it is the case for
instance for the rule c1(X1, . . . , Xn), c2(Y1, . . . , Ym) ⇒ c3(X1, . . . , Xn, Y1, . . . , Ym).
But it should be noticed that in practice such rules are rarely used (for example
they are not used in the classical rule-based solvers implemented in CHR [Abden-
nadher and Saft ]). So, in order to reduce a priori the search space to be explored
to find the rules, we prefer to restrict the generation to rules such that all atomic
constraints are related by variable sharing. However, the algorithm PropMiner
can be easily modified to drop this limitation if needed.
We now define the set of rules satisfying these restriction criteria and called relevant
propagation rules. The examples presented in Section 2.6 and Section 4 show that
this notion of relevant rules is appropriated to find interesting propagation, without
being overwhelmed by huge sets of rules.

Definition 2.4. Let Baselhs be a set of atomic constraints. A set of atomic
constraints A is an interesting pattern wrt. Baselhs if the following conditions are
satisfied:

(1 ) Baselhs ⊆ A.
ACM Transactions on Computational Logic, Vol. V, No. N, September 2004.
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(2 ) the graph defined by the relation joinA is connected, where joinA is a binary
relation that holds for pairs of atomic constraints in A that share at least one
variable, i.e., joinA = {〈c1, c2〉 | c1 ∈ A, c2 ∈ A, V ar({c1}) ∩ V ar({c2}) += ∅}.

Definition 2.5. The set of relevant propagation rules over 〈Baselhs,Alhs,Arhs〉
is the set of propagation rules over 〈Alhs,Arhs〉 of the form C1 ⇒ C2, where C1 is
an interesting pattern with respect to Baselhs and has at least one solution.

In this definition, the second restriction ensures that rules with an inconsistent lhs
but having a rhs different from false are not relevant.

Example 2.2. Assume again that one wants to generate interaction rules be-
tween Boolean conjunction and Boolean negation, then Baselhs has the following
form {and(X, Y, Z), neg(A, B)}.
{and(X, Y, Z), neg(A, B), A=X, B=Y } ⇒ {Z=0} is then a relevant propagation
rule, while {and(X, Y, Z), Y =1} ⇒ {Z=X} and {and(X, Y, Z), neg(A, B), X=0}
⇒ {Z=0} are not relevant since their lhs are not interesting patterns wrt. Baselhs.
However, it should be noticed that {and(X, Y, Z), Y =1} ⇒ {Z=X} would have
been relevant for the atomic constraint and(X, Y, Z) alone (i.e., when Baselhs =
{and(X, Y, Z)}).

The generation algorithm will discard any rule which is not a relevant propaga-
tion rule over a given 〈Baselhs,Alhs,Arhs〉. We present in Section 2.4 additional
simplifications of the set of rules generated to remove some specific redundancies.

2.2 The PropMiner Algorithm

Using the PropMiner algorithm the user has the possibility to specify the admis-
sible syntactic forms of the rules. The user determines Baselhs and chooses the
set of candidate atomic constraints (denoted Candlhs) used to form conjunctions
with Baselhs in the lhs of the rules (usually, these candidate atomic constraints are
simply equality constraints). The user also specifies the set of atomic constraints
that can be used to form conjunctions in the rhs of the rules. This set is denoted
Candrhs.
The semantics of the constraint Baselhs is determined by means of a set noted
SolBaselhs containing all solutions of Baselhs. This set must be finite. Additionally
the semantics of the candidate atomic constraints Candlhs and Candrhs must be
provided by two constraint theories CTlhs and CTrhs, respectively, and must be
defined over the same domain as Baselhs.
To compute the propagation rules the algorithm generates each possible lhs con-
straint (noted Clhs) and for each determines the corresponding rhs constraint (noted
Crhs).
For each lhs Clhs the corresponding rhs Crhs is computed in the following way:

(1) if Clhs has no solution then Crhs = {false} and we have the failure rule Clhs ⇒
{false}.

(2) if Clhs has at least one solution then Crhs is the set of all atomic constraints
that are candidates for the rhs part and are true for all solutions of Clhs. If
Crhs is not empty we have the rule Clhs ⇒ Crhs.
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During the exploration of the search space, the algorithm uses two main pruning
strategies:

(1) (Pruning1) if a rule Clhs ⇒ {false} is generated then there is no need to
consider any superset of Clhs to form other rule lhs.

(2) (Pruning2) if a rule Clhs ⇒ Crhs is generated then there is no need to consider
any C such that Clhs ⊂ C and C ∩ Crhs += ∅ to form other rule lhs.

Since the effect of Pruning2 is not as straightforward as the effect of Pruning1 we
illustrate it by mean of the following example.

Example 2.3. After generating the relevant propagation rule of example 2.2:
{and(X, Y, Z), neg(A, B), A=X, B=Y } ⇒ {Z=0}, the possible lhs
{and(X, Y, Z), neg(A, B), A=X, B=Y, B=1, Z=0} is not considered using Prun-
ing2, while {and(X, Y, Z), neg(A, B), A=X, B=Y, B=1} remains a lhs candidate
and may lead to the following rule
{and(X, Y, Z), neg(A, B), A=X, B=Y, B=1} ⇒ {Z=0, A=0, X=0, Y =1}.

These pruning strategies are much more efficient if during the enumeration of all
possible rule lhs, a given lhs is considered before any of its supersets. So a specific
ordering for this enumeration is imposed in the algorithm. Moreover, this order-
ing allows to discover early covering rules avoiding then the generation of many
uninteresting covered rules.
To simplify the presentation of the algorithm we consider that all possible lhs are
stored in a list L and that unnecessary lhs candidates are simply removed from this
list. For efficiency reasons the concrete implementation is not based on a list but on
a tree containing lhs candidates on its nodes. More details are given in Section 2.5.

We now give an abstract description of the PropMiner algorithm. The algorithm
is given in Figure 1. It takes as input:

(1) Baselhs: a constraint that must be included in any lhs of the rules.
(2) SolBaselhs: the finite set of ground substitutions that are solutions of Baselhs.

Note that this defines the constraint Baselhs extensionally.
(3) Candlhs: a finite set of atomic constraints that are candidates to form lhs of

the rules such that V ar(Candlhs) ⊆ V ar(Baselhs).
(4) Candrhs: a finite set of atomic constraints that are candidates to form rhs of

the rules such that V ar(Candrhs) ⊆ V ar(Baselhs).
(5) CTlhs: a constraint theory for Candlhs.
(6) CTrhs: a constraint theory for Candrhs.

And it produces the following output: a lhs-cover of the valid relevant propagation
rules over 〈Baselhs, Candlhs, Candrhs〉.

It should be noticed that the algorithm needs to check if a given ground constraint
is entailed by CTlhs or by CTrhs. This requirement is formalized by the notion of
ground decidability defined as follows.

Definition 2.6. Let CT be a constraint theory, let Γ be a set of ground substi-
tutions and A be a set of atomic constraints. CT is ground decidable for 〈A,Γ〉 if
ACM Transactions on Computational Logic, Vol. V, No. N, September 2004.
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the properties CT |= σ(c) and CT +|= σ(c) are decidable for any c ∈ A and for any
substitution σ ∈ Γ.

So, the algorithm imposes that the constraint theories CTlhs and CTrhs are ground
decidable for 〈Candlhs, SolBaselhs〉 and 〈Candrhs, SolBaselhs〉 respectively. It
should be noticed that this restriction is very weak, since the property holds for
almost all useful classes of constraint theories. Furthermore, the algorithm also
requires that the corresponding decision procedures are provided.

begin

Let R be an empty set of rules.
Let L be a list containing the elements of L(Baselhs ∪ Candlhs) in any order.

Remove from L any element which is not an interesting pattern wrt. Baselhs.
Order L with any total ordering compatible with the subset partial ordering
(i.e., for all C1 in L if C2 is after C1 in L then C2 #⊂ C1).

while L is not empty do
Let Clhs be equal to the first element of L, and remove from L its first element.

if for all σ ∈ SolBaselhs we have
CTlhs #|= σ(Clhs \ Baselhs) then

add the failure rule (Clhs ⇒ {false}) to R
and remove from L each element C such that Clhs ⊂ C. //Pruning1

else
compute Crhs the rule rhs, defined by
Crhs = {c|c ∈ (Candrhs \ Candlhs) and for all σ ∈ SolBaselhs

when CTlhs |= σ(Clhs \ Baselhs) we have CTrhs |= σ(c)}.
if Crhs is not empty then

add the rule (Clhs ⇒ Crhs) to R
and remove from L each element C such that

Clhs ⊂ C and C ∩ Crhs #= ∅. //Pruning2
endif

endif
endwhile

output R

end

Fig. 1. The PropMiner Algorithm

In the PropMiner algorithm the list L of possible lhs is initialized to be a finite
list. Each iteration of the while loop removes at least one element in L. This
ensures the following property.

Theorem 2.1 Termination. The algorithm PropMiner terminates and yields
a finite set of propagation rules.
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The following results establish soundness and correctness of the algorithm.

Theorem 2.2 Soundness. The PropMiner algorithm computes valid relevant
propagation rules over 〈Baselhs, Candlhs, Candrhs〉.

Proof. All Clhs considered are interesting pattern wrt. Baselhs, thus only rel-
evant rules can be generated. Let C′

lhs be Clhs \ Baselhs. A rule of the form
Clhs ⇒ {false} can be generated only if all solutions of Baselhs are not solu-
tions of C′

lhs. So any rule Clhs ⇒ {false} generated is valid. A rule of the form
Clhs ⇒ Crhs, where Crhs += {false} can be generated only if all solutions of Baselhs

that are solutions of C′
lhs, are also solutions of all atomic constraints in Crhs. Hence

all generated rules of the form Clhs ⇒ Crhs are valid.

Theorem 2.3 Correctness. The PropMiner algorithm computes a lhs-cover
of the valid relevant propagation rules over 〈Baselhs, Candlhs, Candrhs〉 when
V ar(Candlhs) ⊆ V ar(Baselhs) and V ar(Candrhs) ⊆ V ar(Baselhs).

Proof. First, we do not consider the two pruning strategies Pruning1 and Prun-
ing2. Then the algorithm enumerates all possible rule left hand sides that are
interesting patterns wrt. Baselhs. So it generates all valid relevant failure rules.
Moreover for any valid relevant rule of the form C1 ⇒ C2, where C2 += {false}
the algorithm considers C1 as a candidate lhs. Then it computes Crhs contain-
ing all atomic constraints c such that all solutions of C1 are solutions of c. Thus
C2 ⊆ Crhs. So if we do not consider the two pruning strategies Pruning1 and
Pruning2 the algorithm output a lhs-cover of the valid relevant propagation rules.
Now we show that the two pruning criteria are safe.
(Pruning1) When a rule of the form C1 ⇒ {false} is generated all candidate lhs C
such that C1 ⊂ C are discarded. However, since C1 ⇒ {false} is valid, C1 has no
solution, and thus any C ⊃ C1 have no solution too, and can only leads to a rule
of the form C ⇒ {false} which will be lhs-covered by C1 ⇒ {false}.
(Pruning2) When a rule of the form C1 ⇒ C2, where C2 += {false} is generated all
candidates lhs C such that C1 ⊂ C and C ∩ C2 += ∅ are discarded.
To establish the safety of this pruning criterion we show by induction on the size
of C that for any valid relevant rule C ⇒ C3, where C3 += {false}, there exists a
candidate lhs C′ ⊆ C such that C′ is not pruned and generates a valid relevant rule
that lhs-covered C ⇒ C3.
The claim holds trivially for |C| = |Baselhs|. Suppose that the property holds for
all C such that |Baselhs| ≤ |C| ≤ i, and consider a valid relevant rule C ⇒ C3,
where |C| = i + 1 and C += {false}.
If C has not be pruned then we have the claim. If C has been pruned, then there
exists C1 ⊂ C and C2 such that C1 ⇒ C2 is a valid relevant rule and C∩C2 += ∅. Let
A be any element in C∩C2 and C4 = C\{A}. Now consider the rule C4 ⇒ C3∪{A}.
C1 ⇒ C2 is a propagation rule, so C1 ∩ C2 = ∅ and then A +∈ C1. As C1 ⊂ C
and C4 = C \ {A} then C1 ⊂ C4. So C4 ⇒ C2 is valid since C1 ⇒ C2 is valid.
C4 ⇒ C2 is valid and A ∈ C2 thus C4 ⇒ C3 is also valid because C ⇒ C3 is valid
and C = C4 ∪ {A}.
Moreover C1 and C are interesting patterns wrt. Baselhs and have at-least one
solution because they are the lhs of the relevant rules C1 ⇒ C2 and C ⇒ C3. As
C1 ⊂ C4 ⊂ C then C4 is also an interesting pattern with at-least one solution.
ACM Transactions on Computational Logic, Vol. V, No. N, September 2004.



Automatic Generation of Constraint Solvers over Finite Domains · 9

Thus C4 ⇒ C3 is a valid relevant propagation rule.
By the induction hypothesis, there exists C5 and C6 such that C5 is a candidate
that is not pruned and generates the valid relevant propagation rule C5 ⇒ C6 that
lhs-covers C4 ⇒ C3, and thus also lhs-covers C ⇒ C3.

The complexity of the algorithm can be expressed in the number of ground decid-
ability tests needed. In the worst case the number of decidability tests to perform
is in the order of O(2|Candlhs| |SolBaselhs| |Candrhs|). The most limitative factor
is the number of atomic constraints that are candidates to form the lhs of the rules.
However, as presented in Section 2.6 and Section 4, a limited number of candidates
|Candlhs| still allows to find interesting rules. Moreover, nearly all rules obtained
can lead to pruning according to the strategy Pruning2, preventing the exploration
of the full collection of 2|Candlhs| possible lhs. The corresponding execution times
reported in Section 2.6 and Section 4 show that in practice the generations can be
done in a reasonable amount of time.

2.3 Consistency

K. R. Apt and E. Monfroy [1999; 2001] identified two consistency notions for rule-
based constraint solvers, membership consistency and rule consistency. It has been
shown that membership consistency is equivalent to arc consistency and that rule
consistency coincides with arc consistency for domains consisting of at most two
elements.
Rule consistency for a constraint C is the notion of consistency ensured by a solver
consisting of all valid equality rules which are rules of the form

C(X1, . . . , Xn), Xi=vi, . . . , Xk=vk ⇒ Y +=v,

where Xi, . . . , Xk are variables, and vi, . . . vk, v are elements of the domain associ-
ated to variables of C, and Y is a variable occurring in C but not in Xi, . . . , Xk.
If Baselhs consists of an atomic constraint and if we allow equality constraints
(between a variable and a constant) in lhs and disequality constraints (between
a variable and a constant) in rhs, then we can easily see that the class of rules
generated by PropMiner corresponds to the class of equality rules defined in [Apt
and Monfroy 2001]. Then according to Theorem 2.3 the rules generated enforce the
same kind of consistency.
For convenience, we introduce the following notation. Let c be a constraint predi-
cate of arity 2 and D1 and D2 be two sets of terms. We define atomic(c, D1, D2)
as the set of all atomic constraints built from c over D1 × D2. More precisely,
atomic(c, D1, D2) = {c(α,β) | α ∈ D1 and β ∈ D2}.

Theorem 2.4. Let C(X1, . . . , Xn) be an atomic constraint and let v1, . . . , vk be
the elements of the domain associated to X1, . . . , Xn, where the three following
conditions are satisfied:

Baselhs = {C(X1, . . . , Xn)}
Candlhs = atomic(=, {X1, . . . , Xn}, {v1, . . . , vk})
Candrhs = atomic(+=, {X1, . . . , Xn}, {v1, . . . , vk})

then the propagation rules generated by PropMiner enforce rule consistency.
ACM Transactions on Computational Logic, Vol. V, No. N, September 2004.
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Membership consistency corresponds to the consistency ensured by all valid mem-
bership rules which are rules of the form

C(X1, . . . , Xn), Xi∈Si, . . . , Xk∈Sk ⇒ Y +=v,

where Xi, . . . , Xk are variables, Si, . . . Sk are subsets of the domain D associated
to variables of C, v is a an element of D, and Y is a variable occurring in C but
not in Xi, . . . , Xk.
Over finite domains, a membership rule can be written using only disequality con-
straints in the left hand side. For example, over a domain D = {a, b, c, d}, a mem-
bership rule p(X, Y ), X∈{a, b} ⇒ Y +=c can be expressed as p(X, Y ), X +=c, X +=d ⇒
Y += c. Thus according to Theorem 2.3 we have the following result:

Theorem 2.5. Let C(X1, . . . , Xn) be an atomic constraint and let v1, . . . , vk be
the elements of the domain associated to X1, . . . , Xn, where the three following
conditions are satisfied:

Baselhs = {C(X1, . . . , Xn)}
Candlhs = atomic(+=, {X1, . . . , Xn}, {v1, . . . , vk})
Candrhs = atomic(+=, {X1, . . . , Xn}, {v1, . . . , vk})

then the propagation rules generated by PropMiner enforce membership consis-
tency.

In [Apt and Monfroy 2001], it has been established that rule consistency (on unary
or binary domains) and membership consistency is equivalent to arc consistency.
Theorem 2.4 and Theorem 2.5 show that PropMiner can be used to generate
rules that ensure the same kind of consistency. Furthermore, the input parameters
Candlhs and Candrhs of PropMiner can be set to supersets of the values needed
in Theorem 2.4 and Theorem 2.5 (e.g., incorporating equalities between variables).
Then, PropMiner can find additional propagation rules, that will enable the cor-
responding rule-based solver to perform more constraint propagations, and thus
ensure a stronger consistency.

2.4 Removing Redundancy

The PropMiner algorithm computes a lhs-cover of the valid relevant propagation
rules over 〈Baselhs, Candlhs, Candrhs〉, but this cover may contain some kind of
redundancies as illustrated in the following example.

Example 2.4. For Boolean constraints, with the appropriate input, the Prop-
Miner algorithm can produce the rule {and(X, Y, Z), Z=1} ⇒ {X=Y, X=Z,
Y =Z, X=1, Y =1}. If we have already a solver to handle equality constraints,
then it is desirable to simplify this rule into {and(X, Y, 1)} ⇒ {X=1, Y =1}.
On another input, for the logical operation exclusive-or (xor), the PropMiner
algorithm can produce the rule {xor(X, Y, Z), X=Y } ⇒ {Z=0} and the rule
{xor(X, Y, Z), X=0, Y =0} ⇒ {Z=0}. The second rule is clearly useless to build
a solver since it cannot propagate new atomic constraints wrt. the first rule, and
thus it should be discarded.

We use an ad-hoc technique to simplify the rule lhs and rhs, and to suppress
some redundant rules. This process does not lead to a precisely defined canonical
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representation of the rules generated, but in practice (see Section 2.6) it produces
small and readable sets of rules.
This simplification technique is incorporated in the PropMiner algorithm and
performed during the generation of the rules. For clarity reasons it is presented
apart from the algorithm given in Figure 1. The simplification principle is as
follows:

(1) For each rule generated by the algorithm of Figure 1 the equality constraints
appearing in the lhs are transformed into substitutions that are applied to the
lhs and the rhs. More precisely, for an equality constraint V1=V2, where V1

and V2 are variables, V1 is simply replaced by V2 in the whole rule. If the
equality is of form V =k or k=V with V a variable and k a constant of the
domain, then V is substituted by k. When all equality constraints of the lhs
have been processed in this way, then the completely ground atomic constraints
are removed from the lhs. For example, in the rule {and(X, Y, Z), Z=1} ⇒
{X=Y, X=Z, Y =Z, X=1, Y =1} the variable Z is replaced by the constant 1
leading to {and(X, Y, 1), 1=1} ⇒ {X=Y, X=1, Y =1} which is then simplified
to {and(X, Y, 1)} ⇒ {X=Y, X=1, Y =1}). When the equality constraint = is
defined as the syntactic equality over first-order terms, then the transformed
rule can be used in place of the original one to perform the same propagations.

(2) The new rules are then ordered in a list L′ using any total ordering on the
rule lhs compatible with the θ-subsumption ordering [Plotkin 1970] (i.e., a rule
having a more general lhs is placed before a rule with a more specialized lhs).

(3) Then we remove each rule that does not propagate additional atomic constraint
wrt. the other rules. This is done in the following way. Let S be a set of
rules initialized to the empty set. Consider each rule C1 ⇒ C2 in L′ (taken
according to the list ordering so that more general rules are processed before
more specific ones). Let C3 be the subset of atomic constraints in C2 defined
by C3 = {c | c ∈ C2 and c cannot be obtained from C1 by any sequence of
applications of the propagation rules in S}. If C3 is empty then remove the
rule from L′ else keep C1 ⇒ C2 in L′ and add it in S. Process next rule in
L′. This simplification step leads to the removal of rules that are useless wrt.
the propagations that can be made by the remaining ones (e.g., deletion of the
redundant rule for xor presented in Example 2.4).

(4) If Candrhs contains equality constraints and if the solver given for Candrhs han-
dles also disequality constraints then L′ is processed further to remove some
redundant equalities in the rhs of the rules, that are likely to occur quite of-
ten. For each rule C1 ⇒ C2 in L′ (taken in any order) C2 is simplified non-
deterministically as follows. Csimp is initialized to C2. Then each equality
X=Y in Csimp is considered in turn. If X +=Y is handled by the solver for
Candrhs, the solver is used to check the satisfiability of the constraint C4 de-
fined as C4 = (Csimp \ {X=Y }) ∪ {X +=Y }. If it is not satisfiable then X=Y
is removed from Csimp. If the solver does not handle X +=Y or does not report
that C4 is unsatisfiable, then X=Y is kept in Csimp. When all equalities in
Csimp have been processed, then C1 ⇒ C2 is replaced in L′ by C1 ⇒ Csimp.
This simplification leads for example to the transformation of {and(X, Y, 1)} ⇒
{X=Y, X=1, Y =1} into {and(X, Y, 1)} ⇒ {X=1, Y =1}. This step is mostly
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cosmetic to enhance the human readability of the rules.
(5) Output the list L′ containing the simplified rules.

2.5 Implementation Issues

As described in Section 2.2, the PropMiner algorithm needs to enumerate lhs
constraints. Our implementation follows the idea of direct extraction of association
rules [Agrawal et al. 1993] by exploring a tree corresponding to the lhs search space
as described in [Bayardo et al. 1999]. This tree is expanded and explored using
a depth first strategy, in a way that constructs only necessary lhs candidates and
allows to remove uninteresting candidates by cutting whole branches of the tree.
The branches of the tree are developed using a partial ordering on the lhs candidates
such that the more general lhs are examined before more specialized ones. The
partial ordering used in our implementation is the θ-subsumption [Plotkin 1970]
ordering commonly used in Inductive Logic Programming [Muggleton and De Raedt
1994] to structure the search space.
The running prototype is implemented in SICStus Prolog 3.7.1 (900 lines of Prolog)
and takes advantage of the support of propagation rules in this environment by
means of Constraint Handling Rules (CHR) [Frühwirth 1998] in the following way.
During the execution of the PropMiner algorithm we build incrementally a solver
with the propagation rules generated and this solver is used to perform the rule
simplification according to Section 2.4.

2.6 Examples

This section gives examples of applications of the PropMiner algorithm to gen-
erate propagation rules for well-known constraints. The generation of this kind
of rules for some of these constraints has previously been considered in [Apt and
Monfroy 1999; 2001] and this approach will be discussed in Section 5.
While we cannot – within the space limitations – introduce the whole generated
set of rules, we still give a fragment of it. The complete sets of rules are available
in [Abdennadher and Saft ] and can be executed online. In this section, the times
given for the generation of rules have been measured using the following software
and hardware: SICStus Prolog 3.7.1, PC Pentium 3 with 256 MBytes of memory
and a 500 MHz processor.
In the following, we assume that the constraint theories define among other equality
(“=”) and disequality (“ +=”) as syntactic equality and disequality. Furthermore, we
assume that the corresponding constraints are handled by an appropriate constraint
solver. For convenience, we also use the notation atomic(c, D1, D2) as defined in
Section 2.3.

2.6.1 Boolean Constraints. For these constraints, we used the constants 0 for fal-
sity and 1 for truth, and predicates to represent Boolean conjunction (and), dis-
junction (or), negation (neg) and exclusive-or (xor). These Boolean operations are
modeled as relation, e.g., xor(X, Y, Z) holds if and only if Z is the result of the
application of xor on X and Y .
For the conjunction and the algorithm PropMiner with the following input

Baselhs = {and(X, Y, Z)}
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Candlhs = Candrhs = atomic(=, {X, Y, Z}, {X, Y, Z, 0, 1})

generates the following rules in 0.05 seconds:

and(0, Y, Z) ⇒ Z=0.

and(X, 0, Z) ⇒ Z=0.

and(1, Y, Z) ⇒ Y =Z.

and(X, 1, Z) ⇒ X=Z.

and(X, X, Z) ⇒ X=Z.

and(X, Y, 1) ⇒ X=1, Y =1.

These propagation rules generated automatically correspond to the implementation
of and using CHR [Frühwirth 1998].
The PropMiner algorithm can also produce failure rules. For example, in the case
of the negation neg, we obtain, among other, the rule:

neg(X, X) ⇒ false.

Propagation rules defining interactions between user-defined atomic constraints can
also be found. With the following input

Baselhs = {and(X, Y, Z), neg(A, B)}
Candlhs = Candrhs = atomic(=, {X, Y, Z, A, B}, {X, Y, Z, A, B, 0, 1})

the following rules defining interaction between boolean conjunction and boolean
negation are generated:

and(X, Y, Z), neg(X, Y ) ⇒ Z=0.

and(X, Y, Z), neg(Y, X) ⇒ Z=0.

and(X, Y, Z), neg(X, Z) ⇒ X=1, Y =0, Z=0.

and(X, Y, Z), neg(Z, X) ⇒ X=1, Y =0, Z=0.

and(X, Y, Z), neg(Y, Z) ⇒ X=0, Y =1, Z=0.

and(X, Y, Z), neg(Z, Y ) ⇒ X=0, Y =1, Z=0.

Since the user can specify the form of the rhs of the rules, propagation rules with
a rhs consisting of more complex constraints than equality constraints can also be
generated. For example, with the following input, in the case of xor

Baselhs = {xor(X, Y, Z)}
Candlhs = atomic(=, {X, Y, Z}, {X, Y, Z, 0, 1})
Candrhs = Candlhs ∪ atomic(neg, {X, Y, Z}, {X, Y, Z, 0, 1})

6 rules, analogous to the ones for and, and the following 3 rules are generated in
0.1 seconds:

xor(X, Y, 1) ⇒ neg(X, Y ).
xor(X, 1, Z) ⇒ neg(X, Z).
xor(1, Y, Z) ⇒ neg(Y, Z).
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2.6.2 Full-adder. One important application of Boolean constraints is the mod-
eling of logic circuits. Let fulladder(X, Y, Z, S, C) represents the addition of two
bits X and Y , where Z is the input carry bit, S is the output bit, and C is the
output carry bit. The full-adder can be defined using Boolean predicates (see,
e.g. [van Hentenryck 1991]) as follows, fulladder(X, Y, Z, S, C) is equivalent to
and(X, Y, C1) ∧ xor(X, Y, S1) ∧ and(Z, S1, C2) ∧ xor(Z, S1, S) ∧ or(C1, C2, C).
Using the PropMiner algorithm 28 rules within 0.68 seconds are generated for
fulladder. Typical rules are:

fulladder(X, Y, CI, S, S) ⇒ X=S, Y =S, CI=S.

fulladder(X, Y, CI, CI, C) ⇒ X=C, Y =C.

fulladder(0, Y, CI, S, 1) ⇒ S = 0.

The first rule says for example that the constraint fulladder(X, Y, CI, S, C), when
the output bit S is equal to the output carry bit C, can propagate the information
that the bits to be added X and Y , and the input carry bit CI are equal to the
output bit S.

2.6.3 Three Valued Logics. We consider the equivalence relation defined by the
truth table given in [Kleene 1950] and recalled below, where the value t stands for
true, f for false and u for unknown.

X Y X ≡ Y
t t t
t f f
t u u
f t f
f f t
f u u
u t u
u f u
u u u

Let eq3val be the ternary constraint corresponding to this table. The PropMiner
algorithm generates for eq3val 16 rules within 0.3 seconds. Examples of these rules
are:

eq3val(X, X, X) ⇒ X +=f.

eq3val(X, Y, t) ⇒ X +=u, X=Y.

eq3val(X, f, X) ⇒ X=u.

For instance, the first rule means that for the constraint eq3val(X, Y, Z), when it
is known that the input arguments X and Y and the output Z are equal, we can
propagate that X is different from f .

2.6.4 Temporal Reasoning.
In [Allen 1983] an interval-based approach to temporal reasoning is presented.
Allen’s approach to reasoning about time is based on the notion of time intervals
and binary relations on them. Given two time intervals, their relative positions
can be described by exactly one of thirteen primitive interval relations, where each
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primitive relation can be defined in terms of its endpoint relations. These rela-
tions are equality, the 6 direct relations before, during, overlaps, meets, starts and
finishes, and their 6 converses.
In [Allen 1983] there is a 13×13 table defining a “composition” constraint between
a triple of events X , Y and Z, e.i. if the temporal relations between the events X
and Y and the events Y and Z are known, what is the temporal relation between
X and Z. The composition constraint, denoted by allenComp, can be defined as
follows: allenComp(R1, R2, R3) is equivalent to R1(X, Y ) ∧ R2(Y, Z) → R3(X, Z),
where R1, R2, R3 are primitive interval relations.
For allenComp 489 rules are generated in 83.12 seconds, provided that the user
specifies that the rhs of the rules may consist of a conjunction of equality and
disequality constraints. As in [Apt and Monfroy 1999; 2001] we denote the 6 direct
relations respectively by b, d, o, m, s, f , their converses by bi, di, oi, mi, si, fi and the
equality relation by e. Typical rules are:

allenComp(R1, R1, R1) ⇒ R1 +=m, R1 +=mi.

allenComp(R1, R1, e) ⇒ R1=e, R1 +=m, R1 +=mi.

allenComp(o, b, R3) ⇒ R3=b.

3. GENERATION OF SIMPLIFICATION RULES

Since a propagation rule does not rewrite constraints but adds new ones, the con-
straint store may contain superfluous information. These constraints can be re-
moved from the constraint store using simplification rules reducing the number of
constraints on which rules can be applied and thus improving both the time and
space behavior of constraint solving.
In general, finding simplification rules implies additional cost to the generation of
constraint solvers. However, since a solver can be used to solve different problems,
its efficiency is more important than the efficiency of its generation process.

Definition 3.1. Let Alhs and Arhs be two sets of atomic constraints not con-
taining false. A simplification rule is a rule of the form C1 ⇔ C2, where C1 ∈
L(Alhs) and C2 ∈ L(Arhs). A simplification rule C1 ⇔ C2 is valid if for any ground
substitution σ, if σ is a solution of C1 then σ is a solution of C2.

Often, propagation rules generated by the PropMiner algorithm can be trans-
formed into simplification rules. For the Boolean conjunction the propagation rules
presented in Section 2.6.1 could be replaced by the following simplification rules:

and(0, Y, Z) ⇔ Z=0.

and(X, 0, Z) ⇔ Z=0.

and(1, Y, Z) ⇔ Y =Z.

and(X, 1, Z) ⇔ X=Z.

and(X, X, Z) ⇔ X=Z.

and(X, Y, 1) ⇔ X=1, Y =1.

Our aim is to provide some criteria to perform such a transformation. One simple
criterion could be the following: whenever a rhs of a rule propagates information
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making its lhs ground, then this rule can be implemented by means of a simplifica-
tion rule. This criteria is not sufficient since it can only be applied to the last rule
of the example presented above. Finding a general criterion is even more difficult
when we consider propagation rules with a lhs consisting of more than one atomic
constraint.
In [Abdennadher and Rigotti 2001b], a method has been proposed to transform
some propagation rules into simplification rules. The method is a kind of post-
processing approach based on a confluence test which requires the termination of the
set of rules. Termination is in general undecidable, and this problem may jeopardize
the practicability of this method. In the following, we propose a transformation
method that does not require such a termination test.

3.1 The SimpMiner Algorithm

To simplify the presentation, we present the SimpMiner algorithm to transform
(when possible) propagation rules into simplification rules independently from the
algorithm presented in Section 2. Note that the algorithm for the generation of
propagation rules can be slightly modified to incorporate this step and to directly
generate simplification rules.
The SimpMiner algorithm takes as input a set of propagation rules S and trans-
forms when applicable these propagation rules into simplification rules. This trans-
formation leads to a set of rules S′ that can be used instead of S for constraint
solving. The algorithm works by repeatedly selecting a rule R from S. For each
rule R it tries to transform R into a simplification rule R′ by duplicating some
constraints from the lhs into the rhs of the rule (it should be noticed that there are
several possibilities to transform a propagation rule into a simplification rule). To
test the validity of R′ The SimpMiner algorithm checks if all solutions of the rhs
of the rule are also solutions of its lhs. If it is the case then the transformation is
accepted and the next rule is considered.
Before giving an abstract description of the SimpMiner algorithm, we illustrate it
by the following example:

Example 3.1. Let S be the set of propagation rules for the boolean conjunction
and negation constraints and their interaction as generated in Section 2.6.1.
All propagation rules with one atomic constraint in their lhs, can be transformed
into simplification rules. For example the propagation rule and(X, X, Z) ⇒ X=Z
can be transformed into the simplification rule and(X, X, Z) ⇔ X=Z, since the only
solutions {X=0, Z=0} and {X=1, Z=1} of X=Z are also solutions of and(X, X, Z).
Now, let R be the propagation rule and(X, Y, Z), neg(X, Y ) ⇒ Z=0.
There are three possibilities to transform R into a simplification rule:

and(X, Y, Z), neg(X, Y ) ⇔ Z=0.

and(X, Y, Z), neg(X, Y ) ⇔ and(X, Y, Z), Z=0.

and(X, Y, Z), neg(X, Y ) ⇔ neg(X, Y ), Z=0.

Let us consider each of them.

(1 ) R cannot be transformed into the simplification rule

and(X, Y, Z), neg(X, Y ) ⇔ Z=0.
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since {X=0, Y =0, Z=0} is a solution of Z=0 but not of and(X, Y, Z), neg(X, Y ).
(2 ) Furthermore, R cannot be transformed into the simplification rule

and(X, Y, Z), neg(X, Y ) ⇔ and(X, Y, Z), Z=0.

since here again {X=0, Y =0, Z=0} is a solution of and(X, Y, Z), Z=0 but not
of and(X, Y, Z), neg(X, Y ).

(3 ) All solutions of neg(X, Y ), Z=0 are solutions of and(X, Y, Z), neg(X, Y ),
thus R can be transformed into the simplification rule

and(X, Y, Z), neg(X, Y ) ⇔ neg(X, Y ), Z=0.

Thus, this transformation is accepted and we proceed with the next propagation rule.
Finally, the final program consists of the simplification rules with one atomic con-
straint in their lhs for the Boolean conjunction and negation, and of the following
rules for their interaction:

and(X, Y, Z), neg(X, Y ) ⇔ neg(X, Y ), Z=0.

and(X, Y, Z), neg(Y, X) ⇔ neg(Y, X), Z=0.

and(X, Y, Z), neg(X, Z) ⇔ X=1, Y =0, Z=0.

and(X, Y, Z), neg(Z, X) ⇔ X=1, Y =0, Z=0.

and(X, Y, Z), neg(Y, Z) ⇔ X=0, Y =1, Z=0.

and(X, Y, Z), neg(Z, Y ) ⇔ X=0, Y =1, Z=0.

The SimpMiner algorithm is given in Figure 2. It takes as input a set S of valid
propagation rules, and the domain Dom over which the atomic constraints are
defined.
To achieve a form of minimality based on the number of constraints, we generate
simplification rules that will remove the greatest number of constraints. So, when
we try to transform a propagation rule R into a simplification rule R′ of the form
C ⇔ D ∪ E we choose the smallest set E (with respect to the number of atomic
constraints in E) for which the condition holds. If such a E is not unique, we
choose any one among the smallest. Note that transforming a propagation rule
into a simplification rule just by duplicating the whole lhs of the propagation rule
into the rhs of the simplification rule is not allowed since E must be a proper subset
of C.
The following result establishes correctness of the SimpMiner algorithm.

Theorem 3.1. Let S be a set of valid propagation rules. The SimpMiner algo-
rithm applied on S computes a set of valid propagation and simplification rules.

Proof. Let R be a propagation rule of the form C ⇒ D in S that has been
transformed into the simplification rule C ⇔ D ∪ E, where E is a proper subset of
C.
According to the SimpMiner algorithm, any solution σ of D ∪ E is a solution of
C. Thus D ∪ E ⇒ C is a valid propagation rule.
Since C ⇒ D is a valid propagation rule and E is subset of C, the propagation rule
C ⇒ D∪E is trivially valid. Therefore, the simplification rule C ⇔ D∪E is valid.
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begin

S′ := ∅
for each rule R of the form C ⇒ D in S do

If D is false
then S′ := S′ ∪ {R}
else Find R′ := C ⇔ D ∪ E, where E is a proper subset of C such that

for all ground substitutions σ of the variables in R′ over Dom
if σ is a solution of D ∪ E then σ is a solution of C.

If R′ exists
then S′ := S′ ∪ {R′}
else S′ := S′ ∪ {R}

endif
endif

endfor

output S′

end

Fig. 2. The SimpMiner Algorithm

SimpMiner is implemented in SICStus Prolog 3.7.1 in 70 lines of Prolog. As for
PropMiner, the complexity of the algorithm can be expressed wrt. the number
of ground decidability tests used. Let lhsSize be the greatest number of atomic
constraints appearing in the lhs of a rule in S and nbV ar be the greatest number
of variables of a rule in S then in the worst case the number of ground decidability
tests performed is in the order of O(|S| 2lhsSize DomnbV ar).
This theoretical complexity is high, but in practice this algorithm is used as a
post-processing step on rules generated by PropMiner. So nbV ar remains rather
small since by construction all variables used in a rule produced by PropMiner
are variables appearing in the parameters called Baselhs. Moreover, when the
algorithm considers a substitution σ such that σ is a solution of D∪E but which is
not a solution of C then there is no need to enumerate other substitutions and then
another E subset of C can be tried. So in practice, for a given subset E, only a
few substitutions among the DomnbV ar possible ones are tested, and the execution
times in the application presented in Section 4 remain rather short.
Finally, if we consider the impact of lhsSize, as for PropMiner, Section 4 shows
that interesting rules can be found even if we restrict the generation to lhs contain-
ing only a few atomic constraints. Additionally, it should be noticed that in practice
rules having many atomic constraints in their lhs are not likely to be very useful
for constraint solving, since a long lhs leads in general to an important triggering
detection cost as clearly reported in the experiments presented in Section 4.
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4. AN APPLICATION OF CONSTRAINT SOLVER GENERATION

In this section, we first show that when we use the propagation rules generated by
the PropMiner algorithm in a Constraint Logic Programming approach we benefit
of a significant search space reduction but also pay a significant overhead due to the
rule triggering process. In many cases this overhead leads to an important increase
of the execution time even though the search space is greatly reduced.
Then, we show that the transformation of propagation rules into simplification rules
as presented in Section 3 can be used to obtain the same search space reduction but
with less rule triggering overhead. In this case, the experiments show a significant
reduction of the execution time.
The application we consider is in the field of digital circuit design: automatic test-
pattern generation. Test generation is the process of defining the tests to apply to
a circuit in order to detect faults. Among the possible faults in a circuit composed
of boolean gates, a very important type of faults is the stuck-at faults. A stuck-at
fault occurs when the output value of a gate remains constant, i.e. the output value
does not change while the input values are modified.
If we consider a gate in a circuit, we cannot access directly the input and the output
of the gate to test it. So we must find a way to perform the test using only the input
and output pins of the whole circuit. The problem is first to find what signal should
be applied on the input of the circuit so that the output of the gate of interest will
change (if there is no fault). This is called the control problem. Secondly, we must
determine how to observe the effect of that change on the output pins of the whole
circuit. This is called the observation problem.
Several proposals have shown that constraint logic programming allows a simple
and declarative formulation of the test generation and leads to an efficient solving
process. In the following, we use the constraint logic programming approach for
automatic test-pattern generation proposed in [van Hentenryck et al. 1992]. We
shortly present this method below and then describe our experiments.

4.1 Automatic test-pattern generation

In this section, we briefly recall the approach of [van Hentenryck et al. 1992] and
refer the reader to the original paper for a detailed description. Van Hentenryck et
al. defined a specific six-valued logic and provided some rules expressed in the form
of so-called demons to carry out the constraint propagation.
Each line in the circuit is associated with a variable constrained to take one of the
six possible values. The primary inputs are constrained to be 0 or 1. The four
other values, denoted by d, d, e and e, are needed to materialize the propagation
paths from the output of the gate of interest to the output of the whole circuit (the
observation problem). For example, the boolean value 1 at the output of the gate
of interest will not be propagated through the circuit as a 1 but as a symbolic value
denoted by d to materialize the path from the gate of interest towards the output
pins of the whole circuit.
Van Hentenryck et al. used rules generated by hand to propagate input and output
values of the gates within the circuit. Such a rule is for example: if the input
arguments of an and gate are d and 1 then the output argument is d. The intuitive
meaning of this rule is the following: if the output value of the gate of interest
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(materialized by d) reaches the input of an and gate having a 1 as second input,
then the output value of the gate of interest is propagated through this and gate.
The triggering of the rules is combined with a systematic labeling in a general
constraint and generate search, commonly used in constraint logic programming.

4.2 Experiments

We consider the problem of finding all possible ways to test each gate in a 4-bit
adder. Let 4BitAdder(X3, X2, X1, X0, Y3, Y2, Y1, Y0, V, Z3, Z2, Z1, Z0) represents the
relation between the input and output of the circuit, encoded as follows:

—(X3, X2, X1, X0) and (Y3, Y2, Y1, Y0) are the two 4-bit binary numbers to be
added and (V, Z3, Z2, Z1, Z0) is the result.

—The 4-bit adder can be implemented by the following simplification rule:

4BitAdder(X3, X2, X1, X0, Y3, Y2, Y1, Y0, V, Z3, Z2, Z1, Z0) ⇔
fullAdder(X0, Y0, 0, Z0, C0),

fullAdder(X1, Y1, C0, Z1, C1),
fullAdder(X2, Y2, C1, Z2, C2),
fullAdder(X3, Y3, C2, Z3, C3),

xor(C2, C3, V ).

where fulladder corresponds to the full-adder defined in Section 2.6.2 and con-
taining itself 5 Boolean gates. We consider a 4-bit adder circuit built according
to this specification and thus using 21 boolean gates.

We present the results of three experiments. Each experiment is performed with
a different set of rules. In each experiment, we consider in turn each of the 21
gates in the circuit. For each gate, we find all possible ways to test the gate for
stuck-at faults and record two different measures: the size of the search space that
has been explored and the execution time. The size of the search space is measured
using the number of backtracks made by the labeling predicate (i.e., the number of
variable assignments that the program made to find all solutions). The exploration
of the search space is implemented in SICStus Prolog 7.3.1 and the propagation
and simplification rules are encoded as CHR rules. The execution time is the CPU
time used on a Pentium 3 with 256 MBytes of memory and a 500 MHz processor.
It should be noticed that the platform SICStus with CHR, as most constraint logic
programming systems, offers a very efficient propagation and querying of equality
constraints and coreferences. In the case of a constraint programming systems that
do not support coreferences and do not handle equality constraints in a specific way
the results presented in this section are likely to change. For example, suppose that
the coreferences in the left hand side of a rule must be made explicitly by means
of equality constraints and that these equalities are handled like any other binary
constraints. Then we can expect that the triggering cost of a rule will increase
when compared to its triggering cost on a constraint logic programming system as
used in this section.
The set of rules used for the first experiment contains only propagation rules gen-
erated by the PropMiner algorithm and having a single atom in their lhs. This
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generation has been realized in 13.4 seconds using the truth tables of the opera-
tors and, or and xor in the six-valued logic of Van Hentenryck et al., and allowing
equalities and disequalities in the rhs of the rules. Examples of rules are:

and(X, 1, Z) ⇒ X=Z.

and(X, 0, Z) ⇒ X +=d, X +=d, Z = 0.

or(X, Y, Y ) ⇒ X +=d, X +=d.

or(X, X, Z) ⇒ X +=d, X +=d, X = Z.

xor(X, Y, Y ) ⇒ X=0.

xor(d, 1, Z) ⇒ Z=d.

These rules have been generated by PropMiner using the parameters

Baselhs = {C(X, Y, Z)}, where C was one of the operators and, or, xor

Candlhs = atomic(=, {X, Y, Z}, {X, Y, Z, 0, 1, d, d, e, e})
Candrhs = atomic(+=, {X, Y, Z}, {0, 1, d, d, e, e}) ∪

atomic(=, {X, Y, Z}, {X, Y, Z, 0, 1, d, d, e, e})

The rules used by Van Hentenryck et al. are slightly different. They can be seen as
propagation rules with the same form of lhs but with equality constraints, domain
constraints (e.g., X ∈ {0, 1, d, e}) and also non-membership constraints (e.g., X +∈
{0, 1, d, e}) in their rhs. However, non-membership constraints can be trivially
encoded as a conjunction of disequalities, and when the domain is finite, domain
constraints can also be expressed by a finite conjunction of disequalities (e.g., X ∈
{0, 1, d, e} is transformed into {X +=d, X +=e}).
Thus using the correctness of PropMiner (Theorem 2.3), we conjecture that for
each rule R used by Van Hentenryck et al. (where non-membership and domain
constraints have been encoded as conjunction of inequalities) there exists in the set
of rules used in our first experiment a rule R′ such that if the lhs of R is satisfied
then the lhs of R′ is also satisfied and the rhs of R′ is a constraint at least as
strong as the rhs of R (in some sense R′ can be used to perform the same kind of
propagations as R).
When exploiting the symmetry of the ternary operators with respect to the first
and second arguments (e.g., and(X, Y, Z) is equivalent to and(Y, X, Z)), the total
number of rules2 generated is 69. It should be noticed that it would have been a
hard work to produce this set manually, even-though such a generation by hand
remains possible (as it has been done by Van Hentenryck et al.).
In the second experiment, we used also automatically generated propagation rules,
but we take rules with one or two atoms in their lhs. In our experiments, we only
considered interaction between conjunction, disjunction and exclusive disjunction.

2In all experiments mentioned in this section, this kind of symmetry has been used for the three
operators and, or and xor. The reduced sets of rules have been obtained by adding rules expressing
this symmetry (e.g., and(X, Y, Z) ⇒ and(Y, X, Z)) during the third step of the simplification pro-
cess presented in Section 2.4. For example the set {and(X, Y, Z) ⇒ and(Y, X, Z), and(0, Y, Z) ⇒
Z=0, and(X, 0, Z) ⇒ Z=0} is reduced to {and(X, Y, Z) ⇒ and(Y, X, Z), and(0, Y, Z) ⇒ Z=0}.
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gate experiment 1 experiment 2 search space CPU time
number search CPU search CPU ∆ abs. ∆ % ∆ abs. ∆ %

space time space time
1 286 1.41 265 12.55 -21 -7.34 +11.14 +790.07
2 4552 43.14 1728 35.58 -2824 -62.04 -7.56 -17.52
3 264 1.84 165 6.06 -99 -37.50 +4.22 +229.35
4 4552 43.45 1728 29.92 -2824 -62.04 -13.53 -31.14
5 286 1.52 205 5.44 -81 -28.32 +3.92 +257.89
6 796 7.38 490 36.96 -306 -38.44 +29.58 +400.81
7 5044 46.56 1765 41.81 -3279 -65.01 -4.75 -10.20
8 810 9.00 357 19.79 -453 -55.93 +10.79 +119.89
9 11186 129.23 1904 40.64 -9282 -82.98 -88.59 -68.55
10 1264 14.79 495 29.72 -769 -60.84 +14.93 +100.95
11 2488 35.57 1014 123.81 -1474 -59.24 +88.24 +248.07
12 6008 47.05 2465 125.60 -3543 -58.97 +78.55 +166.95
13 3032 47.87 773 65.57 -2259 -74.51 +17.70 +36.98
14 11760 128.82 1944 46.17 -9816 -83.47 -82.65 -64.16
15 4368 69.95 1087 99.77 -3281 -75.11 +29.82 +42.63
16 5640 85.03 1716 86.35 -3924 -69.57 +1.32 +1.55
17 7080 61.02 2681 103.15 -4399 -62.13 +42.13 +69.04
18 5364 112.36 1539 80.01 -3825 -71.31 -32.35 -28.79
19 7104 135.27 1994 82.91 -5110 -71.93 -52.36 -38.71
20 7728 149.57 2079 94.85 -5649 -73.10 -54.72 -36.58
21 12516 192.11 2037 93.35 -10479 -83.72 -98.76 -51.41

Table I. Search space reduction with overhead (time in seconds).

The corresponding rules have been generated in 1218 seconds. Example of rules
are:

and(X, Y, 0), or(Z, Y, X) ⇒ X += d, X += d, X=Z, Y =0.

and(X, Y, Z), xor(Z, 1, Y ) ⇒ X=0, Y =1, Z=0.

Even when exploiting the symmetry of the ternary operators this set consists of
613 rules, and cannot reasonably be generated by hand.
Then, a third experiment has been made using the 613 rules of the second experi-
ment transformed into simplification rules, when applicable, using SimpMiner. 301
propagation rules have been transformed into simplification rules in 64.2 seconds.
For example, the two previous rules have been transformed into

and(X, Y, 0), or(Z, Y, X) ⇔ X += d, X += d, X=Z, Y =0.

and(X, Y, Z), xor(Z, 1, Y ) ⇔ X=0, Y =1, Z=0.

The comparison between experiment 1 and experiment 2 is given in Table I. For
each gate the table gives the following information: size of search space (number
of backtracks) and CPU execution time (in seconds) for the first experiment, size
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gate experiment 1 experiment 3 search space CPU time
number search CPU search CPU ∆ abs. ∆ % ∆ abs. ∆ %

space time space time
1 286 1.41 265 2.88 -21 -7.34 +1.47 +104.26
2 4552 43.14 1728 9.77 -2824 -62.04 -33.37 -77.35
3 264 1.84 165 1.43 -99 -37.50 -0.41 -22.28
4 4552 43.45 1728 8.44 -2824 -62.04 -35.01 -80.58
5 286 1.52 205 1.35 -81 -28.32 -0.17 -11.18
6 796 7.38 490 8.45 -306 -38.44 +1.07 +14.50
7 5044 46.56 1765 7.37 -3279 -65.01 -39.19 -84.17
8 810 9.00 357 4.78 -453 -55.93 -4.22 -46.89
9 11186 129.23 1904 12.67 -9282 -82.98 -116.56 -90.20
10 1264 14.79 495 7.19 -769 -60.84 -7.60 -51.39
11 2488 35.57 1014 31.56 -1474 -59.24 -4.01 -11.27
12 6008 47.05 2465 26.73 -3543 -58.97 -20.32 -43.19
13 3032 47.87 773 17.29 -2259 -74.51 -30.58 -63.88
14 11760 128.82 1944 14.95 -9816 -83.47 -113.87 -88.39
15 4368 69.95 1087 27.62 -3281 -75.11 -42.33 -60.51
16 5640 85.03 1716 23.35 -3924 -69.57 -61.68 -72.54
17 7080 61.02 2681 23.90 -4399 -62.13 -37.12 -60.83
18 5364 112.36 1539 26.38 -3825 -71.31 -85.98 -76.52
19 7104 135.27 1994 27.69 -5110 -71.93 -107.58 -79.53
20 7728 149.57 2079 28.67 -5649 -73.10 -120.90 -80.83
21 12516 192.11 2037 30.69 -10479 -83.72 -161.42 -84.02

Table II. Reduction of search space and of execution time (in seconds).

of search space and CPU execution time for the second experiment, variation of
the size of the search space from the first to the second experiment (absolute vari-
ation, ∆ abs., and relative variation in percent, ∆ %), and finally variation of the
CPU execution time from the first to the second experiment (absolute and rela-
tive variations). This table shows that in this application, the propagation rules
with one or two atoms in their lhs generated automatically (experiment 2) can be
used to greatly reduce the size of the search space compared to the search space
explored using propagation rules with a single atom in their lhs (experiment 1).
Unfortunately, the table shows also that in several cases, we should pay for a very
important overhead in terms of execution time to handle these more complex rules.
The comparison between experiment 1 and experiment 3 given in Table II shows
that this overhead can be suppressed if we transform the set of propagation rules
to a set of propagation and simplification rules using SimpMiner. Moreover, in
nearly all cases, the execution time is reduced by more than 50%. Only a very
small absolute overhead remains for gates 1 and 6.
Additionally, it is also interesting to evaluate the benefit of using a set of rules
simplified using SimpMiner vs. the original set of rules, and to assess the impact
of using longer rule lhs. The corresponding results are presented in Table III, where
experiment 4 is the same as experiment 1, excepted that the 69 propagation rules
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have been transformed when applicable into simplification rules using SimpMiner
(41 propagation rules have been transformed in 0.35 second). Let us denote ti
the execution time for experiment i. The relative variation from t1 to t4 gives the
difference of execution time when using the set of propagation rules containing a
single atom in their lhs and when using the same set transformed with SimpMiner.
For the set of rules having one or two atoms in their lhs this difference is given
by the relative variation from t2 to t3. In both cases, the measures show that
it is advantageous to transform propagation rules into simplification rules when
applicable. A complementary aspect of interest is the impact of the length of the
rule lhs. It is obvious (as shown in the results presented in Table I) that when a set of
propagation rules having a single atom in their lhs (e.g., the set of experiment 1) is
complete with rules where the lhs contains two atoms (e.g., the set of experiment 2)
then more propagation is made during constraint solving, leading to an additional
reduction of the search space. The puzzling point is the global influence of the
length of the lhs on the execution time. More precisely, if we consider the sets
of rules of experiments 3 and 4, the following question arise: can the additional
reduction of the search space caused by the rules of experiment 3 compensate the
triggering overhead due to rules with two atoms in their lhs? Some elements are
given in Table III, where the relative variations of t4 to t3 indicates that in most
cases the tradeoff is clearly in favor of the use of the set of rules that incorporates
rules having one or two atoms in their lhs.

5. RELATED WORK

In the pioneering work [Apt and Monfroy 1999; 2001], two algorithms have been
proposed and implemented: One generates equality rules, whereas the second one
generates membership rules. In Section 2.3, we have shown that the PropMiner
algorithm is able to generate propagation rules ensuring at least the same kind of
consistency.
For example, let c1 be the constraint defined in [Ringeissen and Monfroy 2000] by
the following truth table:

c1 X1 X2 X3

0 0 0 0
1 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
1 1 1 1

For the constraint c1(X1, X2, X3) defined above the following equality rules are
generated by the algorithm presented in [Apt and Monfroy 1999; 2001]:

c1(X1, X2, X3) ⇒ X3 +=0
c1(X1, X2, X3), X1 = 1 ⇒ X2 +=0
c1(X1, X2, X3), X1 = 0 ⇒ X2 +=1
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gate CPU time ti of experiment i relative variation in % from
number t1 t4 t2 t3 t1 to t4 t2 to t3 t4 to t3

1 1,41 1,21 12,55 2,88 -14,18 -77,052 +138,02
2 43,14 34,54 35,58 9,77 -19,94 -72,541 -71,71
3 1,84 1,53 6,06 1,43 -16,85 -76,403 -6,54
4 43,45 34,67 29,92 8,44 -20,21 -71,791 -75,66
5 1,52 1,29 5,44 1,35 -15,13 -75,184 +4,65
6 7,38 6,06 36,96 8,45 -17,89 -77,137 +39,44
7 46,56 37,1 41,81 7,37 -20,32 -82,373 -80,13
8 9,0 7,33 19,79 4,78 -18,56 -75,846 -34,79
9 129,23 103,62 40,64 12,67 -19,82 -68,824 -87,77
10 14,79 12,14 29,72 7,19 -17,92 -75,808 -40,77
11 35,57 29,06 123,81 31,56 -18,30 -74,509 +8,60
12 47,05 36,67 125,6 26,73 -22,06 -78,718 -27,11
13 47,87 39,17 65,57 17,29 -18,17 -73,631 -55,86
14 128,82 102,76 46,17 14,95 -20,23 -67,62 -85,45
15 69,95 59,7 99,77 27,62 -14,65 -72,316 -53,74
16 85,03 73,32 86,35 23,35 -13,77 -72,959 -68,15
17 61,02 48,01 103,15 23,9 -21,32 -76,83 -50,22
18 112,36 93,44 80,01 26,38 -16,84 -67,029 -71,77
19 135,27 111,66 82,91 27,69 -17,45 -66,602 -75,20
20 149,57 124,14 94,85 28,67 -17,00 -69,773 -76,91
21 192,11 158,67 93,35 30,69 -17,41 -67,124 -80,66

Table III. Impact of the form of the rules on the execution time (in seconds).

c1(X1, X2, X3), X2 = 1 ⇒ X1 +=0
c1(X1, X2, X3), X2 = 0 ⇒ X1 +=1

For the constraint c1 our algorithm generates the following single propagation rule,
if the user specifies that the rhs of the rules may consist of equality constraints:

c1(X1, X2, X3) ⇒ X1=X2, X3=1

The algorithm presented in [Ringeissen and Monfroy 2000] is a combination of the
one described in [Apt and Monfroy 1999; 2001] and unification in finite algebra.
Similar to [Apt and Monfroy 1999] the user has here no possibility to specify the
form of the rules. The rules generated by this algorithm have the following form:

C(X1, . . . , Xn), Xi=vi, . . . , Xk=vk ⇒ B,

where now vi, . . . vk are either elements of the domain or free constants to repre-
sent symbolically any element of the domain as used in unification in finite alge-
bra [Kirchner and Ringeissen 1992]. B is a a set of of equality constraints and
membership constraints (e.g. X ∈ D).
With the notion of free constants, equality between variables in the rhs of rules can
be deduced. For the constraint c1(X1, X2, X3), the algorithm presented in [Ringeis-
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sen and Monfroy 2000] generates the following rules:

c1(X1, X2, X3) ⇒ X1∈{0, 1}, X2∈{0, 1}, X3=1
c1(X1, X2, X3), X1 = x1 ⇒ X2=x1, X3=1
c1(X1, X2, X3), X2 = x2 ⇒ X1=x2, X3=1

In contrast to the algorithms presented in [Apt and Monfroy 1999] and [Ringeis-
sen and Monfroy 2000] our algorithm leads to a more compact and more expres-
sive set of rules. With the rules generated by the algorithm presented in [Apt
and Monfroy 1999], one deduces from c1(X1, X2, X3) that X3=1. With our gen-
erated rule we also deduce that X1=X2. This can also be deduced from the
rules generated by the algorithm presented in [Ringeissen and Monfroy 2000].
But if we consider the constraint c2 defined in [Ringeissen and Monfroy 2000] by
the tuples {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)}, our algorithm can generate the rule
c2(X1, X1, X3) ⇒ X1=1, X3=0, that cannot be produced by the algorithms pre-
sented in [Apt and Monfroy 1999] and in [Ringeissen and Monfroy 2000], since the
rule contains a coreference in its lhs.
Furthermore, in contrast to the algorithms presented in [Apt and Monfroy 1999]
and [Ringeissen and Monfroy 2000] our algorithm is able to generate rules with a
set of atomic constraints in the lhs of the rules which is an essential feature for non-
trivial constraint handling (e.g., conjunction of and with neg used in Section 4).
Another particularly useful aspect of our approach wrt. these other works, is the im-
provement of the solver produced, by transforming when possible the propagation
rules into simplification rules. Even if this transformation comes with additional
cost, in practice a solver can be used to solve different problems and thus its effi-
ciency is crucial.

The generation of rule-based constraint solvers can also be related to the work
in Inductive Logic Programming [Muggleton and De Raedt 1994], where one is
interested to find out logic programs from examples. However, the generation of
constraint solvers has its own specificities, that are mainly the notion of interesting
rule to built a solver and the discovery of simplification rules (a critical performance
issue for the resulting solver as shown in Section 4), and to our knowledge the work
done in Inductive Logic Programming have not yet been adapted or applied to the
generation of constraint solvers.

6. CONCLUSION

We have presented a method for generating rule-based constraint solvers for finite
constraints given their extensional representation. The generation is performed
in two steps. In a first step, propagation rules are generated using an algorithm
called PropMiner. Compared to the algorithms described in [Apt and Monfroy
1999; 2001] and [Ringeissen and Monfroy 2000] the algorithm PropMiner is able
to generate more general and more expressive rules. In a second step, propagation
rules are transformed when possible into simplification rules using an algorithm
called SimpMiner to improve the efficiency of the constraint solving.
The two generation steps have been illustrated on various examples of commonly
used constraints. Finally, we have considered a non trivial application in the domain
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of digital circuit design, and we have compared the rules generated by the two steps
to the rules one can reasonably expect to write by hand. The experiments shown
that the set of rules generated by the method presented in this paper performed
additional propagations and new simplifications. The use of these rules provides a
significant reduction of the search space and of the execution time, when compared
to the use of the rules written by hand.
Two additional interesting aspects of the method are firstly that it has very weak
requirements wrt. the constraint theory (the theory must simply be ground decid-
able), and secondly that it produces simplified and readable sets of rules. Its main
limitation is that it is dedicated to the generation of rule-based solvers for con-
straints defined extensionally over finite domains. A promising direction of future
research is the generation of solvers for constraints defined intensionally eventually
over non finite domains. A first preliminary step in this direction has recently been
proposed in [Abdennadher and Rigotti 2001a].
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