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Abstract— This paper introduces a new set of 
orthogonal moments function hypergeometric based 
on the discrete Legendre polynomials. The Legendre 
moments can be effectively used as pattern features in 
the analysis of two-dimensional images. The 
implementation of moments proposed in this paper 
does not involve any numerical approximation, since 
the basis set is orthogonal in the discrete domain of 
the image coordinate space. The paper presents the 
experimental results of Legendre moments with 
hypergeometric function and demonstrates their 
feature representation capability using the method of 
image reconstruction. 
  Index Terms: Discrete orthogonal systems, Image 
feature representation. Orthogonal moments 
Legendre. 
 
                I. INTRODUCTION 

THE function moments  have been used as shape 
descriptors in a variety of applications in image 
analysis, like visual pattern recognition ,[1], [4], 
object classification [7], template matching [6], 
edge detection [5], pose estimation [13], robot 
vision[12], data compression [9] . In all these 
applications, geometric moments and their 
extensions in the form of radial and complex 
moments have played important roles in 
characterizing the image shape, and in extracting 
features that are invariant with respect to image 
plane transformations. Teague [18] introduced 
moments with orthogonal basis functions, with the 
additional property of minimal information 
redundancy in a moment set. In this class,  Zernike 
moments have been extensively researched in the 
recent past, and several new techniques have 
emerged involving orthogonal moment based 
feature detectors [10], [14][19].In the following, we 
consider some of the major problems that are 
commonly encountered while implementing 
moment functions. 

A. Two-dimensional Numerical Approximation 

            of  Continuous Integrals 
   The general two-dimensional (2-D) moment 

definition using a moment weighting kernel (also 
known as the basis function) ( )yxpq ,ψ , and an  

image intensity function ( )yxf , is given as 

             

( ) ( ) .,, dxdyyxfyx
x y
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                                                                          p, q=0,1,2… (1) 
The integrals in the above equation are usually 

approximated by discrete summations, and this process not 
only leads to numerical errors in the computed moments, but 
also severely affects the analytical properties which they were 
intended to satisfy, such as invariance, orthogonal etc. 

B. Coordinate Space Transformation   
  Orthogonal basis functions do not have the aforesaid 

problem of large dynamic range variation, but they generally 
have a domain which is completely different from the image 
coordinate space. For example, the Legendre and Tchebichef 
polynomials are valid only in the range [-1,1],while the 
Zernike radial polynomials are defined inside the unit circle. 
The Laguerre polynomials are defined in the range [ [∞,0 , [2], 
[10], [11], [18]. 

The above problems motivate us to consider using discrete 
orthogonal polynomials as the basis set, and to define the 
corresponding moments directly on the image coordinate 
space. Since the implementation of discrete orthogonal 
moments does not involve any numerical approximations, the 
basis functions will exactly satisfy the orthogonal property, 
and thus yield a superior image reconstruction. Consider a 
discrete orthogonal system { ( )if n }, where bia ≤≤  . 

The orthogonal property in the above domain can then be 
written as 

              ( ) ( ) ( ) ( ) .,, mnnm
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                                                                                           (2) 
Where ( )iω  is the weighting function (also called the jump 

function), and ( ).ρ  is the squared norm.  

II. DISCRETE ORTHOGONAL MOMENTS    

 
 The following well-known theorem on orthogonal functions 
provides the mathematical basis for arriving at a definition for 
discrete orthogonal moments of an image intensity 
distribution ( )yxf , : If { })(xPn  is a set of discrete 



orthogonal polynomials with unit weight, satisfying 
the condition  
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Then any bounded function f(x, 
y), { } 1,0 −≤≤ Nyx ,has the following 
polynomial representation in terms of the functions 

( )xPn  
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Where the coefficients moments pqλ  are given by 
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                                       p, q=0, 1,2,…N-1     (5)  

 
The above theorem can be generalized for 
orthogonal polynomials with weight ( )xω ,by 

replacing each orthogonal function ( )xPn  by the 

function    ( ),)( xxPn ω  in (3)–(5). 
  Equation (15) is easily obtained by substituting for  
 ),( yxf using (4) in the expression:   
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Conversely, (4) follows from (5). In the context of 
image moments, it means that if we define a 
discrete orthogonal moment function as in (5) with  

( ){ }xPn   as the basis set, then the image may be 
reconstructed from the moments, using (4) as the 
inverse moment transform. The moment definition 
as given in (5) completely eliminates the need for 

any approximation of continuous integrals, and does not 
require coordinate space transformations. 
We propose a modified version of Legendre polynomials as a 
convenient set of discrete orthogonal basis functions with unit 
weight, for defining moments of the above type. 
The discrete generalized Legendre polynomial [1], [3],[8] can 
be defined as 
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With ( ).12 F is the generalized hyper geometric function 
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From the relation (8), I give a new definition of the polyno-
ials of Lgendre in the discrete base of the hypegeometric 
functions. 
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The Legendre polynomials satisfy the property of 

orthogonal (3), with 
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 And the following recurrence formula holds: 

 
      ( ) ( ) ( ) ( ) ( ),121 11 xnPxxPnxPn nnn −+ −+=+        
                                                   

                                                           n=2, 3, 4….,      (11) 
                                                                                          
 The equation (5) also leads to the following inverse moments 
transform: 
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                                                      x, y=0,1,…N-1.        (12)  
           
                           EXPERIMENTAL RESULTS  
                                                                                   



  This section presents the test data and results 
used to validate the theoretical framework 
presented above, and also to establish the feature 
representation capability of Legendre moments with 
hypergeometric function through image 
reconstruction. A multi- level real image of 
“LENA” (see Fig 2) on a 100x100 pixel.  

The sequence of reconstructed images, as the 
maximum order of moments used in the 
reconstruction is varied from one to 40, is shown in 
(Fig.1).We used the following formula to 
characterize the MSE between an input A multi 
level real image ( ),, yxf and the reconstructed 

image ( )yxf ,ˆ . 
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                   Fig.1.     Order of rebuilding 

III. CONCLUSION 
A new set of discrete orthogonal moment 

features based on Legendre polynomial with the 
hypergeometric function has been proposed in this 
paper. The basis functions are orthogonal in the 
domain of the image coordinate space, and this 
feature completely eliminates the need for any 
discrete approximation in their numerical 
implementation. 
Experimental results conclusively prove the 
effectiveness of Legendre moments with the 
hypregemetric function as the feature descriptors.  
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