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ABSTRACT 

 

The work described in this paper concerns directional structures detection for particular aspects of 

inspection, such as scratches and marbling defect detection in leather images, or for particular medical 

imaging problems, such as mammography analysis. Because of the very specific geometry of these 

structures, we apply a multiscale and orientation-shiftable method. Scratches and marbling have various 

shapes and sizes. In mammograms, stellate masses have an irregular appearance and are frequently 

surrounded by a radiating pattern of linear spicules. Multiscale approaches using oriented filters have 

proved to be efficient to detect both types of curvilinear patterns.. The detection is based on steerable 

filters, which can be steered to any orientation fixed by the user, and are synthesized using a limited 

number of basic filters. These filters are used in a recursive multi-scale transform: the steerable pyramid. 

Then, the curvilinear structures are extracted from the directional images at different scales.  
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1. INTRODUCTION 

 

The object of this work is directional structures detection for particular aspects of inspection or for 

medical imaging. The detection is based on steerable filters, which can be steered to any orientation fixed 

by the user, and are synthesized using a limited number of basis filters. These filters are used in a 

recursive multi-scale transform: the steerable pyramid. Using the steerable pyramid, oriented contrast 

enhancement can also be performed. In this study, we will focus on the detection of directional structures. 

We are also interested in the analysis of local orientations. Some structures such as stellate tumor in 

mammograms can be characterized with curvilinear structures in several directions. So, we develop an 

image analysis method based on a multiresolution approach using steerable filters. The steerable filters are 

directional derivative operators, which can vary in size and orientation, in a way to provide multiscale and 

multiresolution analysis. They can be recursively applied to successive high-pass band of the image 

resulting in a steerable pyramid decomposition [ 1]. The method is applied to extract both scratches and 

other defects from leather images and to stellate mass diagnosis in mammograms. 

 

2. THE STEERABLE PYRAMID 

Steerable filters: definition 

Let f(x,y) be a two-dimensional function. We call fθ(x,y) the rotated version of f by a θ angle. Freeman and 

Adelson [ 2] define the property of steerability as follows: 

 

 “f is called steerable if it can be written as a linear sum of rotated versions of itself “. 

 

The steering constraint is then: 
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where )(θik  are the interpolation functions and M the number of basis images. The authors have also 

detailed the conditions under which f is steerable, the minimum number M of terms required and what 

)(θik are. 

The steerable pyramid: definition 

The steerable pyramid uses steerable filters in a multiscale recursive scheme. This structure, proposed by 

Simoncelli and Freeman [ 1], is shown in . Initially, the image is separated into low and high-pass 

subbands. The former is then divided into M oriented bandpass subbands and a lower-pass subband. This 

last one is then subsampled by a factor of 2, both in the x and y directions. The recursivity is achieved by 

inserting another level of decomposition in the lower branch. 

Figure 1

Figure 1: Decomposition scheme in the frequency domain 

Figure 1
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where a.t. are aliasing terms. For recursion, when a level l+1 is considered, the filters Bl+1,i and Ll+1 are 

defined by: 
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This particular way of combining steerable filters brings new constraints, which are described by 

Karasaridis and Simoncelli [ 3]: first, the low-pass response at level l must remain the same when the l+1th 

level is added. Second, to perform a perfect reconstruction, we must on one hand insure the elimination of 

the aliasing terms (Shannon theorem) and on the other hand avoid amplitude distortion. Finally, the filters 

must be steerable (1). Those constraints imply three conditions on the radial part:  
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The oriented band-pass filters B1,i are built by combining a high-pass radial filter H1 with an angular 

function )(θiA : 

)arg(where)().()( 1,1 ωθθωω == ii AHB   (5) 

We use filters whose radial part is a constant unit response in the passing band and a raised-cosine falloff 

of one octave width, as shown in , and whose angular part )(θiA  is given by: Figure 2

Figure 2 : radial profile for L0, H0, L1 and H1 filters 
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a) b) c) 

 
Figure 3 :  a) high-pass filter H1(ω), 

b) angular part )(1 θA  for a 9 directions decomposition 
c) resulting oriented band-pass filter B1,1(ω)   
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Figure 4: Filter cascade scheme for the steerable pyramid with M=3 and a two levels decomposition 

a) 

b) 

c) 
 

Figure 5: Magnitude of the filters frequency response for a two level decomposition with 5 directions 

a) L0, B1,1 to B1,5  

b) L1, B2,1 to B2,5  

c) L2   
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Figure 3 shows a particular oriented band-pass filter for θi = 0°. An example of decomposition in the 

frequency domain is shown in Figure 4a. The figure shows how the frequency domain is partitioned in 

subbands with the steerable pyramid, using two scales and three orientations. Figure 4b shows the result 

images of a two-scale steerable pyramid transform with three orientations. The image fB22 corresponds to 

the content of the subband B22. Figure 5 shows the filters for a two level decomposition with five 

directions. 

1.1. Steerable pyramid versus other multiscale techniques  

Steerable filters have been developed for early-vision problems of features extraction, while they give rise 

to a set of subbands of particular orientations. The use of these filters in a multiscale transform with the 

steerable pyramid contitutes a powerful tool for many aspects of image analysis. The steerable pyramid 

scheme is recursive and the transformation matrix is self-inverting: inverting the process consists in 

applying the inverse matrix of the transform. This is usually called a "tight frame". Its other main 

advantages are translation invariance and rotation invariance, which are of great benefit for image fusion 

[ 4], texture characterization [ 5,  6], contrast enhancement [ 7] or noise removal [ 8]. 

 

Multiscale techniques are generally compared to wavelets. Wavelet transform are also recursive and self-

inverting but not always rotation-invariant and translation-invariant. Yet, unlike wavelets, the steerable 

pyramid decomposition is over-complete: it takes more memory space than the original image. The rate 

between the two is 1+4M/3. Therefore, the steerable pyramid is more adapted to image analysis than to 

image compression. 

 

Another tool for multidirectional image analysis has been developed by Candès[ 9] with ridgelets, which 

are defined from 1D wavelet function along one direction and constant function along the other axis. This 

transform is effective only for straight lines detection. For more complex images presenting curvilinear 

structures, the ridgelets have to be applied locally after a block decomposition leading to a curvelet type 

analysis [ 10]. This usually generates discontinuities on the whole curvilinear structure detected. 
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Among other multidirectional image analysis techniques Gabor filter banks have interesting properties of 

localization in spatial and frequency domain, and can be continuously tuned to arbitrary directions and 

bandwidths. But unlike the steerable pyramid, they don’t allow a complete and uniform coverage of the 

frequency domain, so they provide an analysis tool but does not allow reconstruction.  

 

3. DIRECTIONAL STRUCTURES DETECTION USING THE STEERABLE PYRAMID 

A non linear image enhancement method has been proposed by Wu, Schulze and Castleman [ 7] which 

enables a selective enhancement, at a chosen scale l, in a chosen direction θ. The principle is as follows: 

since they wish to enhance, the "black-white-black" transitions in the image, they keep only the negative 

part of the filtered response along the θ direction, which they subtract, with an adjustable strength from 

the image at the current level, to obtain the enhanced image. 

 
Figure 6: One dimensional illustration of the detection method for a white-black-white transition (blue dashed line) 
The black dotted line depicts the filter response and the red solid line shows the negative part of this response after 

thresholding 

 

In order to detect directional structures, we propose to use this negative part of the filtered response, and, 

to have bright positive response on a dark background, we take the opposite of the thresholded response. 

Let us call θi the direction in which we intend to analyze the image at a given level l. fBl,idenotes the image 

filtered in direction θi with Bl,i ( ). We consider the thresholded image: Figure 4
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Indeed, the thresholded components are precisely aligned with the "black-white-black" lines. 

 

Figure 6 shows a one-dimensional example with both the reconstructed signal, the filtered signal and the 

thresholded and inverted signal. 

 

Other types of defect, i.e. “white-black-white” transitions can be found keeping only the positive part of 

the response instead of the negative one. Moreover, a non-zero threshold T allows to control the strength 

of transitions that will be detected, and to filter out noisy components, such that (6) becomes: 
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where  denotes the thresholded image for "black-white-black" detection and  for 

“white-black-white” detection. 

),(, yxf ilB
− ),(

,
yxf

ilB
+

So depending on what kind of threshold is set on the response we can detect and analyze different kinds of 

stuctures.  The threshold level can be adjusted from 0 to the maximal level value allowing to remove 

textured background for example. It has to be set by the user according to the image characteristics and 

the structures which have to be extracted.  

 

Thresholding is performed for each direction and a resulting image is built by taking, at each point, the 

maximum value of those obtained for all directions: 
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Then, the process is pursued with lower levels, till level l is reached, resulting in L maximum images. All 

the thresholded directional images can also be saved and analyzed. Indeed, the local energy patterns 

obtained, at each level, for small blocks, from the energy of all the filtered and thresholded images can be 

of great interest, to determine, for example, the defect major direction or crossings, etc. 

 

The thresholded image can also be used, at each step for image enhancement. The enhanced image is 

computed by: 
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where ηl is chosen by the user, and controls the strength of the enhancement at a given level l. It may vary 

from one level to another depending on the size of details to enhance. 

 

The enhancement is performed for each level and each direction and a resulting image is built by taking, 

at each point, the minimum ("white-black-white" enhancement) or maximum ("black-white-black" 

enhancement) value of those obtained for all directions: 
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After enhancement at all levels, the reconstruction is pursued using the enhanced images. 

 

It becomes now evident that the steerable pyramid is a powerful tool to analyze, quantify and selectively 

enhance directional structures in images: 

− the steerability property allows to determine precisely the direction; 

− the multiresolution aspect gives rise to structure size knowledge; 

− the threshold process allows to select between different types of transitions. 
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Let’s note, however, that a precise angular detection is possible only if the angular coverage of each 

oriented subband is narrow, i.e. if the number of orientations is large enough. 

 

4. DEFECT CHARACTERIZATION 

The steerable pyramid has been applied to leather images where the manufacturer wants to detect various 

defects such as scratches and marbling, their directions, their size and their crossings if any. These images 

show a textured and noisy background which can be spoiled by curvilinear defects, either darker or lighter 

than the background.  shows three examples of such defects.  Figure 7

Figure 7: Three examples of leather images 

Figure 7

 

b) c) a) 

To achieve good angular selectivity, the number of directions has been fixed to 9, which corresponds to a 

20 degrees angle. Figure 8 shows the directional images  and after thresholding for 

level 2 and 3 of a 9 directions decomposition, for a "black-white-black" detection. The two defects of 

a are isolated in the direction images 3-4 and 7-8. It is important to detect separately different 

defects in order to analyze their own aspect. Figure 9a presents the resulting image  obtained 

from 9 directional images of level 2. Each pixel represents the maximum value between 9 pixels issued 

from Figure 8a. This image synthesizes the information for level 2. Little lines appear apart from the 

scratches, due to the image background texture. The gray level of these lines is very low compared to the 

defect gray level so that they can be removed by further thresholding (see Figure 11a-c) or by setting a 

non-zero threshold T (see equation 7). 
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Same comments concern b which resumes the level 3 activity. Figure 10 illustrates a “white-

black-white” detection with b and a "black-white-black" with c. Non-zero thresholds 

have been set to remove textured components. e and f present the binary images 

obtained from Figure 10. It can be noted that the defects are completely detected in the presence of a 

noisy background. For a comparison, Figure 12 shows the images obtained after a Laplacian of Gaussian 

filter: the textured background remains and can not be removed with further thresholding. 

Figure 9

Figure 9: Maximal images for the image depicted on a  
a)   

b)   
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A set of 9 images with various defects have been studied and for all a satisfying detection has been 

obtained, considering the very low contrast of defects compared the textured background.  

a) 1 2 3 4 5 6 7 8 9 

b) 1 2 3 4 5 6 7 8 9 

 

Figure 8: thresholded directional images with zero threshold for the image depicted on a for 9 directions 
a)  to  

b)  to  
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b) a) 

Figure 10 : Maximal image  

a) for the image depicted on F b at level 3 for 9 directions with a threshold T=22 
b) for the image depicted on c at level 3 for 9 directions with a threshold T=30 
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a) b) c) d) 

    
e) f) 

    

Figure 11: Resulting images       

a) after thresholding for the image depicted on a   

b) after thresholding for the image depicted on b   

c) superposition of images a) and b) :      

green : white pixels in a) only    

magenta : white pixels in b) only,     

white : white pixels in a) and b)    

d) maximal image obtained from a) and b) (logical OR)   

e) binary image obtained from Figure  a     

f) binary image obtained from Fi  b     

Figure 9

Figure 9
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Figure 12: Resulting images for a Laplacian of Gaussian filter 

a) for the image depicted on a   

b) for the image depicted on b   

c) for the image depicted on c   

Figure 7

Figure 7

Figure 7

 

5. STELLATE MASS DETECTION 

 

Breast cancer is currently among the leading causes of death for middle-aged women world-wide. For 

example, every year, 26000 new cases are detected in France and 9000 women die from cancer. The early 

diagnosis and detection of breast cancer is the key to its successful management. X-ray mammography is 

the recommended method for early detection and identification of subtle, minute microcalcifications and 

other signs of abnormalities on X-ray mammograms can assist in the early diagnosis of non-palpable 

breast carcinoma. However, radiologists cannot detect all incipient stages of cancer that are visible in 

follow-up examinations of mammographic images. It has been estimated that 30% or more of potentially 

detectable lesions are missed. In addition, only 10 to 35% of detected lesions that are sent for biopsy are 

found to be cancerous. Once in the digital domain (scanned mammograms), the processing power of the 

computer can be applied to assist in the diagnostic process. The form (nodular or stellate masses), the 

volume, the lesion homogeneity, the presence or absence of microcalcifications are informations that can 

be extracted from these images, in order to increase the diagnostic accuracy of mammography screening 

programs. Mass abnormalities can be classified into three main categories: stellate (or spiculated), ill-

defined and well-defined masses. The different properties of these tumors, as well as the complex 

background in the mammogram, make it difficult for one algorithm to work efficiently. Furthermore, 
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normal breast tissue often looks like tumors. Many studies have focused on this issue: "how to distinguish 

pathologic tissues from normal ones?" and several different approaches have been proposed. Most of 

them include an enhancement pre-processing, a detection scheme and a classification algorithm. More 

details can be found in [ 11, 12] In this study, we focus on the detection of stellate masses which present a 

geometric form and also privileged directionality. 

 

 

Figure 13 : a) original mammographic image        
 b) enhanced image using a zero threshold and η1 =4 for level 1, η2 =2 for level 2   

and η3 = 1 for level 3      

 

The proposed method, when applied for stellate mass detection uses the same principle as for defect 

detection. Moreover, to help the radiographer during the final diagnosis step, the images are also 

enhanced to reveal “black- white – black” transitions. Figure 13 shows an example of results obtained for 

enhancement at level 2 and 3, where the contrast is clearly improved. Indeed, the enhancement technique, 

which considers the maximal value for each image pixel, does not reveal stellate patterns with many 
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characteristic directions. Then, the directional information has to be pointed out for the decision step. The 

selection of suspicious regions is based on the following considerations: 

- stellate opacities are slightly bright structures compared to the surrounding breast tissues; 

- they have stellate morphology with fibrous branches in several directions. 

So, the detection process will act in two steps, first detecting the curvilinear structures for each direction 

and then deciding if these structures correspond to suspicious tissues or only normal ones. The later step 

uses the thresholded images for each direction, from which energy values are computed over small blocks. 

A moving window is considered whose size has to chosen large enough to contain several direction 

branches when a stellate mass is present and yet small enough to insure local information. For each 

position of this moving window in the image plane, all directional images are considered for each level 

and their local energy over the moving window are computed. At each level, from these energy values for 

all directions, energy patterns centered in the moving window can be drawn, whose shape is related to the 

image content. If a stellate mass is present, radial branches appear in several directions and the energy 

pattern exhibits high isotropy. At the opposite, for normal tissues, only few directions are found (the 

inherent structure of breast tissue) and the energy pattern is very anisotropic.  shows an example 

of curvilinear structures detection and the corresponding energy patterns at level 2 and 3. For shape 

comparison, all the patterns sizes have been normalized to have the same maximal angular value. The 

colors of the patterns are related to their normalized area i.e. the area computed after the size 

normalization. Values about one (red patterns) indicate isotropic patterns, close to circles, while small 

values (blue patterns) correspond to highly anisotropic ones. One can remark that red patterns clearly 

appear on the pathological zone while all the others are blue or yellow. Level 2 shows some orange and 

red patterns on other areas, corresponding to superposition of mammographic curvilinear structures, but 

they disappear at level 3, so that they can be distinguished from stellate masses. Note that the goal is not 

to automatically detect the presence of a tumour and to identify its category. These results are to be 

analyzed by the experts in order to indicate them that there are some spatial locations in a mammogram 

with potential presence of tumour. 

Figure 14
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Figure 14 : results of stellate mass detection for a mammographic image  

a) original image (size : 425x700 pixels)  

b) and c) maximal images   and    

d) and e) energy patterns at level 2 and 3 computed on windows of 128x128 

pixels with 32 pixels increments in window positions 

  

 

 

Stellate mass 
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The method has been applied on 25 breast images with stellate masses, giving interesting results. But, due 

to the very high variablility of mammographic images, the low level of contrast of some images and the 

presence of many curvilinear structures that can hide stellate masse, it sometimes fail in finding tumours. 

Normal tissues, with curvilinear structures in many directions are also detected resulting in false alarms. 

To overcome these problems, improvements are under development.  

 

CONCLUSION 

 

A method for directional structure detection has been proposed. It is based on the steerable pyramid 

decomposition and reconstruction scheme. During the reconstruction, the pixels of one directional image 

at a given scale are processed according to a user threshold to select either dark or light lines and 

eliminate noise. Using these images, the directional structures are extracted or enhanced. The method is 

applied to scratches and marbling detection in leather images, and it shows encouraging results, since 

different types of defects have been isolated from various textured backgrounds. An other development 

concerns stellate mass detection in mammograms. Our radiologists, expert for mammograms, visually 

analyzed the preliminary results obtained and thought that this tool can really help the early diagnosis and 

detection of stellate masses. The proposed method is a generic approach which can be easily adapted to 

other imaging modalities and different kinds of industrial defects or of medical problems. The 

generalization of the method to 3D images is under investigation. 
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