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ABSTRACT

During the last decades, the three-dimensional objects have begun to compete with traditional multimedia
(images, sounds and videos) and have been used by more and more applications. The common model used
to represent them is a surfacic mesh due to its intrinsic simplicity and efficacity. In this paper, we present a
new algorithm for the segmentation of semi-regular triangle meshes, via multiresolution analysis. Our method
uses several measures which reflect the roughness of the surface for all meshes resulting from the decomposition
of the initial model into different fine-to-coarse multiresolution meshes. The geometric data decomposition is
based on the lifting scheme. Using that formulation, we have compared various interpolant prediction operators,
associated or not with an update step. For each resolution level, the resulting approximation mesh is then
partitioned into classes having almost constant roughness thanks to a clustering algorithm. Resulting classes
gather regions having the same visual appearance in term of roughness. The last step consists in decomposing
the mesh into connex groups of triangles using region growing ang merging algorithms. These connex surface
patches are of particular interest for adaptive mesh compression, visualisation, indexation or watermarking.

Keywords: Mesh segmentation, classification, multi-resolution analysis, geometric wavelet, lifting scheme, re-
gion growing, region merging.

1. INTRODUCTION

The complexity of the 3D models, used in computer graphics, have recently increased due to the last progress in
sampling techniques. These objects are consequently represented numerically with more and more precision and
details in order to answer realism waitings. Triangle mesh is the most common representation for these objects
because it’s a well adapted model for many applications and for the rendering process. This representation
include geometry and topology information which could be expensive for computation, storage, transmission,
and display tasks, even if the material involved is more and more competitive. Consequently multiresolution
(MR) techniques have emerged, in order to represent data with multiple Level Of Detail (LOD) for progressive
transmission and visualisation purposes, where a coarse approximation can subsequently be further improved
depending on the user ressources and waitings. In order to adapt to the heterogeneity of the material involved,
MR analysis is employed to produce such LODs thanks to wavelet transform. This latter transform is mainly
used by many authors for progressive compression and visualisation, but also for denoising, filtering or surface
editing purposes.

The goal of this work is to benefit from MR analysis to produce a serie of segmentations for all resolution levels.
Segmentation is used in many computer graphics applications, like mesh compression or simplification which can
be simplified on surface patches. For texture mapping, it allows a simplification of the parameterization for high
genus meshes. Metamorphosis or animation can also benefit from mesh decomposition in order to establish a
correspondance between each part of the objects. Most of existing segmentation algorithms are based on the
curvature or planarity information to distinguish the relevant parts of the object. They consist in decomposing
the original model in regions having the same characteristics in term of curvature. This treatment is easier when
dealing with CAO objects which contain sharp edges and corners that separate generally smooth regions.
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In this paper we propose a new mesh segmentation algorithm based on roughness information computed
locally on the surface. For some kind of objects, like the Venus model presented in Fig. 4, the obtained regions
correspond to semantic parts, because people have a tendancy to distinguish parts according to their frequency.
Considering that the roughness of the surface is intrinsically linked to multiresolution, our framework will be
able to better take into account this kind of measure.

Having a different segmentation for each resolution level, based on roughness information could be interesting
for indexation where each one contains various levels of frequencies while keeping the global form of the initial
mesh. Watermarking and compression can also benefit from this framework in order to apply different marks
or subdivision schemes according to the visual aspect of the surface. Finally, it can increase the adaptiveness
for visualisation and navigation in large scenes purposes, where parts of objects or scenes could be more refined
than others, taking into account the user’s point of view and interest.

In the next paragraph, we review briefly recent papers dealing with multiresolution analysis and segmentation
of triangular meshes. In sect. 3, we detail our segmentation approach based on the coefficients produced by a
wavelet decomposition. Sect. 4 presents the results we have obtained. We finish by a discussion and ideas for
future work.

2. RELATED WORK

One of our principal objectives is to develop a new adaptive and progressive mesh compression algorithm, aiming
at applying various wavelet decompositions and quantizations dependending on the roughness of the surface.
Consequently a surface partition is first needed. Within this framework, we have considered the distribution of
the wavelet coefficients norm and polar angle, obtained by a global multiresolution (MR) analysis and which
reflects the roughness of the surface. Before detailing our algorithm, we present the existing work done in MR
analysis of semi-regular meshes and in mesh segmentation.

2.1. State of the art in multiresolution analysis of semi-regular meshes

MR analysis of meshes with arbitrary topology was introduced by Lounsbery1 who have used a canonical sub-
division of the facets and a geometric wavelet transform to obtain multiple resolution levels. He showed that
a subdivision scheme can serve as a scaling functions basis in order to extend the wavelet theory for irregular
sampled signals like meshes. Most of the algorithms dealing with MR analysis apply it to semi-regular meshes
obtained by remeshing techniques and favourable with the extension of the MR analysis scheme proposed by
Lounsbery.1 In this way, meshes can be considered as functions via the produced parameterization. These
papers diverge by the method used to construct a good approximation of the initial surface with subdivision
connectivity, which can be done while refining a coarse mesh, obtained directly from the initial object2,3 or by
progressive decimations.4,5

The first remeshing method2 proposed within this framework use a partition of the original mesh into Voronöı
tiles, computed using the geodesic distance. The coarse model is obtained using the dual construction : the
Delaunay triangulation. This latter is then refined by subdivision steps and additional displacements to obtain a
semi-regular approximation of the original form. The details missed by the subdivision operation are determined
at each resolution level thanks to a local parameterization, based on harmonic maps. In the same way, Gioia3 have
also used a parameterization based on harmonic maps to produce a semi-regular mesh from a coarse one obtained
by a partitioning process. The principal difference between these methods is that the latter take more into account
the geometric and visual properties of the initial surface during the construction of the parameterization and
the coarsest approximation. Gioia experimentally obtain on average twice less wavelet coefficients than with
previous method, for natural and CAD objects, considering the fact that we are dealing with geometric shapes
and not just functions.

The other concept for building a semi-regular mesh was introduced by Lee et al.4 who have constructed the
coarse mesh thanks to a decimated process based on local simplifications of the initial model. Vertex removals
are used to progressively build a parameterization of the original object in a hierarchy of meshes. At each step,
the vertices choosen to be removed are those that withdraw the fewest geometrical and topological information.
The parameterization consists in expressing the decimated vertices as barycentric coordinates of the resulting
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ones. The Loop subdivision6 is then used to produce the semi-regular mesh from the coarsest one. The details
added at each resolution are represented by 3D vectors. Another famous algorithm based on the same concept5

benefits from other type of parameterization and a non lifted Butterfly subdivision scheme7 to concentrate the
high-frequency information along the surface normal which could be expressed by a scalar.

The application of the MR analysis on the semi-regular meshes resulting from these latter algorithms and
mainly used for progressive compression purposes, can be based on various subdivision schemes. Most of the
existing methods1,3, 8, 9 benefit from interpolating subdivision schemes for the low-resolution versions to be good
approximations of the original object (in a least-squares sense). In other words, to provide numerical stability
of the fitting operation. But other authors10,11 have recently proposed a wavelet construction for the Loop
subdivision, based on the lifting scheme. Contrary to Khodakovsky filters,12 constructed previously, the wavelet
analysis and synthesis are obtained in linear time, providing relatively stable schemes.

All of these previously described algorithms apply a global wavelet decomposition, using the same schemes
on the entire surface of the mesh. Our objective is to apply different analysis and synthesis schemes for regions
that don’t exhibit the same roughness degree, in order to obtain better compression results. For that purpose,
we first need a mesh decomposition.

2.2. State of the art in mesh segmentation

Image segmentation have received considerable attention since last years, because there is a large number of
higher-level image processing problems that can benefit from this decomposition as a preprocessing step. In
the same way, lots of work have been done in segmentation of 3D data, mainly based on range images or point
clouds representations. But more recently, authors have proposed algorithms for mesh segmentation which can
be decomposed in two groups, depending whether they are interpreted in a purely geometric sense or in a more
semantic-oriented manner. In the latter case, the object is decomposed in parts corresponding to relevant aspects
of the surface of the shape (sub-meshes). This principle can be used for applications seeking the meaningful
components of the objects as collision detection, skeletonization, metamorphosis, animation or modeling by parts,
which are far from our expectations.

Methods that belong to the first category partition the object in surface patches having common character-
istics (planarity, constant curvature, ...). Some of them intend to approximate the object by planar faces and to
minimize approximation error between this set of elements and the original surface.13,14 These approximation
techniques are particularly useful for mesh simplification and radiosity. Other approaches15,16 use the discrete
curvature computed in each vertex with a watershed algorithm adapted from those employed in image segmenta-
tion. More recently, Razdan et al.17 have proposed a hybrid approach, which combine the watershed algorithm
with a sharp edge extraction. But theses methods tend to extract only regions surrounded by high curvatures
and don’t handle correctly the boundaries between the patches, which are either fuzzy or jagged. The method
developped by Lavoué et al.18 overcome these drawbacks using a K-Means classification algorithm19 instead of
the watershed, in order to more precisely detect curvature transitions, particularly on CAD objects.

We propose to adapt this latter algorithm to natural objects using the wavelet coefficients as roughness
measure. They represent the high-frequencies lost during the coarsification of the initial model and reflect the
roughness of the surface, as less details are needed in smooth regions than in textured or noisy ones.

3. PROPOSED METHOD

In this section, we first detail the theory involved to produce the wavelet coefficients. We present then the
various MR analysis schemes we have compared to obtain the best mesh decomposition. We finally describe our
adaptation of the mesh segmentation algorithm introduced by Lavoué et al.18

3.1. Wavelet theory and lifting scheme

The MR analysis produces a reversible decomposition of a mesh into a serie of approximation meshes and a
sequence of wavelet coefficients. Classical MR analysis methods such as wavelet transform are based on the filter

3



Figure 1. Decomposition of a polyhedral surface.

bank theory where lowpass and highpass filters are applied in order to obtain respectively approximations and
details. For a discrete signal s(t), its Wavelet Transform is explained by this formulation :

WT
[

s(t)
]

(m,n) =< ψm
n , s >= a

−
m
2

0

∫ +∞
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s(t)ψ∗(a−m
0 t− nb0)dt.

where m,n ∈ Z, a0 > 1, b0 > 0 and ψ∗ corresponds to the complex conjugation of ψ.

The choice of a0 and b0 produces different tilings of the time-frequency plane. The most used technique is the
dyadic analysis, introduced by Mallat20 in 1989 to link the wavelets and the filter bank theories, where a0 = 2
and b0 = 1. This MR analysis formulation, defined for finite energy functions, is formally described for a serie
of imbricated subspaces (V m)m∈Z ⊂ L2(R) in which an orthonormal basis of scaling functions is determined.
This family of functions {ϕm

n ;n ∈ Z} is defined by dilations and translations of a mother scaling function ϕ(t)
and expressed by the following formula : ϕm

n (t) = 2−m/2ϕ(2mt− n). The orthogonal projection of s(t) into the
scaling functions family forms an approximation of the signal, which is interpreted as a lowpass filter followed by
a uniform subsampling. To recover the high frequencies losts during the preceding step, we have to consider the
Wm spaces, which are the orthonormal complements of the V m space in the V m−1 one. The wavelets, defined
by ψm

n (t) = 2−m/2ψ(2mt−n), form an orthonormal basis of the Wm spaces and are used as highpass filtering in
order to collect the missed details.

This formulation can be applied to meshes, using subdivision as lowpass filtering, as defined by Lounsbery and
shown in Fig. 1. But in practice it’s interesting to benefit from wavelets having at least one vanishing moment,
especially for compression purposes in order to benefit from a decrease of the wavelet coefficients through the
resolution levels. The orthogonality of the wavelets with the scaling functions is also sought to obtain the best
approximations in a least square sense which is important for visualisation and to improve coding performances.
This orthogonalisation means that < ϕj

i ,ψ
j
k > = 0 for each pair (i,k) ∈ Z

2, < f, g > being defined as the inner
product between the functions f and g. The inner product on a triangular mesh M , was first defined by
Lounsbery and is computed with the following formula :

< f, g >=
∑

τ∈∆(M)

1

Area(τ)

∫

s∈τ

f(s).g(s).ds

where ∆(M) denotes the set of triangular faces of M and ds is the usual Euclidean area form for the triangles τ
in R

3.

But it’s not always possible to construct analysis tools having such properties from the filter bank theory.
Consequently most of the methods benefit from the lifting scheme formulation, introduced by Sweldens21 which
moreover reduce computational costs and memory allocation by first splitting the signal into even and odd
components using lazy wavelets and represented by S in Fig. 2. The following lifting steps of Fig. 2 produce
a modification of this biorthogonal wavelet basis in order to add the desired properties. These operations are
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Figure 2. Principle of the lifting scheme for the decomposition of a fine mesh (Mk) into a coarser one (Mk−1) and details
(Dk−1).

equivalent to a factorization of the pair of complex filters which can be simplified by the lifting formulation.
Hence, the MR analysis is simply obtained with finite filters by an inversion of the order and signs of the
synthesis lifting matrices.

The prediction operator (P ) is used to predict odd components from even ones, in order to obtain smaller
coefficients by better approaching the higher level mesh than with a canonical quadrisection. The update
operator (U) is used to preserve the mean value of the signal and corresponds to the addition of the previously
cited properties, like orthogonalisation of the scaling functions ϕ with the wavelets ψ.

This latter property is applied to minimize the norm of the orthogonal projection of the ψj
i on the V j spaces,

∀i, j ∈ Z, with respect to the inner product. Hence the wavelets are expressed by :

ψj
i = ϕj+1

i +
∑

k∈∇j

αikϕ
j
k

with ∇j defined as the set of vertices of M j .

The coefficients αik of this latter equation are the solution of a linear system which depends on the desired
properties. In practice, the orthogonalisation is relaxed in order to obtain finite filters. For compression purposes,
the decomposition ends up with a normalisation step (N), which is used to adjust the scale between odd and
even coefficients so as to decompose the surface in a normalised basis.

3.2. Construction of various lifting schemes

In the framework of our segmentation perspective, based on roughness, we have compared different interpolant
prediction schemes associated or not with an update step. The following interpolant schemes were choosen
because they produce a more stable decomposition than with approximant ones :

• the midpoint scheme which corresponds to a canonical quadrisection of the facets (addition of the new
vertices in the middle of each edge) ;

• the Butterfly scheme introduced by Dyn et al.,7 which produces a C1 limit surface for meshes having a
regular topology. Moreover it’s the interpolant scheme with the smallest stencil which allows to reduce
computational costs ;

• the extension of the Butterfly scheme proposed by Zorin et al.22 who have introduced new masks for
extraordinary vertices while preserving the simplicity and the behaviour of the original scheme. The new
weights are computed with a discrete Fourier transform and a principal component analysis. Unlike the
other interpolant schemes, it produces comparable results than with approximant stencils ;

• a Butterfly extension we have proposed with smaller stencils than those used by Zorin et al. for extraor-
dinary vertices.
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We also have compared two formulations of the lifting scheme where the prediction and the update steps can
be reversed. For this latter step, we only have employed a 0-ring stencil, taking into account Certain et al.23

assumptions. They indeed have compared experimentally the performance of the lazy, 0-, 1- and 2-disk wavelets
to know how quickly the geometric error decreases as a function of the number of wavelet coefficients or polygons
in the model. The experimental results have shown that the lazy wavelets perform slightly worse than the k-disk
ones, but there is no significant difference between the various values of k. Moreover, the wavelets with smaller
supports are likely to be more stable numerically, which is important as the number of levels increases.

Finally, the MR analysis framework was applied on semi-regular meshes obtained by the two most famous
algorithms which define a parameterization on a hierarchy of meshes. The first is called MAPS4 and the other
produces Normal meshes.5

3.3. Wavelet decomposition for segmentation purposes

The mesh segmentation in surface patches having a quasi-constant roughness has been computed using an
adaptation of the algorithm proposed by Lavoué et al.18 (originally conceived for CAD objects). This latter
exploits the principal curvature values, computed in each vertex using the estimation of the curvature tensors
defined by Cohen-Steiner and Morvan.24

More precisely, they first have used a pre-processing step to detect sharp edges, particularly found in optimized
triangulated CAD objects, where curvature is theoretically not defined. As we intend to treat natural objects
and not specifically CAD ones, we don’t have considered this sharp features detection.

Several authors have proposed different algorithms for estimating the curvature tensors,24–26 but the one
introduced by Cohen-Steiner and Morvan,24 based on the Normal Cycle, has given better results even for CAD
objects. Once these tensors have been estimated, their eigenvalues represent the principal curvature values (kmin
and kmax) and have been used in Lavoué et al. classification algorithm. In this paper, we propose to replace
this curvature information by our previously detailed roughness measure, to obtain a different segmentation for
natural objects.

3.3.1. Wavelet coefficients used to reflect surface roughness

The contribution of this work is the use of the wavelet coefficients norm and polar angle (the angle between each
coefficient and its corresponding surface normal vector), obtained by the various schemes explained in sect. 3.2,
to differentiate mesh regions in term of roughness. We have considered two ranges for the polar angle measure.
The first lies between 0 and π/2 and doesn’t differentiate vectors with opposite directions from those having the
same, unlike the second which lies between 0 and π. We obtain a hierarchy of mesh segmentations having less
and less high-frequencies, in which the wavelet coefficients are linked to edges.

The histograms presented at the first row of Fig. 3 show the non-uniform distribution of these measures
for all the coefficients linked to the first decomposition level edges and obtained with the midpoint analysis. In
order to compare these quantities with two other roughness measures linked to the vertices and to make the
adaptation of the Lavoué et al. algorithm possible, we have computed for each vertex the mean of the values
associated with its incident edges. The corresponding normalized distributions can be seen at the second row of
Fig. 3.

The first roughness measure we have used for comparison was defined by Lavoué et al.27 who have considered
a local sphere centered in each vertex in which they have computed the standard curvature deviation σx. They
have employed it to measure the visual similarity between 3D meshes. The second algorithm used to reflect
roughness compute the normal difference between the model and a smoothed version obtained using a Laplacian
smoothing. These quantities are shown for the Venus and rabbit models at the first row of Fig. 4 and 5.

3.3.2. Classification algorithm based on roughness

The classification algorithm of Lavoué et al.18 is then used to create K groups of vertices that could be user-
defined. The vertices are classified according to our roughness values, associated with the Euclidean distance in
the roughness space. After several iterations, starting with K randomly determined centröıds, each vertex is then
associated to a cluster Ci and a roughness value ri. A cluster regularization (merging of small or similar clusters)
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Figure 3. Distribution of the wavelet coefficients norm and polar angle for the first resolution level of the Venus model
(midpoint analysis). (a-c) Distribution obtained taking into account all the coefficients, linked to the model edges. (d-f)
Normalized distribution of the mean values computed for each vertex from its incident edges. The wavelet coefficients
norm have been increased by a factor in order to stretch the distribution originally concentrated near the origin

is finally added. For our purposes, two clusters are sufficient in order to separate only smooth regions from rough
ones. Considering more clusters leads to a too detailed classification which produces over-segmentation.

The next step consists in constructing quasi-similar roughness connex regions composed of triangles from the
two groups of vertices obtained in the roughness space.

3.3.3. Region growing and merging algorithms

We have used the region growing and labeling algorithm of Lavoué et al.18 in order to transmit the roughness
information from vertices to triangles, starting from seed triangles having their three vertices on the same cluster.
This treatment is then followed by a region merging algorithm which mainly aims at reducing the oversegmen-
tation resulting from the growing step. This latter operation consists in constructing a region adjacency graph,
where the nodes represent the regions produced by the preceding step and the edges an adjacency relation be-
tween two of them. A reduction of the graph is then processed where the smallest edge is eliminated at each
iteration, resulting in a merging of the two corresponding parts. The graph reduction stops when the region
number reaches a queried number or when the weight of the smallest edge is larger than a given threshold. This
reduction is based on the similarity distance Dij which gather curvature similarity, size and common perimeter
of the two regions. We are actually working to enrich Dij with a roughness similarity distance in order to ob-
tain better results. The reader can refer to the corresponding paper18 for a more detailed presentation of these
algorithms.

Thanks to this framework, we are now able to apply various subdivision schemes and wavelet coefficients
quantizations, each one of them adapted to the surface roughness.
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4. EXPERIMENTAL RESULTS

The results shown have been computed with an application implemented in C++ that uses the Computational
Geometry Algorithm Library (CGAL).28 Our classification and segmentation methods, based on roughness mea-
sures, were tested on the semi-regular objects obtained thanks to the two remeshing algorithms considered
(provided by Caltech). Examples are given for the most revealing objects in term of roughness : the Venus and
the rabbit models. Fig. 4 and 5 present the various steps of our algorithm for these models.

4.1. Comparison of wavelet decomposition

The distribution of the wavelet coefficients norm, presented at the second row of Fig. 4 and on the model (e) of
Fig. 5 is comparable with those obtained considering the two other roughness measures, detailed in sect. 3.3.1
and visible at the first row of Fig. 4 and 5. The wavelet coefficients norm have been increased by a factor to
stretch the distribution originally concentrated near the origin (as we can see on the first histogram of Fig. 3),
allowing a better classification. We can see that these measures reflect the different aspects of the mesh surface,
even for the Venus second decomposition level which has approximately 42 times less vertices than the original
object.

The study of the obtained results have shown that the inversion of the prediction and update steps does not
have a meaningful signification. In the same way, the update operation doesn’t modify significantly the results,
so we don’t have presented it in our figures.

While observing the various distributions of the coefficients norm, presented at the second row of Fig. 4, we
can notice that the results obtained with the midpoint and Butterfly analysis on the Normal mesh are comparable.
Nevertheless the Butterfly scheme allow a better differentiation between smooth and rough parts. This tendancy
to obtain smaller wavelet coefficients in smooth regions with the Butterfly scheme can be explained because a
better prediction is used. The distributions obtained on the model remeshed by the MAPS algorithm ((g) and
(h) models of Fig. 4) are less significant. The same remarks have been noticed on the rabbit model.

The model (k) of Fig. 4 and (g) of Fig. 5 emphasize that the polar angle measure computed by the Butterfly
scheme on the Normal mesh is not significant for our purposes. It can be explained because this latter remeshing
algorithm uses a Butterfly subdivision scheme to construct the semi-regular mesh having its high-frequency
details concentrated in the surface normal.

Taking into account the direction of the wavelet coefficients relating to their associated surface normal pro-
duces a distribution which better detects the high curvatures and differentiate the regions having a close roughness
measure than with the other quantities. This observation is totally appropriate for segmenting the rabbit model
for which the coefficients norm distribution is not as significant as for the Venus one. Moreover, for these two
considered ranges, the distribution appears more significant on the Normal mesh. Consequently, in order to
benefit from the best distributions for all of our roughness measures, we have considered the midpoint analysis
on the Normal meshes for the following steps of our algorithm.

Finally, the various butterfly schemes, presented in sect. 3.2 have given comparable results for all the consid-
ered quantities, hence we have presented the results for the simpler one (classical scheme using the same stencil
for regular and extraorinary vertices).

4.2. Mesh classification and segmentation results

The classification and segmentation results can’t be computed directly on the semi-regular finer model, in order
to benefit from the wavelet coefficients norm and polar angle. But it’s easy to project the measure obtained on
the finer mesh for our adaptive compression purpose. The models (m-p) of Fig. 4 and (i-l) of Fig. 5 illustrate
the classification and segmentation steps of our algorithm. As explained previously in sect. 3.3.2, the 2-clusters
classification have given the best results for the two models.

On the rabbit model, the classification is more difficult because the mesh have globally a more constant
roughness than on Venus model. To obtain a good segmentation we then have mainly based the classification
on the polar angle distribution which better differentiate the regions than with the norm measure. Moreover the
consideration of the polar angle quantities (in addition to the norm) have produced a better segmentation of the
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Venus hair. The colors used for separating the connex regions were randomly generated and are not associated
with a special value.

We can see that the high frequencies are globally well partitioned, but some of them, appearing in the initial
mesh can’t be considered. In order to obtain a better segmentation we could use a propagation of the roughness
information in the coarser levels. We are actually working on a graph construction which could help us to
propagate this information in all the resolution levels.

5. CONCLUSION AND FUTURE WORK

We have presented a new MR analysis for mesh segmentation in regions having the same surface properties in
term of roughness. The main contribution of this work is the use of the lifting scheme to build a hierarchy
of segmentations, each one of them keeping the global appearance of the object at different levels of detail.
Our framework is able to treat any kind of semi-regular mesh and its originality comes from using the wavelet
coefficients to reflect the meshes surface rougness.

The next step in this work is to use the resulting hierarchy of segmentations for building a local wavelet
analysis which could serve for adaptive compression, visualisation, smoothing, denoising or watermarking.

The presented results show that the wavelet coefficients norm and polar angle are relevant measures to identify
the roughness of the surface for the two analysed models. But the results could be improved by considering the
variance and the histogram distribution of the various measures in order to better counterbalance them. This
latter remark could also serve to automatically process the region merging threshold which remains a user defined
parameter.

Finally, the boundaries of the segmented regions we have obtained can be cleaned by using the boundary
rectification of Lavoué et al.18 But as this algorithm is more adapted for CAD objects, the Katz and Tal29 fuzzy
decomposition, based on the geodesic distance could be adapted to give better results for natural objects.
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4. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin, “MAPS: Multiresolution Adaptive
Parameterization of Surfaces,” Computer Graphics 32(Annual Conference Series), pp. 95–104, 1998.

5. I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder, “Normal Meshes,” in SIGGRAPH 2000, Computer
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22. D. Zorin, P. Schröder, and W. Sweldens, “Interpolating subdivision for meshes with arbitrary topology,”
Computer Graphics 30(Annual Conference Series), pp. 189–192, 1996.

23. A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle, “Interactive multiresolution
surface viewing,” in SIGGRAPH’96: Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, pp. 91–98, ACM Press, (New York, NY, USA), 1996.

24. D. Cohen-Steiner and J.-M. Morvan, “Restricted delaunay triangulations and normal cycle,” in SCG’03:
Proceedings of the nineteenth annual symposium on Computational geometry, pp. 312–321, ACM Press,
(New York, NY, USA), 2003.

25. G. Taubin, “Estimating the tensor of curvature of a surface from a polyhedral approximation,” in ICCV’95:
Proceedings of the Fifth International Conference on Computer Vision, p. 902, IEEE Computer Society,
(Washington, DC, USA), 1995.
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Figure 4. (b,c) Distribution of the surface roughness computed with two different algorithms on the 2nd resolution level
of the Venus model ; (d) Color scale used for (b,c) and (e-l) models ; (e-h) Distribution of the logarithm of the wavelet
coefficients norm on the 2nd resolution level, for various prediction schemes, using two different remeshing algorithms (the
values have been increased by 5 to stretch the distribution, originally concentrated near the origin) ; (i-l) Distribution of
the logarithm of the wavelet coefficients polar angle on the 2nd resolution level ; (m) Classification of the 2nd resolution
level into two clusters based on the wavelet coefficients norm and polar angle (midpoint analysis on a Normal Mesh) ;
(n,p) Resulting 10 connex patches obtained by the region growing and merging algorithms.
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Figure 5. (b,c) Distribution of the surface roughness computed with two different algorithms on the 1st resolution level
of the rabbit model ; (d) Color scale used for (b,c) and (e-h) models ; (e-h) Distribution of the logarithm of the wavelet
coefficients norm and polar angle on the 1st resolution level (midpoint and butterfly analysis on a Normal Mesh). The
norm has been increased by 5 to stretch the distribution, originally concentrated near the origin ; (i) Classification of the
1st resolution level into two clusters mainly based on the wavelet coefficients polar angle distribution (midpoint analysis
on a Normal Mesh) ; (j,l) Resulting 20 connex patches obtained by the region growing and merging algorithms.
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