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Abstract—An algorithm devoted to the segmentation of
3-D ultrasonic data is proposed. The algorithm involves 3-D
adaptive clustering based on multiparametric information:
the gray-scale intensity of the echographic data, 3-D tex-
ture features calculated from the envelope data, and 3-D
tissue characterization information calculated from the lo-
cal frequency spectra of the radio-frequency signals. The
segmentation problem is formulated as a Maximum A Pos-
terior (MAP) estimation problem. A multi-resolution im-
plementation of the algorithm is proposed. The approach is
tested on simulated data and on in vivo echocardiographic
3-D data. The results presented in the paper illustrate the
robustness and the accuracy of the proposed approach for
the segmentation of ultrasonic data.

I. Introduction

The study of segmentation techniques devoted to 3-D
ultrasonic data presents several applications for medi-

cal imaging. The development of a 3-D acquisition scanner
addresses the problem of visualization of the 3-D struc-
tures embedded in the volume. The segmentation allows
extraction of the object of interest before a 3-D represen-
tation is constructed. The establishment of a diagnosis is
facilitated when an accurate volume measurement of an
organ or of a lesion is available, for example, when track-
ing the evolution of a tumor. Moreover, the shape of a
lesion (regular or uneven) can provide valuable informa-
tion about the benign or malignant status of a specific
lesion. Taking into account 3-D data also improves the 2-
D segmentation of an image. The continuity of data in the
third dimension allows a more robust detection of object
boundaries. This is true even when the volume of data is
built from the temporal evolution of a dynamic image in
a fixed plane (3-D M-mode imaging) and is particularly
interesting for cardiac imaging.

In general, image segmentation is based on gray level
values. However, ultrasonic images are of relatively poor
quality, and segmentation is a difficult problem [1]. The im-
age degradation includes primarily the speckle noise, the
blurring of spatial information perpendicular to the propa-
gation direction of ultrasonic waves, and the non-constant
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attenuation of ultrasound. When specular structures are
imaged, the detected echo amplitude varies according to
the orientation of the reflecting structure, and the con-
tours can then appear discontinuous. Moreover, although
dynamic focusing techniques are used, the lateral resolu-
tion is poor, and the structures are blurred in a direction
perpendicular to the ultrasonic propagation.

In most cases, the structures to be detected, such as tu-
mors, have acoustic characteristics similar to the surround-
ing tissues. Thus, the contrast between the various tissues
is poor, which makes the determination of an accurate bor-
der difficult. The attenuation of ultrasound depends on the
nature of the investigated tissues. Consequently, a homo-
geneous tissue does not appear quite homogeneous on the
image. It may be visualized with a slight variation of in-
tensity in the ultrasonic propagation direction, despite the
correction of the time gain compensation, which is con-
stant and independent of the nature of tissues.

The poor quality of conventional ultrasonic images and
the slight differences between the various tissues make the
automatic segmentation difficult. Techniques based on the
thresholding approach or on edge detection from the pix-
els’ intensities are generally not suited for ultrasonic data.

Several approaches have been proposed to segment ul-
trasonic images. Most of them are based on the pixel in-
tensity and use a Bayesian framework to define an energy
function that characterizes a homogeneous region or con-
tour. Ashton and Parker [1] have proposed a modification
of the adaptive clustering algorithm given by Pappas [2]
to take into account the particularities of ultrasonic data.
It is assumed that pixel intensities are given by a slowly
varying class mean corrupted globally by uniform addi-
tive white Gaussian noise. Spatial smoothness constraints
are incorporated in the algorithm by using a Markov ran-
dom field (MRF) to model the region process. The Central
Limit Theorem makes this model reasonably acceptable.
It states that the distribution of the mean of a large num-
ber of independent random observations tends toward a
Gaussian distribution centered on their collective mean.
This is the case in a multi-resolution implementation of
the algorithm for low-pass filtered and decimated ultra-
sonic images that are originally governed by non-Gaussian
statistics. The segmentation process of this algorithm takes
into account only the pixel gray level at a site and its sur-
roundings to classify each pixel. Similar algorithms have
been adapted to the segmentation of sequences of echocar-
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diographic images based on boundary detection [3], [4].
Implementation of these algorithms involves a priori infor-
mation about heart morphology and about the intensity
distribution of the various tissues; it also takes into account
the temporal continuity with the previous frames.

Other schemes for segmentation of ultrasonic images
have been proposed. Mulet-Parada and Noble [5] suggest
an intensity-amplitude invariant approach using a phased-
based feature detection method. Applied to an echocardio-
graphic image sequence, the algorithm takes advantage of
the temporal inconsistency of speckle to detect the acous-
tic boundaries. In [6], a linear combination of the pixel
gray level and of the local entropy is used in the Min-
imum Cross Entropy thresholding technique to segment
ultrasonic images containing fluid surrounded by soft tis-
sue. This original method proposes generalization to a
multivariate thresholding using several image parameters.
However, the determination of the coefficients of the lin-
ear combination is still an open problem. Moreover, the
method does not take into account spatial information of
the segmentation map.

A multi-resolution texture segmentation approach was
proposed by Muzzolini et al. [7]. Their approach gener-
alized the conventional simulated annealing (SA) meth-
ods [8] to a multi-resolution framework and minimized an
energy function, which is dependent on the resolution and
the size of the texture blocks of the image. SA remains a
computationally expensive method of minimization. The
use of Besag’s iterated conditional mode (ICM) [9], which
corresponds to instantaneous freezing in SA for energy
minimization, would improve the applicability of this al-
gorithm. However, ICM requires an accurate initial pa-
rameters estimation, which is difficult under non-Gaussian
statistics.

Because the pixel intensities are embedded in the
speckle noise, an alternative for discrimination of the var-
ious tissues consists of using another kind of information,
such as the measurements performed in tissue characteri-
zation experiments. They are generally based on textural
measurements made on envelope echographic images or on
acoustic measurements preformed on radio frequency (RF)
signals. Some authors have proposed performing the seg-
mentation of ultrasonic B-scan data from a texture anal-
ysis of the various kinds of tissues [6], [7], [10], [11]. The
different constitution (size, distribution, type of reflectors)
of the various tissues leads to different textural proper-
ties, which can help to distinguish the different structures.
Textural features based on co-occurrence matrices have
been widely used for the characterization of ultrasonic
data. Originally proposed by Haralick [12], these features
measure characteristics of the gray level spatial dependen-
cies (second-order statistics). The most frequently used for
tissue characterization are the entropy, contrast, correla-
tion and angular second moment (ASM) features [13]–[15].
Nicholas et al. [13] have proposed a systematic approach
to define a set of 93 textural features to characterize B-
scan images, and the methods and criteria for selecting the
optimal combination of the features are discussed. Their

approach has been applied to the discrimination between
B-scan textures of normal human livers and spleens. Three
of the most discriminating features are provided by the co-
occurrence matrix method. The efficiency of this method
for the characterization of echographic image texture (un-
compressed data) has been studied [15]. It has been con-
cluded that, in cases of diffuse scattering only, the more
relevant parameter to differentiate between two textures
is ASM. In cases in which there is a structural scattering
component as well as diffuse scattering, correlation is the
best parameter to detect the periodicity of this structural
component.

However, on ultrasonic images, the texture of the vari-
ous tissues depends on the imaging device. This drawback
makes the choice of pertinent textural features that char-
acterize the various tissues system dependent.

Acoustic parameters have also been extensively used
for tissue characterization. Most of the applications con-
cern liver and prostate tissues [16], [17]. Contrary to tex-
tural features, acoustical features are calculated from the
unprocessed RF signals. Information on the attenuation;
scattering; elastographic characteristics of tissues; and the
size, distribution, and concentration of scatterers can be
derived from the backscattered RF signal. These features
are often associated with a classification procedure to iden-
tify the various tissues [18]–[22].

In this paper, we propose to combine 3-D textural and
acoustical parameters in the segmentation process to im-
prove the robustness and the accuracy of the detection of
various tissues.

The segmentation of acoustic data needs to be robust to
speckle noise, low contrast, and attenuation. The proposed
approach favors robustness, taking advantage of 1) a multi-
resolution implementation. A rough initial segmentation is
performed on the low frequency data to initialize the algo-
rithm. Indeed, the aim of the segmentation of ultrasonic
data is the definition of a rather large homogeneous area
corresponding to the low frequency part of the spectrum.
Then, a more rapid convergence and a more accurate seg-
mentation are obtained when details are added at higher
resolutions. 2) A multiparametric segmentation process.
Information of different types, which may be either redun-
dant or complementary, are involved in the optimization
criteria. The fusion of various data increases the robustness
of the algorithm. 3) Multidimensional data. The segmen-
tation is performed on volumes. The volume is obtained by
either 3-D data or by 2-D +T data. The spatial or tempo-
ral continuity in the third direction is used to improve the
reliability of the segmentation.

This paper first presents the features involved in the
segmentation process and describes the implemented algo-
rithm. Then, segmentation results are illustrated on sim-
ulated and in vivo data.
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II. Method

A. Parametric Volumes Calculation

1) Textural Features. The co-occurrence matrix method
extended to 3-D data has been implemented for texture
characterization. The method is based on the estimation
of the second-order joint conditional probability density
function, pdθ(i, j). Each pdθ(i, j) is the probability of go-
ing from a gray level, i, to a gray level, j, in a given
direction, θ, at a given intersample spacing, d. In prac-
tice, the parameters d and θ are converted into the dis-
tances dx, dy, dz, which correspond to an integral num-
ber of pixels. The co-occurrence matrix pdx,dy,dz is a rep-
resentation of the estimated values. It is a square ma-
trix of dimension Ng (Ng is the number of gray level
in the volume). Formally, the non-normalized matrix en-
tries of a volume, V, are defined by Cdx,dy,dz(i, j) =
card{(x, y, z), (x′, y′, z′) ε V × V/f(x, y, z) = j, f(x′, y′, z′)
= i, x−x′ = dx, y−y′ = dy, z−z′ = dz}, where card de-
notes the number of elements in the set, and f(x,y,z) gives
the gray level of pixels (x,y,z).

In our application, as in [13], we chose to ignore the
orientation dependency. Thus, the matrices were generated
by pooling all of the frequencies calculated for a distance
d = 1. Note that the intensity range is reduced to 64 gray
levels for the matrices calculation.

To summarize the content of a co-occurrence matrix, a
number of textural features have been proposed [12]. To
build each parametric volume, a local estimation of each
textural feature is performed for each voxel. It requires
the calculation of a local co-occurrence matrix on a small
volume centered on the considered voxel. The results pre-
sented in this study were obtained using the features: en-
tropy (ENT), contrast (CON), correlation (COR), angular
second moment (ASM), and sum average (SAV).

2) Acoustical Features. Two acoustical parameters are
calculated from the RF signals. They are the mean central
frequency (MCF) and the integrated backscatter (IBS).
These parameters are often used for acoustical character-
ization. As these features depend on the structure of tis-
sues, they can constitute a signature of the various tis-
sues or of the pathological state. The MCF is related to
the attenuation of the medium because of the dependence
between the attenuation and the frequency. The attenu-
ation increases with frequency and consequently modifies
the frequency spectrum of a propagating acoustic wave.
The IBS is an estimation of the backscattered energy, so it
contains information about the number and the structure
of the scatterers in the medium.

These parameters can be easily estimated through a
short-time Fourier analysis [20]. The estimation of the local
power spectrum is performed by the Fast Fourier Trans-
form (FFT) on a 64-point temporal window zeros padded
to 512. A Hamming window is used to achieve local sta-
tionarity of the signal and to reduce the Gibbs phenomena.
The MCF is calculated as the first spectral moment inside
a −20 dB bandwidth and the IBS as the total power of
the received signal in the reduced −20 dB bandwidth. For

each voxel of the parametric volume, the local estimation
of the two features is performed from a window (64 points)
of the RF signal, centered on the corresponding voxel.

B. Segmentation Method

1) Modeling. The following section describes the seg-
mentation process considering, at first, a segmentation
performed using a single parameter (for example, the en-
velope intensity volume).

We assume that the observed data Y is a random field
defined on a 3-D rectangular grid S. Ys denotes the value
of Y at the site s ε S. A segmentation of the volume into
regions will be noted by X, where Xs = i means that
the pixel at s belongs to region i. The number of different
regions in X is k. Using Bayes’ theorem, the a posteriori
probability density function P (X = x|Y = y) has the
form:

P (X = x|Y = y) ∝ P (Y = y|X = x)P (X = x).
(1)

The conditional density function of Y given X is as-
sumed to exist and to be strictly positive and is denoted
by P (y|x). The probability P (X = x) is written as P (x).
The volume may be segmented by estimating the voxel
classification X given the observed volume Y using the
MAP estimation of X expressed by

x̂MAP = arg max {P (X = x|Y = y)} =
x

arg min {− lnP (y|x)− lnP (x)}.
x

(2)

Hence, once the distributions of P (y|x) and P (x) are
defined, the problem of segmenting a volume will be re-
duced to that of minimizing an energy function.

To model the regional process X, we use an MRF be-
cause of its restriction to local interaction. So, according
to the Hammersley-Clifford theorem [23], and for a given
neighborhood system, the prior density P (x) can be writ-
ten as a Gibbs density, which has the following form:

P (x) =
1
Z
exp


−

∑
all cliques C

Vc(x)


 . (3)

Here, Z is a normalizing constant called the partition
function. Vc(x) are the clique potentials. A clique c is a
subset of sites (c ε S) that are neighbors of each other. In
this work, the first-order neighborhood system, with re-
spect to the Euclidean distance, was used (Fig. 1), which
considers only the two-site clique potentials defined as fol-
lows:

Vc(x) =
{
−β, if xs = xq and s, q ε c
+β, if xs �= xq and s, q ε c

}
, β > 0. (4)

The Gibbsian parameter β is positive so that two neigh-
boring pixels are more likely to belong to the same class
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Fig. 1. First-order 3-D neighborhood system with respect to the Eu-
clidean distance (6-connexity).

than to different classes. Increasing β value increases re-
gional size and leads to excessive smoothing of boundaries.

The conditional density distribution Ps(ys|xs = i) of
the observed gray intensity at a site s is assumed to be
Gaussian with mean µis and variance (σis)2. The local class
mean µis is a slowly varying function of s. (σis)2 is esti-
mated independently for each class and is proportional to
µis. Under these assumptions, ln P (y|x) may be written as

ln P (y|x) ∝
∑
s

ln Ps(ys|xs) =

−
∑
s

(
ln (σxss ) +

1
2(σxss )2

(ys − µxss )2
)

. (5)

Substituting P (x) from (3) and ln P (y|x) from (5)
into (2) leads to the following energy function:

U(x|y) =
∑
s

(
ln(σxss ) +

1
2(σxss )2

(ys − µxss )2
)
+

∑
all cliques C

Vc(x). (6)

This function has two components. The first term con-
strains the regional intensity to be close to the data, and
the second is a regularization term that imposes a smooth-
ness constraint.

To improve the robustness of the algorithm, the en-
ergy function can be modified by adding other constraints
based on parametric measurements that are representative
of each region (Fig. 2). Let {y1, ..., yn} be a set of features
calculated on each site of the volume of data.

Gray-scale parametric volumes are modeled in the same
way as gray-scale images in [2]. A parametric volume is
assumed to be a collection of uniform or slowly varying
intensities. The sharp transitions in gray levels may only
occur at a region boundary. The feature value Yj at a voxel

location s is denoted (yj)s. We assume that the values
given by a feature Yj at the site s are modeled by a normal
distribution of mean (mj)xss and variance (σxsj )2. Then, the
complete energy function has the following form:

U(x|y, y1...yn) =∑
s

(
ln(σxss ) +

1
2(σxss )2

(ys − µxss )2
)
+

∑
all cliques C

Vc(x) +

∑
j

∑
s

(
ln(σxsj ) +

1
2(σxsj )2

(
(yj)s − (mj)xss

)2
)
. (7)

Finding the global minimum of this function requires a
intensive computation. As an alternative to SA, the ICM
algorithm has been used. Starting from an initial segmen-
tation x0, the algorithm updates the label of sites in x
to maximize the conditional density function at each site,
knowing the label values at its neighborhood and the ob-
servation y. The algorithm converges to a local minimum,
which is a reasonably acceptable solution under a good
initialization. This algorithm was implemented in [1], [2],
[24].

2) Algorithm. In the modeling section, the conditional
density distribution of the observed gray intensity at a
site s is assumed to be Gaussian. Clearly, this assump-
tion is not true in many cases, especially for ultrasonic
data. However, the Central Limit Theorem makes it rea-
sonably acceptable for low-pass filtered images. A multi-
resolution implementation allows satisfaction of the hy-
pothesis of Gaussian distribution.

Hence, the hierarchical structure proposed in [25]
was used to implement our algorithm (Fig. 3). Starting
from the highest resolution ultrasonic volume, a multi-
resolution pyramid is built using the discrete wavelet
transform (DWT) approach [26]. Textural volumes at each
resolution can be calculated in two ways: either by cal-
culating the texture volumes only at the highest resolu-
tion and building the pyramid from the high resolution
texture volumes or by calculating the texture volumes at
each level of the gray level pyramid. The second approach
is more interesting because textures are analyzed at each
level. This allows a multi-scale analysis of textures from
macro-texture to micro-texture. However, at low resolu-
tion levels, the texture information is very poor due to the
successive low-pass filtering. In our implementation, the
texture features at the two highest resolutions, 0 and −1,
are calculated from the corresponding gray intensity data,
and then the texture pyramids are completed by the DWT
starting from the texture volumes at resolution−1 (Fig. 3).

The coarsest resolution is initially segmented, and the
segmentation result is passed on to the immediate higher
resolution and so on until the finest resolution is seg-
mented. An initial solution of the minimization problem,
at the coarsest resolution, is obtained with the K-means
algorithm. Starting from this segmentation, the algorithm
alternates between the estimation of region labels and
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Fig. 2. Schematic representation of the data involved in the segmentation process.

Fig. 3. Decomposition scheme of the different volumes of data.

model parameters and is stopped when no further changes
in the labels occur. A rectangular window is used for the
estimation of the local class means and variances for all
region types i and all pixels s. Given the region labels x,
µis and σis are the average and the standard deviation of
pixels of the region i inside the window of width W cen-
tered at s, respectively. Initially, for robust estimation of
the model parameters, the window size W is equal to the
whole volume, and, then, as the algorithm progresses, the
segmentation becomes better, and smaller windows give
more reliable and accurate estimations. Thus, the algo-
rithm fits progressively to local characteristics of each re-

gion. In our implementation, as in [2], the window size is
reduced by a factor of two until a final value Wmin.

A major difficulty of this algorithm is the ad hoc choice
of the Gibbsian parameter β and the number k of regions
in the data. The authors in [1], [2] show experimentally
on various kinds of images (natural scenes, ultrasonic car-
diac images) that good results are obtained with k = 4.
The problem of the estimation of β is studied in [25] in the
special case of the segmentation of brain MRI images. The
authors propose a prior model for the estimation problem.
Some studies [2], [24] propose a constant value for parame-
ter β, whereas Ashton and Parker [1] suggest adapting the
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Fig. 4. Simulated ultrasonic image. Envelope (a) and IBS (b) images after logarithmic compression; MCF image (c). The histograms of the
three images are given in (d).

TABLE I
Average Percentage of Correct Pixel Classification of

Segmentation Results Obtained Using Envelope Data (a),

Envelope Data with Texture Characterization (b),

Envelope and IBS Images (c), and Envelope and IBS Images

with Texture Characterization (d).

a b c d

Phantom 1 70.41% 87.81% 82.76% 89.10%
Phantom 2 96.08% 96.07% 95.90% 95.97%
Total 83.24% 91.94% 89.33% 92.53%

value of β to each resolution (β increases with resolution).
In [27], the authors propose a mathematical approach to
derive the Gibbsian parameter at each scale directly from
the full resolution one. This method shows clearly that the
Gibbsian parameter has a small value at the coarsest reso-
lution and increases, but not linearly, within the resolution
level until the final resolution. In our implementation, β is
increased by ∆β > 0 at each change of resolution level.

III. Results

In this section, experimental results of the segmenta-
tion are presented on both 2-D simulated data and in vivo
2-D +T cardiac images. Real ultrasound images were used
to evaluate visually the ability of the algorithm to seg-
ment echographic data. Synthesized images provide a con-
trolled environment that allow the quantification of the
performance of the proposed algorithm because a refer-
ence image is available. Generally, in our experiments, we
take Wmin = 7, the Gibbsian parameters β = 0.5 and
∆β = 0.2, the number of decompositions n = 2 to 3, and
the number of classes k = 2 to 4.

A. Simulated Data

1) Experiment 1. In this experiment, the 2-D simulated
data are obtained using the approach proposed in [28]. A
thick cylinder is generated with backscattering properties
that differ from its surroundings. The resulting envelope
image, after logarithmic compression of the form Dln(·),
withD = 56, is composed of three regions (Fig. 4) of differ-
ent means and standard deviations: region A, µA = 160,
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Fig. 5. Segmentation results of the data presented in Fig. 4 (k = 3, n = 2, β = 0.5, ∆β = 0.2) using the envelope image (without tissue
characterization) (a); using envelope and two textural parametric images (ENT and ASM calculated from the co-occurrence matrices) (b);
using envelope image, textural, and acoustical characterization, (ENT, SAV, MCF, and IBS) for an appropriate number of classes k = 3
(c), and for an overestimated number of classes in the segmentation process k = 4 (d).

σA = 33; region B, µB = 172, σB = 33; and region C,
µC = 116, σC = 30. The three regions, before the log com-
pression, are characterized by a Rayleigh distribution. We
can note that the standard deviations of the three regions
are very close. A theoretical formulation of the log com-
pression statistics can be found in [29], [30]. It has been
shown that the standard deviation of the log-compressed
Rayleigh data depends only on the dynamic range param-
eter D, σ = π√

24
D. In our case, the predicted standard

deviation of the three regions is ∼= 36. Fig. 4(a) shows
the logarithmic envelope image obtained with the Hilbert
transform and decimated in the ultrasound propagation
direction to obtain isotropic data. Fig. 4(b) and (c) show
the corresponding IBS and MCF images. Their normalized
histograms are presented in Fig. 4(d). Clearly, the IBS im-
age has a better contrast than the envelope image. More-
over, we can notice that, contrary to the envelope image
histogram, the IBS histogram is bimodal.

The segmentation results of the simulated data are pre-
sented in Fig. 5. They are obtained with different combina-
tions of the parametric images: a) using the envelope im-

age only (without tissue characterization); b) using enve-
lope and two textural parametric images (ENT and ASM
calculated from the co-occurrence matrices); and c) and
d) using envelope image, textural (ENT and SAV), and
acoustical characterization (MCF and IBS).

It can be observed that texture characterization im-
proves the accuracy of the segmentation, but some arti-
facts are still present at the borders of the image. These
artifacts are eliminated when acoustical features are in-
volved in the segmentation process. The borders between
the regions, and particularly between regions A and B,
are more accurately delineated. The segmentation results
obtained when an overestimated number of classes is im-
posed are correct [Fig. 5(d)]. This is an illustration of the
robustness of the algorithm.

The simulated data have been used to evaluate the in-
terest of a multi-resolution and multi-parametric imple-
mentation of the segmentation algorithm. On a selected
area of the synthesized image (a square area including the
ring of the region B), the percentage of pixels classified
in the correct region by the segmentation has been cal-
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Fig. 6. Percentage of correctly classified pixels when only one kind
of parametric data is used and when all of the features are involved
in the segmentation process.

culated when only one kind of parametric data is used in
the segmentation and when all of the data (envelope, tex-
tural, and acoustic data) are involved. The performance
of the segmentation with various features has been cal-
culated at different resolutions. Four values of correctly
classified pixels are reported in Fig. 6. They correspond
to the initial segmentation performed with the K-means
and to the final segmentations (when the minimal value
of the energy function is reached) at a resolution of −2 (2
decimations), −1 (one decimation), and at the full reso-
lution. These experiments show that the correct classifi-
cation rate is always larger when all of the features are
used than when only one feature is considered. One can
remark on this figure (Fig. 6) that the initial solution of
the multi-parametric experiment is much better than the
initial solution obtained with only one feature. As men-
tioned in the modeling section, a good initial solution is of
major importance when a deterministic algorithm in the
minimization process is used.

The acoustic features and the envelope, used individu-
ally, exhibit approximately the same rates. The textural
feature SAV presents a lower rate of pixels correctly seg-
mented. This can be explained by the inaccurate location
of the border of the different regions with textural data
because the parametric textural data are calculated on a
rather large window (15 × 15 pixels). Using a large win-
dow to assess local information (at each site) blurs the
tissue borders. When the feature ENT is used alone, only
about 35% of the pixels are correctly classified in the three
regions. This is due to the inability of this feature to dis-
criminate the two regions A and C. However, this feature
remains relevant in the global segmentation for identifying
region B and separating it from the two other classes.

Globally, the segmentation is improved as the resolution
increases. Moreover, the multi-resolution implementation
of the algorithm decreases the processing time. Typically,
the time required for the segmentation of the simulated
image is about 6 s with a multi-resolution implementa-
tion, whereas 40 s are necessary to obtain a similar result
without multi-resolution.

2) Experiment 2. The previous experiment shows the
interest of a multi-parametric implementation of the algo-
rithm. Other experiments have been carried out to verify
these observations and to evaluate the performance of the
proposed method on several images.

Two computer phantoms of 30 × 30 × 5 mm are used.
The synthesized images are generated using the FIELD
program for the simulation of ultrasound imaging [31], [32].
The simulation approach is based on the calculation of spa-
tial ultrasound field in a homogeneous attenuating medium
and assumes a linear propagation. Any transducer and fo-
cussing schemes, including the transducer excitation, can
be simulated with this approach. Therefore, the software
produces realistic B-mode images.

The images are generated by specifying a number of
independent scatters in a file where their position and am-
plitude are defined. Adjusting the number of scatters and
their relative amplitude yields the proper image. In our
experiments, a linear scan is done at 7.5 MHz with a 192-
element transducer, using 64 active elements and the re-
ceived RF signals sampled at 100 MHz. The scatters are
positioned randomly in the phantoms. For the two phan-
toms presented hereafter, five images of 128 lines are gen-
erated with different attenuation of the media. Typically,
one simulation requires about 13 h of simulation time on a
500-MHz PC. Fig. 7 shows the envelope images obtained
without attenuation corresponding to the two phantoms.

In this experiment, the MCF parameter was not used
in the segmentation process because the simulation model
does not allow the simulation of several attenuating me-
dia in a single field. Thus, MFC image calculated on the
RF signals cannot distinguish the different tissues of the
phantom. All other control parameters are fixed at the
same values as in Experiment 1.

Fig. 8 shows an example of segmentations of the image
presented in Fig. 7(a), which were obtained with different
combinations of the parametric images: a) using the enve-
lope image only (without tissue characterization), b) using
envelope and two textural parametric images (ENT and
ASM calculated from the co-occurrence matrices), c) us-
ing the envelope and the IBS image, or d) using envelope
image, textural (ENT and SAV) images, and the IBS im-
age.

Fig. 8(a) shows that when the envelope image is used
alone, the algorithm is more sensitive to the speckle pat-
tern. This leads to several misclassified regions in the back-
ground tissue. The classification error is reduced when
other parametric images are introduced in the segmenta-
tion process. Texture characterization improves the seg-
mentation results globally [Fig. 8(c)]. However, as noticed
in Experiment 1, some artifacts are still present because
of the low frequency of this kind of information. One can
remark, in this example, a small region at the border of
the inner tissue that is classified as a tissue of the back-
ground. Because the textural information is an average
measurement on a window, such artifacts can occur at the
border of two regions. In that case, the window used to
calculate the textural feature is averaging an hypoechoic
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Fig. 7. Simulated ultrasonic images using FIELD II program. Phantom 1 (a); phantom 2 (b) (without attenuation).

Fig. 8. Segmentation results of phantom 1 (k = 3, n = 2, β = 0.5, ∆β = 0.2) using the envelope [Fig. 7(a)] (a); using envelope and two
textural parametric images (ENT and ASM calculated from the co-occurrence matrices) (b); using envelope and IBS images (c); and using
envelope image, textural, and acoustical characterization (ENT, SAV, and IBS) (d). The real contours are superimposed on the segmented
images.
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Fig. 9. Envelope slice after logarithmic compression calculated from
the RF data.

region (inner) and an hyperechoic region (ring). The av-
erage value obtained is close to the characteristics of the
outer region. It can be observed from the inspection of the
four segmentations, that when the texture characteriza-
tion is involved in the segmentation process, the detected
boundaries are less accurately located. This shift is more
important for the boundaries parallel to the ultrasound
propagation direction because of their fuzziness aspect in
ultrasound B-mode images.

For the two phantoms and for the four previous combi-
nations of the parametric images, the average percentage
of correctly classified pixels in the segmentation results is
given in Table I. The segmentation accuracy of phantom 1
with the multi-parametric algorithm is substantially bet-
ter than the segmentation using the envelope image alone.
However, the segmentation accuracy of the second phan-
tom is approximately constant for the four parameter com-
binations (around 96 ± 0.08%). This result was expected
because the second phantom is relatively easy to segment
and most of the misclassified pixels are localized at the
boundaries parallel to the ultrasound beam.

In summary, taking into account texture and acousti-
cal characterization in the segmentation process improves
the accuracy and the robustness of the segmentation al-
gorithm. The improvement is the result of the comple-
mentarity of the parametric measurements. The texture
characterization leads to a robust global segmentation but
can produce some artifacts, and the contours are not ac-
curately localized. The acoustic characterization involves
images with a higher resolution than textural images and
contributes to the reduction the artifacts and the improve-
ment of the boundary location.

B. In Vivo Data

The segmentation algorithm has been tested on cardiac
RF images acquired from a dog’s heart at the University

Fig. 10. Parametric images calculated from the RF data: IBS image
after logarithmic compression (a), MCF image (b), and derived from
the envelope data (ENT image calculated on the 3-D co-occurrence
matrices) (c).
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Fig. 11. Segmentation results of the slice shown in Fig. 9 (k = 3,
n = 3, β = 0.5, ∆β = 0.2) with different combinations of features:
envelope volume only (a); envelope volume and two textural features
ENT and SAV (b); envelope volume, textural features ENT, SAV,
and acoustic features MCF and IBS (c).

of Leuven with a dedicated system [33]. A temporal se-
quence of 50 sector images of 120 scan lines was acquired
at 5 MHz and sampled at 40 MHz, 8-bit. The frame rate
is 30 images/s. From the sequence of images, we construct
a 3-D volume (dimensions: 352 × 265 × 99). Fig. 9 shows
an envelope slice after logarithmic compression and secto-
rial reconstruction. In Fig. 10, we present the IBS and the
MCF images calculated from the corresponding RF data
of the envelope images given in Fig. 9, as well as the “En-
tropy” slice calculated from the 3-D co-occurrence matrix
of the envelope volume. We notice, similar to the simulated
data, that the IBS image presents a better contrast than
the envelope image.

The segmentation results of the slice shown in Fig. 9 are
illustrated in Fig. 11. Three combinations of the different
feature classes involved in the segmentation process are
presented. All other control parameters of the algorithm
are constant (three classes k = 3, three levels of decom-
position n = 3, and the Gibbsian parameters are fixed to
β = 0.5 and ∆β = 0.2, where ∆β is the increment of β at
each resolution).

The results show that, when acoustical parameters are
included in the segmentation process [Fig. 11(c)], the con-
tours are more accurately determined than when only tex-
ture characterization is used [Fig. 11(b)]. This is partic-
ularly true for the definition of the ventricular cavity.
The algorithm is also efficient for segmentation of the
heart wall. The outer contour is almost continuous. No-
tice that the valve appears clearly on the segmented im-
age. On Fig. 12, the contours of the segmented regions are
superimposed on the original envelope slices, which allows
visual evaluation of the segmentation. The time necessary
for the processing of a single image (352×265 pixels) on a
digital personal workstation (433MHz, RAM: 128 Mo) is
typically 6 s and increases up to 2 h for the 3-D processing
of each volume of data.

Fig. 13 shows the evolution of the location of the inner
left ventricle border versus time at the two axial points
indicated by arrows in Fig. 11(c). The sequence of im-
ages corresponds to more than one heartbeat cycle (about
1.5 s), and the wall motion can be observed. The relative
positions of the curves indicate the diastole and systole.
We can notice the temporal continuity of the two curves
caused by the 3-D processing of the data.

IV. Conclusion

When ultrasonic data are involved, a segmentation
based only on intensity information is a difficult task be-
cause of the speckle noise. In this work, both acoustic and
texture characterizations are introduced in the segmenta-
tion process of ultrasonic data. The algorithm is applied
to simulated ultrasonic data and cardiac RF images. The
various tissues are outlined more accurately when textu-
ral and acoustical features are combined. These features
reinforce and complete the information provided by stan-
dard echographic images. For example, the algorithm prof-
its from the contrast enhancement given by the IBS im-
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Fig. 12. The region contours detected are superimposed on the original envelope slices at four instants of the cardiac cycle: (a) segmen-
tation without tissue characterization, (b) segmentation with texture characterization, and (c) segmentation with texture and acoustical
characterization.
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Fig. 13. Evolution of the location of the inner border of the left
ventricle versus time at the two axial points shown in Fig. 11(c).
The vertical axis indicates a number of pixels.

ages. The use of different kinds of data, which are comple-
mentary and/or redundant, and the fusion of these data
in the algorithm lead to a more robust segmentation.
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