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Abstract

Content-based systems retrieve images based on low-
level features (color,texture) while the user usually seeks
some objects from real world. As segmentation is never ac-
curate, such systems do not allow the use of powerful fea-
ture during retrieval (shape, structure). We propose a new
system that relies on a hierarchy of segmentations, in or-
der to handle some artifacts. Besides, it allows using some
object-related features for indexing (shape, structure). We
also present some result on a 600 images database from
Corel.

1. Introduction

Indexing and retrieving images from repositories are still
open issues today. Basically, content-based systems extract
from each image a signature composed of low-level fea-
tures. Then, they handle a request by comparing two sig-
natures together.

Content-based systems face a crucial limitation today:
they allow to retrieve images based on low-level features
(“stuffs”), while users seek a more semantic-based similar-
ity (“things”). For instance, they may want to formulate
queries such as “images that depict cars”. This raises two
kinds of consequences. First, we need tools that allow us
to bridge the gap between low-level features and seman-
tics. Even if the so-called semantic gap prevents such a di-
rect path, the use of structural description could level signa-
tures to a more user-intuitive meaning. Second, the system
should allow users to formulate their queries so as to be
the closest to what they have in mind. Classical query-by-
example paradigm allows them to retrieve images that are
judged similar from a given one. However, this paradigm
seems limited when handling queries related to objects, as
the system is not able to generalize what users actually seek
from the query image.

In this paper, we present a system that contributes to
bridge the gap between low-level features and semantics,
by handling a structural level of description. It relies on
a multi-level segmentation step that prevents it from be-
ing too dependent of segmentation mismatch. Besides, it

allows using several region-based features (shape, spatial
layout) in order to retrieve multi-regions patterns from im-
ages. Finally, the system allows users to formulate model-
based queries, which are more adapted when searching for
objects.

2. Related work

The first content-based systems made use of global fea-
tures, considering the whole image. Hence, color his-
tograms can lead to quite good results, when the sought
pattern has a unique color [9]. However their use are quite
limited to stuff-based queries since objects are not extracted
from background.

In order to deal with object-level information, a lot of
work relies on a segmentation step: pixels are grouped ac-
cording to several low-level criteria (color, texture) into re-
gions. During comparison, several features are used for
each region, such as color, texture and shape [1].

However, as segmentation alone is never fully accurate,
extracted regions do not always match semantic objects.
This leads to irrelevant extracted features. Another way is
to segment images with user assistance [2]. Once regions
have been manually segmented, the use of shape features in
order to compare regions can be very effective [4] [5].

Such user dependence is too strong a limitation. That
is why pixel-based methods have been extensively used in
last years, so as not to do any segmentation at all. Hence,
Schneidermann et al. [6] propose a Bayesian classifier, from
a wavelet-based image description. Good quality results
have been presented on queries such as “cars” or “face”.
However, statistical approaches are very time consuming.
Besides, calibrating data are statically set during training
and no further changeable. In this view, such methods can
only leads to pre-defined queries (“find images of this kind
of object”), which is too limitative in a content-based ap-
proach.

When regions have been extracted from image, they may
be described by intrinsic features as previously described
(color, texture, shape), but also considering their spatial lay-
out (structure). It is obvious that such a description is able
to strongly level features to a object-level query. In this



view, the system SaFe [8] stores spatial relationships be-
tween regions, each characterized by locations, size, and
low-level features. In a narrower domain, Forsyth and Fleck
[3] are able to find naked people in images, by recognizing
some geometric-constrained structures from limbs. How-
ever, they integrate a lot of ad-hoc procedures that prevent
from their generalization. Once again, segmentation is the
limiting factor, as one has to extract relevant structures (re-
lated to a real object) and not accidental combinations of
patches with no relation to the 3D world at all.

3. General framework

Even if robust segmentation is never available in uncon-
strained domain, it allows the use of powerful, object-level
features such as shape or structural layout. That is why
our framework does not rely on a single segmentation, but
on a hierarchy of segmentations instead. This one is build
by successive perceptual groupings on low-level primitives
such as color regions, from strong details to rough descrip-
tion. During grouping, we use both low-level criteria (e.g.
distance between colors) and geometric ones, such as edges
smooth continuity between regions, or the creation of re-
gions as compact as possible [11].

This multi-level image description allows us to handle
several segmentation mismatches. Besides, we can make in-
tensive use of structural information during retrieval: when
comparing two objects, we use one-to-one correspondence
between parts instead of comparing the whole object. This
strongly increases the accuracy of comparison.

Finally, we propose a model-based querying system,
which is able to help users formulating general, object-level
queries.

3.1. Basic notations and definitions

We callmodelthe query formulated by users (See figure
1(a)). It consists on one object, composed of several parts
(object model sub-parts), denotedM = M1, . . . ,Mn. Each
sub-partMi is characterized by several features, like shape
and spatial relationships with the whole object.

(a) (b) (c)

Figure 1. Example of model (a), original Im-
age (b), oversegmented image (c).

We call region treethe hierarchy of perceptual group-
ings. It is built from an oversegmented image [11]: when

two regionsRi andRj are merged together in a third re-
gion Rk during perceptual grouping, corresponding nodes
Ri and Rj from region tree are set to be sons of node
Rk. Figure 2 shows a simplified example of region tree ob-
tained from oversegmentation of figure 1(c) (original image
is shown on figure 1(b)). Note that regions from overseg-
mentation correspond to the leaves of region tree.

Figure 2. Example of region tree and model
seeking

We callsemantic nodesthose from region tree that cor-
respond to real object in the 3D world (R7 andR9 on figure
2). Note that, wherever a semantic node may be in the re-
gion tree, it can be recognized and associated to a model
sub-part. It offers a great flexibility compared to standard
segmentation, where the semantic node would have been
extracted as aresult of the segmentation. For instance, in
figure 2, the head of hammer has been wrongly merged
with the shadow from background (R8). However, as the
head appears deeper the tree (R7), it could be matched to a
model sub-part, though.

3.2. Matching a model with a region tree

Matching a modelM with a region-treeR consists in
computing the global distance|M−R|. We use a three-step
process (figure 2). It first finds anoptimal sub-treeSTk (1),
that contains all semantic nodes and the fewest other nodes
as possible, i.e. the sub-tree which best represents the object
extracted from the background. Since there is no robust
method to extract such optimal a sub-tree, we consider all
possible sub-treesSTk.

Then the process matches each model sub-partMi with



the regionRj from STk that best corresponds (2). To this
end, several features (shape, spatial layout. . . ) are used to
compute, for each matching from each sub-treeSTk a sin-
gle distance|Mi −Rj |k. Then, a global distance|M −R|k
between the whole model and the sub-tree is computed (3),
based on distances|Mi − Rj |k. Evaluating|M − R|k con-
sists in finding as many as possible one-to-one matches
between object sub-partsMi and regionsRj from sub-
treeSTk, while minimizing each distance between them:
|Mi − Rj |k.

The combination of distances|Mi − Rj |k in order to
derive a global distance (denoted∆ in figure 2), is based
on Dempster-Shafer theory of belief [7] which is especially
well-suited for this. We do not detail this process here.

4. Feature space

We now describe the features used to compare regions
Rj from region tree to each model sub-partsMi (|Mi −
Rj |k). At this level of description (object), we consider
that the most relevant features are related to shape. A lot
of methods exists, which could be divided into two classes:
those that describe a shape as a pixel-based spatial distribu-
tion (region-based) and those that relies on contour. We use
both of them since there is broad agreement [10] that they
are complementary. We also use structural features.

4.1. Shape features: ART and CSS

Angular Radial Transform (ART) is a region-based im-
age descriptor. It is scale, rotation and translation invariant.
It consists in a complex orthogonal unitary transform de-
fined on a unit disk in polar coordinates [4].

Curvature Scale Space (CSS) [5] is a closed contour-
based shape descriptor. Like ART, it is scale, rotation and
translation invariant. The CSS representation of a closed
contour is created by tracking the position of inflection
points, while the contour is altered by low-pass Gaussian
filters of variable widths. As the width of Gaussian fil-
ter increases, insignificant inflections are eliminated from
the contour and the shape becomes smoother. The inflec-
tion points that remain present at the end are expected to be
salient object characteristics.

4.2. Structural features

Content-Based systems usually considers objects on
their wholes, without any structural information, even if it
may represent additional information. For instance, if users
want to retrieve some flags with special patterns, the struc-
tural layout of the components is far more important than
the whole object, whose rectangular shape is not informa-
tive.

In this view, we introduce three structural features for
each region: (1) relative position regarding the whole ob-
ject; (2) relative size regarding the whole object; (3) relative
orientation regarding the whole object. Note that all these
features arerelativeto the whole object. Consequently, they
depend on the sub-tree chosen, which stands for the whole
object. Thus, we need a rough estimation of size and ori-
entation of this area in the image. Therefore, we use the
bounding ellipseEk of the sub-treeSTk under estimation
as a reference.

When we want to match regionRj from a subtreeSTk to
a model sub-partMi, we perform a registration of sub-tree
STk to whole modelM , thanks to their bounding ellipse
(see figure 3). We compute an affine transformationT that
register bounding ellipseEk of STk to the bounding ellipse
E of the whole modelM . Then,T is applied on bounding
ellipsesEj of Rj and we compareT (Ej) andEi (bounding
ellipse ofMi).

Figure 3. Structural Feature extraction

More precisely, we use three features: (1) Euclidean dis-
tance between centroids of bounding ellipsesT (Ej) and
Mi; (2) area ratio ofT (Ej) and Mi; (3) orientation dif-
ference between bounding ellipse ofT (Ej) and ofMi.

5. Results

Tests have been run on 600 images from Corel database.
Indexing step consists in oversegmenting each image, per-
forming perceptual grouping and extracting features. It is
conducted off-line, and has to be done only once. It roughly
takes 1 second per image.

Model matching takes a linear time against database size.
Here (600 images), it takes 5 seconds on a 1.7 GHz com-
puter. The matching returns for each image an overall sim-
ilarity measure regarding the model. It ranges from0 (no
similarity) to1 (perfect similarity). Hence, it allows ranking
of results. Figure 4 shows some results for queryhammer.
Several hammer-shaped objects are returned with good sim-
ilarity score. Figure 5 shows some results for queryflag with
three vertical patterns. Results are quite efficient as the first



six results perfectly match the model. The canadian flag got
a lower score due to its bigger white pattern on middle (not
to the red leaf). Next three results get a significant lower
score while last one has a 0 similarity, as expected.

Figure 4. Example of results (query hammer)

Figure 5. Example of results (query flag)

Figure 6 shows recall-precision curves on 600 images.
For queryhammer, the system correctly retrieves 6 images
over the 8 needed. For queryflag, results are excellent, as
the system retrieves all the 7 flags needed.

Figure 6. Recall Precision on 600 images.

6. Conclusion

We have presented a new content-based system, that re-
lies on a hierarchy of segmentations. It allows to handle
many segmentation mismatches and also to use structural
features during matching. Besides, we use a model-based
query paradigm. Further works will be directed on the rel-
ative weighting of features. As a matter of fact, increas-
ing the relative weight of one feature modifies the kind of
similarity sought, and could help to improve the quality of
result. This could be done by designing new interface for
query.
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