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DAbstract

The angular radial transform (ART) is a moment-based image description method adopted in MPEG-7 as a 2D

region-based shape descriptor. This paper proposes generalizations of the ART to describe two-dimensional images

and three-dimensional models. First, we propose an 2D extension, called GART, which allows applying ART to images

while insuring robustness to all possible rotations and to perspective deformations. Then, we generalize the ART to

index 3D models. This new 3D shape descriptor, so called 3D ART, has the same properties that the original transform:

robustness to rotation, translation, noise and scaling while keeping a compact size and a good retrieval cost. The size of

the descriptor is an essential evaluation parameter on which depends the response time of a content-based retrieval sys-

tem. For both generalizations, many experiments were made on large databases and have shown, that GART outper-

forms ART in accuracy at the cost of speed, and that 3D ART outperforms the spherical harmonics shape descriptor

(Vranic, D.V., Saupe, D., 2002. Description of 3D-shape using a complex function on the sphere, in: IEEE Interna-

tional Conference on Multimedia and Expo (ICME 2002), Lausanne, Switzerland, 2002, pp. 177–180; Funkhouser,

T., Min, P. Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D., 2003. A search engine for 3D models.

ACM Trans. Graphics 22(1), 83–105) in speed at the cost of accuracy.
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1. Introduction

Content-based image retrieval has been a topic

of intensive research in recent years, and particu-
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larly the development of effective shape descriptors

(SD). The MPEG-7 standard committee has pro-

posed a region base shape descriptor, the angular

radial transform (ART) (Jeannin, 2001; Kim and

Kim, 1999). This SD has many properties: com-
pact size, robustness to noise and scaling, invari-

ance to rotation, ability to describe complex

objects. These properties and the evaluation made

during the MPEG-7 standardization process make

the ART a unanimously recognized efficient

descriptor. Furthermore, an important character-

istic is the small size of the ART descriptor. For

a huge database, this implies fast answers during
retrieval processes. In the MPEG-7 standard, the

ART similarity measure is reduced to a L1 distance

between 35 floating point values.

In the same time, the technical 3D model dat-

abases grow up since the beginning of the com-

puter-aided design. The engineering laboratories

and the design offices always increase the number

of 3D solid objects and the current industrial esti-
mations point to the existence of over 30 billion of

CAD models.

This huge number of models requires a content-

based mining with indexing and retrieval pro-

cesses. In the framework of the Semantic-3D na-

tional project and in partnership with the car

manufacturer Renault, we investigate the possibil-

ities to make a fast descriptor to index a huge tech-
nical 3D models database and to index images to

insure robustness to deformation undergone by

objects in natural images. In this context, we ex-

plore the possibilities to extend ART to the retrie-

val of images and 3D models by taking into

account the specific properties of these data.

This article presents our work on the Angular

Radial Transform. First, we generalize the 2D
ART shape descriptor to insure robustness to per-

spective deformations that can disturb a planar

shape in a 2D natural image. In a second time,

the ART is extended for the indexation of 3D

models while preserving its properties. This paper

is organized as follows: Section 2 presents the

ART transform, Section 3 details the generaliza-

tion of the 2D ART, Section 4 presents a survey
of the related work on 3D shape matching and

our new 3D ART descriptor, results are presented

and discussed in the last section.
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2. The angular radial transform

This part presents the 2D ART proposed by the

MPEG-7 normalization process. These definitions

are the starting point of the proposed generaliza-
tions. Angular radial transform (ART) is a mo-

ment-based image description method adopted in

MPEG-7 as a region-based shape descriptor (Bo-

ber, 2001). It gives a compact and efficient way

to express pixel distribution within a 2D object re-

gion; it can describe both connected and discon-

nected region shapes. The ART is a complex

orthogonal unitary transform defined on a unit
disk based on complex orthogonal sinusoidal basis

functions in polar coordinates (Jeannin, 2001; Kim

and Kim, 1999). The ART coefficients, Fnm of or-

der n and m, are defined by

F nm ¼
Z 2p

0

Z 1

0

V nmðq; hÞf ðq; hÞqdqdh ð1Þ

where f(q,h) is an image function in polar coordi-

nates and vnm(q,h) is the ART basis function that

is separable along the angular and radial

directions:

V nmðq; hÞ ¼ AmðhÞRnðqÞ

where

AmðhÞ ¼ 1
2p expðjmhÞ

RnðqÞ ¼
1 n ¼ 0

2 cosðpnqÞ n 6¼ 0

�
8><
>: ð2Þ

In order to achieve rotation invariance, an expo-

nential function is used for the angular basis func-
tion. The radial basis function is defined by a

cosine function. Real parts of basis functions are

shown in Fig. 1.

The ART descriptor is defined as a set of nor-

malized magnitudes of the set of ART coefficients.

Rotational invariance is obtained by using the

magnitude of the coefficients. In MPEG-7, 12

angular and three radial functions are used
(n < 3, m < 12) (Jeannin, 2001), these values will

be used in the rest of the articles. For scale normal-

ization, the ART coefficients are divided by the

magnitude of the ART coefficient of order n = 0,

m = 0. The distance between two shapes described

by the ART descriptor is calculated using L1

norm:
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dARTðQ; IÞ ¼
Xn�m
i¼0

kARTQ½i� �ARTI ½i�k ð3Þ

The subscripts Q and I represent respectively the

query image and an image in the database, and

ARTI is the array of the normalized ART coeffi-
cients of the image I. Note that to decrease the

descriptor size, quantification can be applied to

each coefficient using four bits per coefficient

(Jeannin, 2001). The MPEG-7 standardization

process showed the efficiency of the method in

the 2D indexing field. We can quote the use of

ART in a multi-views 3D models retrieval (Chen

and Ouhyoung, 2002), and in face detection (Fang
and Qiu, 2003).

To use ART on a natural color image and to

take into account the internal variations of the ob-

jects (contours, holes, texture,. . .), the ART

descriptor can be computed on the luminance

component. In that case the function f(q,h) takes
the values in the interval [0, 1] (see Wang et al.,

xxxx; Laaksonen et al., xxxx; Akcay et al., 2002).
U
N
C
O
R
R 162

163

Fig. 2. Object seen according to various angles and example o
E
D
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O3. Generalization of ART to perspective

deformations

The goal of this generalization is to make the

ART robust to any rotations or perspective projec-

tions. A planar object in a natural scene can be

viewed according to all orientations and can be

carried by an unspecified plan. This highly proba-
ble situation will disturb the shape in the image

and will prevent the identification. In Fig. 2, a

plane object (a stamp) is seen with three angles

of acquisition which correspond to three different

shapes projected on the same image plane. To

make ART descriptor robust to all possible rota-

tions and to perspective projections it is necessary

to generalize the ART transform with new basis
functions. This new descriptor is called generalized

ART (GART).

In order to define the transformations under-

gone by an object during rotations and projections

onto the image plane, we consider the transforma-

tion space given by the perspective coefficient p

and the normal vector to the image plane, denoted
~n. The perspective coefficient p defines a distance
f projected basic functions on the object support plane.
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205
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207
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214

215

216

217

218

219

220
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222

223

224

225

226

227

228

229

Table 1

Number of online and offline ART descriptor computation

during the original process and the optimized one

Original process Optimized process

Online K 1
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between the original basis function and the image

plane. The normal vector~n is given by its Euler an-

gles 1 (radial direction) and / (rotation angle) de-

fined between the vectors ~n and the axis~x (see the

Fig. 3). The first two parameters define the orien-
tation of the normal to the image plane and the

third is the perspective coefficient which defines

the perspective deformation. Fig. 3 shows these

parameters.

This transformation space is sampled for each

parameter according to k1, k/ and kp values.

Hence we obtain a sampling of K = k1 * k/ * kp
transformations. The basis functions are deformed
in the same way according to the K transforma-

tions. Each object is indexed with these K sets of

projected basis functions. The number of projec-

tions is limited to keep a reasonable computational

cost. The values k1 = 12, k/ = 3 and kp = 3, are

chosen in our experiments presented in Section 5,

because these values give the better ratio of cost

to efficiency. In other words, we have K = 108 sets
of coefficients to describe a shape. Hence we have

to compute 108 similarity measures between a

query object and a database object.

The complexity of the classical ART is in

h(n * m * N2) because we compute n * m basis

functions values for the N * N pixels of the image.

The generalized ART, which creates K set of basis

functions, has a complexity in h(K * n * m * N2).
To make the retrieval process faster, we choose

to inverse the indexation and retrieval processes.

Without optimization, the indexing process com-

putes the ART descriptor between the original ob-

ject and the original basis functions whereas the

retrieval process computes the descriptor between

the extracted object from a natural image and all

the projected basis functions. Thus, the indexation
U
N
C
O

Fig. 3. The basis functions are projected on the image plane I acc
E
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process, which is offline, has a computation cost K

times less than the retrieval process, which is on-

line. Fortunately, it is possible to inverse these

two processes and to index the original objects

on the inverse projected basis functions, whereas
an extracted object will be indexed only on the ori-

ginal basis functions. This increases the cost of the

offline indexing process but decreases the online re-

trieval process without modification of the descrip-

tion (Table 1).

As it is shown in Fig. 4, we transform the origi-

nal image F0 to the deformed image F1 by a trans-

formation T and we transform the origin basis
function V0 to the inverse projected basis function

V�1 by a transformation T�1. We can see that we

obtained the same descriptor values, if we index

the deformed image F1 on the original basis func-

tion V0, or if we index the origin image F0 on the

inverse basis function V�1.

Each object is described by K = k1 * k/ * kp ser-

ies of ART coefficients created from the basis func-
tions projected on K planes of projections. The

shape similarity distance is achieved by computing

a set of distances dART(Q, Ij). For each value of j,

the ART coefficients of Q, computed on the origi-

nal basis functions, and those of I, computed on

the jth projection of the basis functions, are com-

pared using (3). Then the shape distance between

Q and I is given by
ording to 1, / and p to obtain the projected basis functions.

Offline 1 K
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j2K

Xn�m
i¼0

kARTQ½i� �ARTj
I ½i�k ð4Þ

where Q is the ART coefficients of the key object

and Ij is the coefficients of the I object, calculated

on the jth projection of the basis functions. The

minimum is considered in order to take into ac-
count all the possible perspective views of the

object.
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In this section, we present a survey of the re-

lated works on 3D shape matching, then we gener-
alize the MPEG-7�s angular radial transform to

the 3D space.

4.1. Survey of recent 3D indexing methods

3D indexing methods can be divided into two

distinct groups: retrieval by an example of a

three-dimensional model, and retrieval by a 2D
view. In this work, we are interested in 3D model

retrieval. The state of the art can be divided into

two different classes of 3D shape description meth-
276
E
Dods: the structural approaches and the statistical

approaches.

The structural approach is a high-level one

which aims to describe the shape in a more com-

plete and intuitive manner. The principle is to split

an object into sub-parts and to represent the object

as the merge of these sub-parts according to adja-

cency relationships. A segmentation step identifies
the elementary structures composing the objects

satisfying given homogeneity criteria. The deter-

mined components are represented by using some

specific structures such as trees or graphs. Two dis-

tinct approaches can be considered: the surface-

based approaches and the volume-based ap-

proaches. A surface-based approach segments sur-

faces into patches. The connectivity of such
patches is encoded within an adjacency graph. A

similarity measure is computed between two ob-

jects by graph matching techniques (Ullmann,

1976). Dorai and Jain (1997) proposes to use a

graph of maximal patches defined by functions

of the principal curvature. On 3D technical mod-

els, the model signature graph (MSG) (McWherter

et al., 2001) is constructed by a surface-based rep-
resentation of the object. Each face is represented

by valued vertices and valued edges exist if two

vertices are adjacent. Hilaga et al. (2001) uses mul-
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ti-resolution Reeb graph. Multi-resolution graph

are constructed by computing a surface geodesic

distance to define a Reed graph at various levels.

Recently, the Augmented Reeb Graphs (Tung

and Schmitt, accepted for publication) increases
the matching process. The volume-based ap-

proaches decompose a shape using 3D elementary

volumetric structures called geons (geometrics

ions) based on recognition by composant theory

(Biederman, 1987). The sets of 3D volumetric

primitives may be: cylinders, cubes, parallelepi-

peds, cone (truncated or not), ellipsoids (Irani

and Ware, 2000). Other interesting approaches
use a set of superquadrics (Zhou and Kambha-

mettu, 2002) or quadratic surfaces (Park et al.,

2002).

The statistical approaches characterize the 3D

model shape by calculating statistical moments

(Zhang and Chen, 2001) or by considering a distri-

bution of the measurement of geometric primitives

(which might be points, cords, triangles, tetrahe-
drons,. . .) (Osada et al., 2001). A geometrical nor-

malization of the object size and position in a 3D

space is used as a pre-processing step to guarantee

a geometric invariance. The moment-based ap-

proaches can be defined as projections of the func-

tion defining the object onto a set of characteristic

moment functions. These approaches are used in

2D pattern recognition with several 2D moments:
geometrical, Legendre, Fourier–Mellin, Zernike,

pseudo-Zernike moments (Teh and Chin, 1988)

and ART (Jeannin, 2001; Kim and Kim, 1999).

Some of these moments have been extended into

3D: 3D Fourier (Elad et al., 2001), 3D Wavelet

(Paquet and Rioux, 2000), 3D Zernike (Cantera-

kis, 1999) and the spherical harmonic (SH) decom-

position, recently described by Vranic and Saupe
(2002), and Funkhouser et al. (2003). The spherical

harmonic analysis decomposes a 3D shape into

irreducible sets of rotation independent compo-

nents by sampling the three-dimensional space
U
N
C

RnðqÞ ¼
1 n ¼ 0

2 cosðpnqÞ n 6¼ 0
and

Amh
ðhÞ ¼ 1

2p ex

Am/
ð/Þ ¼ 1

2p ex

(

E
D
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F

with concentric shells, where the shells are defined

by equal radial intervals. The spherical functions

are decomposed as a sum of the first 16 harmonic

components (Kazhdan et al., xxxx), in an analo-

gous way to the Fourier decomposition into differ-
ent frequencies. Using the fact that rotations do

not change the norm of the harmonic components,

the signature of each spherical function is defined

as a list of these 16 norms. Finally, these different

signatures are combined to obtain a 32 * 16 signa-

ture vector for each 3D model. During the retrie-

val step, the similarity of objects is calculated as

the Euclidean distance between these vectors. In
our experimentation, the proposed descriptor 3D

ART is compared to SH.

4.2. 3D ART definition

First, we suppose the objects to be represented

in spherical coordinates where / is the azimuthal

angle in the xy-plane from the x-axis, h is the polar
angle from the z-axis and q is the radius from a

point to the origin. The 3D ART is a complex uni-

tary transform defined on a unit sphere. The 3D

ART coefficients are defined by

F nmhm/
¼

Z 2p

0

Z p

0

Z 1

0

V nmhm/
ðq; h;/Þ

� f ðq; h;/Þqdqdhd/ ð5Þ

where F nmhm/
is the 3D ART coefficient of orders n,

mh and m/, f(p,h,/) is a 3D object function in

spherical coordinates and V nmhm/
ðq; h;/Þ is a 3D

ART basis function (BF). The 3D BFs are separa-

ble along the angular and the two radial directions:

V nmhm/
ðq; h;/Þ ¼ Amh

ðhÞAm/
ð/ÞRnðqÞ ð6Þ

The radial basis function is defined by a cosine

function and the angular basis functions are de-

fined by complex exponential functions to achieve

rotation invariance and continuity along both h
and / values:
pð2jmhhÞ
pðjm//Þ

ð7Þ
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The values of the parameters n, mh and m/ are

trade-offs between efficiency and accuracy. Choices

were made by computing the Recall response for
different sets of values. For the technical database

presented in Section 4, we have chosen n = 3,

mh = 5 and m/ = 5. The real parts of the 3D

ART BFs are shown in Fig. 5.

The similarity measure is computed using a L1

distance between the 3D ART descriptors:

dðQ; IÞ ¼
Xn�mh�m/

i¼1

kART3DQ½i� �ART3DI ½i�k ð8Þ

where Q and I represent respectively a query object

and an object of the database and ART3D is the

array of 3D ART descriptor values normalized
by F000. The choice of the L1 distance is justified

by speed preoccupations but other distances could

be used.

4.3. Indexing process

An important property of the 2D ART is the

rotation invariance. A 2D rotation representation
in polar coordinates can be express as the sum of

angular components:

ðq;/Þ !Rota ðq;/þ aÞ ð9Þ
That does not modify the norm of the function

Amh
ðhÞ and therefore nor the ART descriptor. In

3D, unspecified rotations cannot be expressed as
the sum of constant values on the angular compo-

nents, and thus modify the descriptor values.

However, if we consider a rotation around the z-
E
D
P
R
Oaxis, the norms of the 3D ART coefficients do

not change. Hence, to have a rotation invariance,

unspecified rotations must be transformed to rota-
tions along z-axis by alignment according to the

first principal direction. Thus, a principal compo-

nents analysis (PCA) is applied to obtain the prin-

cipal direction of the objects. PCA alignment is

not really robust when the three principal direc-

tions are considered. Fortunately, here, we only

need to align the first principal direction along

the z-axis, therefore wrong alignments are limited.
Fig. 6 shows the indexation process.

Hence, before projecting 3D models onto the

BFs, the objects are pre-processed as follows: first,

they are discretized in a grid in such a way to ob-

tain interior and exterior voxels. This discretiza-

tion is also used to compute the parameters of

centering, scaling and alignment to the z-axis: the

3D object is centered on its gravity center and
scaled up. This pre-processing step makes the 3D

ART robust to translations, rotations and scaling.

Finally, the discretized object is projected into the

3D ART BFs to obtain the 3D ART coefficients.
5. Experiments

This part shows the experiments that we have

made to evaluate the ART generalizations. First,

we present our tests on the 2D GART, then we

present the 3D model databases and the experi-

ments that we have made to illustrate the proper-

ties and the effectiveness of the 3D ART.
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5.1. 2D generalized ART experiments

In these experiments, ART and GART was
used on the luminance components of the de-

scribed images like explained in part 2. The first

test compares the ART on the luminance and

our GART extension. 1813 test images were cre-

ated from 37 trademark images disturbed accord-

ing to 49 random perspective projections with

illuminating variations and grouped in 37 classes.

The original trademark images were used as query
images the answer ranks of the class images were

evaluated. Note that the GART descriptor is 108

times larger that the ART descriptors and the sim-

ilarity measures compute have a same cost differ-

ences. Fig. 7a shows the recall/precision values.

This curve shows that the best results are obtained
U
N
C
O
R
R

Fig. 7. Recall/precision curves: (a) ART and generalized to perspec
E
D
P
Rwith GART. GART is found to be more accurate

but slower than ART.

The GART was defined for a detection applica-
tion of a trademark in natural images. This appli-

cation identifies an object extracted from an

image. Its general scheme can be seen in Fig. 8

and can be split into two successive steps: the

indexation and the retrieval. To evaluate the prop-

erties of the GART within the retrieval process, 50

objects were extracted from the images ranks

where one finds the original trademark were con-
sidered. For this application, we have also consid-

ered a color description to take into account color

properties. The color descriptor is a simple color

histogram associated with a histogram similarity.

The GART and the color description were mixed

into a global similarity function computed as a
tive projection ART, (b) GART, color and mixed approach.
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Fig. 8. General diagram of the application.
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weighted sum of each distances (Idrissi et al.,

2004). The Fig. 7b shows the Recall values for

the GART, the color and the mixed description.

The mixed description gives the original trademark

at the first rank in 55%, against 38% for the GART

and 6% for the color. At the rank 10, the original
trademark is found in 95% of the cases, whereas

the GART and the color study have found the ori-

ginal object, respectively in 65% and 41% of the

cases.

5.2. 3D ART experiments

5.2.1. 3D model database test

The 3D experiments are made using two 3D

model databases: the Princeton Shape Benchmark
U
N
C
O 478

Fig. 9. Examples of Princeton Shape Benchm
E
D(Shilane et al., 2004) and a Renault database. Fig.

9 show examples of 3D models both databases.

The Princeton Shape Benchmark provides a

repository of 3D models and software tools to

evaluate shape-based retrieval and analysis algo-

rithms. The motivation is to promote the use of
standardized data sets and evaluation methods

for research in matching, classification, clustering,

and recognition of 3D models. The Princeton

database contains 1814 models grouped into

high-level semantic classes where the objects of a

same class are heterogeneous. For example, a class

of staircases contains 3D models, which represent

staircases of very different shape but with the same
semantic (Fig. 10). The Renault database is a tech-

nical database, which contains mechanical models.

In the framework of SEMANTIC 3D and in part-
ark 3D models and Renault 3D models.
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Fig. 10. Example of Princeton Shape Benchmark class: staircase and a Renault database class: seat belt part.
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nership with the car manufacturer Renault, we

have a huge 3D technical model database (approx-

imately 5000 models). This database contains the

pieces composing a car with all the model versions.

The 5000 models were classified according to the
functionalities of the different parts. 781 objects

were classified in 75 classes. We can quote for

example the classes: wheel, door, brake pad, disc

of brake, bolt,. . . Not all the database objects

can be classified because the database does not

have enough models to guaranty a minimal num-

ber of models per class. Classes, which have a

number of models less than 5, are grouped in an
unspecified class. The tests were made by taking

all the objects of the specified classes as request ob-

jects for the 5000 object database. The recall and

precision values are the mean of the recall and pre-

cision values of all the objects of the classes. Exam-

ples of the two databases classes are shown in Fig.

10.
U
N
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519

Fig. 11. The Recall values
E
D
P
R
O
O5.2.2. ART 3D parameters

To fix the parameter values, the recall values are

compared. Twelve values of the parameters n, mh

and m/ are evaluated. Fig. 11a shows that the best

results are obtained for n = 3 and mh = m/ = 5.
Fig. 11b presents the same experiment with differ-

ent discretization sizes S. Better results are ob-

tained on the technical database with the

parameter value S = 64. Thus, we use this value

in the rest of this work. This value is also suggested

in (Kazhdan et al., xxxx) for the SH computation.

5.2.3. Robustness

To evaluate the robustness of the process, we

distort a 3D object according to scaling, rotation,

translation and noise. Table 2 shows the maximum

and the mean distance obtained for these four dis-

tortions. For each distortion, we create a set of 3D

objects and for all the objects, we compute the dis-

tance to the original one. The translation has no

effect on the distance, because the pre-processing
step centers the objects. For the same reasons,
to set up parameters.
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Table 2

Distance obtained for several distortions

Distort Translation Scale Rotation Noise

Max distance 0 0.016 1.272 2.217

Mean distance 0 0.003 0.750 1.012

Table 3

Size (in floating numbers) and indexing time (in seconds)

comparison between 3D ART and spherical harmonic

representation

Indexing time Descriptor size

SH 10 544

3D ART 4 74
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the scale distortion has small effects due to arti-

facts of digitization, the maximum distance be-

tween the scaled objects are 0.016 when a mean

distance between two objects of the same class is

around 3. The obtained distances are smaller than

intra-class distances and the classification is the

same one. The rotation distortion test is a set of

rotations around the three axes with random an-
gles and gives a maximum distance of 1.272 and

a mean distance of 0.75. The noise distortion is a

random move of vertices of the object; each vertex

is moved along a random Gaussian vector. This

distance is a percentage of the object size. If this

distance is higher than 10% the surface of the ob-

ject is much distorted but the similarity measure is
U
N
C
O
R
R
E
C
T

Fig. 13. Recall/precision values on (a) Pr

Fig. 12. Example of noise distortions for th
O
O
F

1.6 and the object are still well classified. Fig. 12

shows distorted objects by the noise distortions.

5.2.4. Comparison

A second experiment is set up to compare the
3D ART to the Spherical Harmonic descriptor

(SH). This experiment is made on the two model

databases. Fig. 13a and b shows the recall values

for SH and 3D ART descriptors for the two dat-

abases. On the Princeton database (Fig. 13a), the

SH method gives a better description than the

ART. The results on the Renault database are sim-

ilar with the two methods (Fig. 13b). ART descrip-
tion gives better results when the objects of a same

class are similar. The 3D ART goal was not to
E
D

inceton and (b) Renault databases.

ree distance values: 0%, 5% and 10%.
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have a the best description accuracy, but to make a

small descriptor to have a fast answer.

The computational cost and the size of the

descriptors are significant comparison criteria (Ta-

ble 3). The 3D ART indexing computation time is
2.5 times less than a SH indexing and the descrip-

tor size and the cost of the similarity measure is

approximately 7.8 times less. These differences

are due to the fact that the ART BF and the inte-

gral calculus are defined in the Euclidian space

whereas the SH description is computed using

complex frequency transformations. In the frame-

work of the SEMANTIC 3D project, a huge 3D
models database will be index. Thus, the cost of

the retrieval must be as small as possible.
T
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6. Conclusion

In this paper, we have presented an extension of

the 2D region-based shape descriptor ART to de-
formed images and to 3D models. The generaliza-

tion of the ART (GART), to perspective

projections, increases the ART efficiency and defi-

nition domain while keeping the discriminating

capacities. Moreover the optimized process makes

possible to have a light online process and a quick

answer for content-based image retrieval. We have

shown that GART is more accurate that ART at a
higher cost.

In the second part of this work, we have pre-

sented the generalization of the ART to describe

3D shape (3D ART). The proposed descriptor is

robust to translations, scaling, multi-representa-

tion (remeshing, weak distortions), noises and 3D

rotations. It fulfils the requirements for our CAD

database indexing and retrieval application:
robustness and accuracy of the indexing, and

high-speed retrieval processes and similarity com-

putation index. Moreover experiments have shown

that 3D ART outperforms the spherical harmonics

descriptor in speed, while keeping a close accuracy.
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