
Specification of inter-architecture communications

Deliverable 3.2 (version 1)

Lionel Touseau, Nicolas LE SOMMER

16 September 2017

Project ASAWoO

Adaptive Supervision of Avatar / Object Links for the Web of Objects

Grant Agreement: ANR-13-INFR-0012-04



Deliverable 3.2

Abstract
This document describes how independant infrastructures communicate. The mechanisms of discovery and
invocation of remote functionalities hosted on independant ASAWoO platforms are also specified in this
document.

Contents

1 Introduction 2

2 Platform services API 2

3 Functionalities annoucements, discovery and invocation 3

1



Deliverable 3.2

1 Introduction

The concepts of Web of Things (WoT), ASAWoO platform, avatar, containers/managers, functionalities and
WoTApps are considered prerequisites to the understanding of this document. As a reminder, ASAWoO
platform architecture specification deliverable can be referred to.
On an ASAWoO platform different kind of services are exposed: the ones exposed by the platform man-
agers, and the ones bound to avatar functionalities. By using platform services, particularly the service reg-
istry broadcast mechanism, ASAWoO platforms are able to discover each other and thus inter-architecture
communications are enabled. Providing service registries have been advertised, avatars hosted on different
platforms are able to communicate by using each other functionalities.
The remainder of the document is structured as follows. The next section specifies the RESTful API that
exposes platform-level services. The third section describes how functionalities exposed by avatars hosted
on each platform are discovered and invoked.

2 Platform services API

An ASAWoO platform publishes services redirecting to managers specific features. They are provided by
each ASAWoO instance and are listed under http://<host>/registry/system. For instance, the avatar manager
handles avatars life-cycle and provides its features over RESTful services, while WoTApp manager lists
available applications and allows to start/stop WoTApps.
The following table specifies the URI paths for each manager.

Manager Method Path Description

Neighborhood GET /neighborhood Returns a list of connected ASAWoO platforms

Avatar GET /avatars Lists all avatars hosted on this platform

POST /avatars Creates a new avatar from an avatar configuration

GET /avatars/<avatarId> Returns the description of avatar matching avatarId

PUT /avatars/<avatarId> Updates the configuration of avatar matching avatarId

DELETE /avatars/<avatarId> Deletes avatar matching avatarId

Device configuration GET /deviceconfigurations Lists device configurations (JSONLD graph)

GET /deviceconfigurations/<id> Gets a specific device configuration

DELETE /deviceconfigurations/<id> Deletes a device configuration

POST /deviceconfigurations Creates or updates one or many device configurations

WoT Application GET /wotapps Lists available WoTApps

GET /wotapps/<wotappId> Shows WoTApp configuration matching wotappId

PATCH /wotapps/<wotappId> Starts/Stops a WoTApplication

POST /wotapps Loads a WoTApp configuration

WoT functionality GET /registry Returns platform’s local and remote registries

POST /registry Adds new entries into platform’s remote registry

GET /registry/system Lists platform ”system” functionalities

GET /registry/local Returns platform’s local registry

GET /registry/remote Returns platform’s remote registry

GET /registry/dtn Returns platform’s registry substituting DTN URIs

2



Deliverable 3.2

3 Functionalities annoucements, discovery and invocation

The /registry services described above allow to query a functionality registry or to publish one’s registry
from/to a remote ASAWoO platform. Besides enabling these features, ASAWoO WoT functionality module
should also implement an automatic publication/discovery mechanism. This module broadcasts its local
registry to neighbor ASAWoO platforms thanks to the multicast communication layer implemented by the
DTN communication layer. Meanwhile it also listens to multicasted functionality registries from neighbor
platforms, and adds their registry to its remote functionalities registry.
This way, from a platform’s perspective, avatars hosted on remote platforms are listed with their func-
tionalities in the remote registry. Remote services (i.e., functionalities) can therefore be invoked using
functionality URIs stated in the remote registry.
Moreover, remote functionalities can also be invoked through the DTN communication module.

3


	Introduction
	Platform services API
	Functionalities annoucements, discovery and invocation

