
Navigating the Maze of WikidataQuery Logs
Angela Bonifati
Lyon 1 University

angela.bonifati@univ-lyon1.fr

Wim Martens
University of Bayreuth

wim.martens@uni-bayreuth.de

Thomas Timm
University of Bayreuth

thomas.timm@uni-bayreuth.de

ABSTRACT
This paper provides an in-depth and diversified analysis of the
Wikidata query logs, recently made publicly available. Although
the usage of Wikidata queries has been the object of recent studies,
our analysis of the query traffic reveals interesting and unforeseen
findings concerning the usage, types of recursion, and the shape
classification of complex recursive queries. Wikidata specific fea-
tures combined with recursion let us identify a significant subset
of the entire corpus that can be used by the community for further
assessment. We considered and analyzed the queries across many
different dimensions, such as the robotic and organic queries, the
presence/absence of constants along with the correctly executed
and timed out queries. A further investigation that we pursue in
this paper is to find, given a query, a number of queries structurally
similar to the given query. We provide a thorough characterization
of the queries in terms of their expressive power, their topological
structure and shape, along with a deeper understanding of the us-
age of recursion in these logs. We make the code for the analysis
available as open source.
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• Information systems→Query log analysis; Query languages
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query processing; • Theory of computation → Database query
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1 INTRODUCTION
Wikidata [31] is a free collaborative knowledge base that has been
characterized by a gigantic growth in terms of number of edits,
number of users and developers, and amount of automated soft-
ware since its inception in 2012 by the Wikimedia Foundation. The
interplay between user and bot activities onWikidata is for instance
an interesting subject to study in order to make sense of the quality
of the newly added items produced by the massive numbers of edits
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in the knowledge base [27]. Contrarily to Wikidata data dumps,
which are readily available and allow a flurry of analyses, the activ-
ity of both humans and bots on the Wikidata SPARQL endpoints
can only be investigated since recently, thanks to the release of
large anonymized query logs.1 These query logs represent a rich
swath of information about the robotic and organic query traffic
on Wikidata and deserve our attention for further investigation,
in particular to understand the structure of complex queries. A
preliminary analysis of the Wikidata query logs bootstrapped with
a recent paper by Malyshev et al. [20], who first introduced the
Wikidata SPARQL service WDQS2 and pinpointed its technical
characteristics and current usage. They also provided a classifica-
tion of the Wikidata queries into robotic and organic requests that
we readily adopt in the present paper and that we recapitulate in
Section 9. They made several observations on which we build in this
paper, namely that robotic query traffic dominates organic query
traffic in terms of volume and query load, and that robotic queries
are issued by a single source whereas organic queries are typically
multi-source. They also identified a massive presence of recursive
queries in these logs, whose prominent fragment consists of queries
only containing joins and property paths,3 also known as conjunc-
tive 2-way regular path queries (C2RPQs) in the literature. These
massive logs of recursive queries are the first encountered so far,
as opposed to negligible percentages of these queries in previous
large-scale logs, including DBpedia queries [9].

C2RPQs are the basic building blocks of graph query languages
in the literature of RDF and graph databases. They allow to express
navigational patterns on the graph instances by leveraging regular
expressions, also known as Property Paths in the SPARQL 1.1 spec-
ification [15]. In Wikidata, they are particularly important since
they emulate ontological reasoning in SPARQL and also express
complex label-constrained reachability queries.

We focus our analysis on these recursive queries in the Wikidata
logs and further extend the class of C2RPQs by incorporating the
use of Service, Values, Bind, Filter, and Optional. Indeed, Service,
Values, and Bind occurred only rarely in other massive logs [9] but
are very prominent here. This fragment, which we call C2RPQ+,
constitutes more than 85% of the valid queries in the logs.4 The
consideration of this fragment leads us to redesign many tests
conducted in [9], among which the triple count and shape analysis,
which were based on the less expressive conjunctive queries.

Although the distinction between robotic and organic query
traffic has been introduced in [20], it has never been used in the

1Accompanying the publication by Malyshev et al. [20], the Knowledge-Based Systems
Group at TU Dresden released anonymised logs of several hundred million SPARQL
queries from the Wikidata SPARQL endpoint [6].
2Whose user interface can be found at https://query.wikidata.org/, while the raw
SPARQL endpoint is at https://query.wikidata.org/sparql
3After removal of subqueries that correspond to Wikidata’s labeling service. They also
allow the use of Values, which indeed can be done to some extent, see Section 6.
4In fact, the 85% only refers to a subfragment that is suitable for graph shape analysis.
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complex analysis that we carry out in this paper regarding the types
of property paths, the computation of triples when property paths
are present and the shape analysis of the C2RPQ+ fragment. We
also provide a view from rather different angles of these logs by
considering them with or without duplicates and by separating the
analysis of successfully executed and timeout queries, the latter
being analyzed for the first time in our study. We also developed
a query similarity search tool capable of identifying from an ini-
tial query the set of structurally similar queries by using tree-edit
distance. This tool allows to further inspect the logs by having a
specific query in mind and in a sense permits to reproduce and reap-
ply the previous complex analysis to the obtained sets for future
studies.

We focus in this study on the following research questions: What
is the distribution of query sizes? Which qualifiers are popular in
queries? How are property paths used and what is their structure?
How prominent are conjunctive queries (and variants thereof)?
What is the shape and (hyper)treewidth of queries? Given a query,
can we find in a subset of the logs the queries that are structurally
similar to it? Furthermore, we are also interested in meta-questions,
such as: Are there differences between robotic and organic queries?
Does a comparison with an earlier study [9] allow us to identify
some trends?

As a general remark, our study is significantly more extensive
than what we can present in this paper. Our code for the analysis
is publicly available [11].

2 DATA SETS
Our corpus consists of all queries in the Wikidata query logs that
were recently made publicly available [6]. Precisely, the queries
considered in this paper have been downloaded on October 12th,
2018. These logs are anonymized and represent queries that were
submitted to the Wikidata SPARQL endpoint from June 12th until
September 3rd in 2017. The same queries have been considered
in the work of Malyshev et al. [20], as discussed in Section 1. We
have partitioned these log files in four disjoint sets: queries for
which the HTTP request was successful5, further partitioned in
organic (OrganicOK) and robotic queries (RoboticOK); and timeout
queries, further partitioned in organic (OrganicTO) and robotic
queries (RoboticTO).

Each query in the downloadable log files has an annotation that
indicates if it was classified as a bot or user query by Malyshev et
al. [20]. We used the same classification.6 Sometimes we use OK,
(resp., TO) to refer to OrganicOK ∪ RoboticOK (resp., OrganicTO
∪ RoboticTO) for brevity. The TO queries have not been considered
in the work of Malyshev et al. [20].

Table 1 describes, for each of the log types, its number of queries
(Total #Q), number of valid queries, i.e., queries that parse using
Apache Jena 3.7.0 (Valid #Q), and the number of valid queries after
removal of duplicates (Unique #Q). For duplicate removal, we con-
sidered two queries to be the same if they are the same string after
whitespace removal.

5HTTP code 200.
6Our number of queries in Organic is slightly higher than the number of queries
reported on the download page of the query logs. We believe that the Dresden file
may be incomplete, since we found organic queries in the “all queries” log files that do
not show up in the organic subset in [6].

Table 1: The query logs in our corpus

Source Total #Q Valid #Q Unique #Q

RoboticOK 207,505,296 207,464,954 34,523,883
OrganicOK 661,769 651,385 251,994
RoboticTO 33,616 33,465 3,168
OrganicTO 14,528 14,087 8,729

Robotic 207,538,912 207,498,419 34,527,051
Organic 676,297 665,472 260,723

OK 208,167,065 208,116,339 34,775,877
TO 48,144 47,552 11,897

Total 208,215,209 208,163,891 34,787,774

Table 2: Distribution of Select, Ask, Construct, andDescribe

Valid #Q Valid % Unique #Q Unique %

Select Robotic 206,006,783 99.28% 34,261,882 99.23%
Organic 664,323 99.83% 260,114 99.77%

Ask Robotic 1,127,396 0.54% 73,019 0.21%
Organic 306 0.05% 132 0.05%

Construct Robotic 188,088 0.09% 24,587 0.07%
Organic 516 0.08% 217 0.08%

Describe Robotic 176,152 0.08% 167,563 0.49%
Organic 327 0.05% 260 0.10%

Throughout the entire paper, we will use the following notation
to discuss data sets. Whenever we report a number or a percentage
in the format X (Y), the number X refers to the Valid and the number
Y refers to the Unique sets of queries. This notation allows the
reader to stay informed throughout the paper about the queries
that the endpoint actually receives (Valid) and about those without
duplicates in this set (Unique).

Already from Table 1 we can make a number of interesting ob-
servations. One simple observation is that the robotic logs contain
many more duplicates than the organic logs. Indeed, whereas Or-
ganic contains 39.18% unique queries, Robotic only contains 16.64%
unique queries. A second observation is that, even though queries
do not timeout very often, organic queries time out 100 times more
often than robotic queries. The fraction of OrganicTO queries to
Organic queries is 2.12% (3.35%), whereas the fraction of RoboticTO
to Robotic queries is 0.02% (0.01%). In the set of unique timeout
queries, a whopping 73.37% are organic.
Data Sets forAnalysis.Wenoticed that almost allDescribe queries
do not have a body. For this reason, and because Describe queries
do not have a well-defined semantics, we solely focus from now on
in the paper on the Select, Ask, and Construct queries. This subset
of the corpus has 207,987,412 valid queries, 34,619,951 of which are
unique. The robotic subset contains 207,322,267 (34,359,488) and
the organic subset contains 665,145 (260,463) queries. In all cases,
these sets encompass more than 99.5% of the total sets in Table 1,
see Table 2.

3 BASIC DEFINITIONS
We assume familiarity with SPARQL, but recall the very basics
of the language. The presentation of the following definitions is
strongly based on Picalausa and Vansummeren [26] and Bonifati et
al. [9]. A SPARQL query Q can be seen as a tuple of the form

(query-type, pattern P , solution-modifier).
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Here, query-type is one of Select, Ask, Construct, andDescribe. The
pattern is the central component of the query, which we will discuss
in more detail next, and the solution-modifier is for performing
aggregation, grouping, sorting, duplicate removal, and returning
only a specific window (e.g., the first ten) of the solutions returned
by the pattern.
Patterns. By I, B, and L we denote the sets of IRIs, blank nodes,
and literals from SPARQL, respectively. LetV = {?x , ?y, ?z, ?x1, . . .}
be an infinite set of variables, disjoint from I, B, and L. As in
SPARQL, we always prefix variables by a question mark. A triple
pattern is an element of (I ∪ B ∪ V ) × (I ∪ V ) × (I ∪ B ∪
L ∪ V ). A property path is a regular expression over the alpha-
bet I. A property path pattern is an element of (I ∪ B ∪ V ) ×
pp × (I ∪ B ∪ L ∪ V ), where pp is a property path. A SPARQL
pattern P is an expression generated from the following grammar:
P ::= t | pp | Q | P1 And P2 | P Filter R | P1 Union P2 |

P1 Optional P2 | Bind X AS v | Service n P | Values tup T
Here, t is a triple pattern, pp is a property path pattern, Q is again
a SPARQL query, and R is a so-called SPARQL filter constraint.
SPARQL filter constraints R are built-in conditions which can have
unary predicates, (in)equalities between variables, and Boolean
combinations thereof. Bind associates a unary expression to a sin-
gle variablev . Service calls a remote service with name n and sends
it a pattern P . Finally, Values binds a tuple tup to values in a given
table T . We note that property paths (pp) and subqueries (Q) in the
above grammar are new features since SPARQL 1.1. We refer to the
SPARQL 1.1 recommendation [15] and the literature [25] for the
precise syntax of filter constraints and the semantics of SPARQL
queries. We write Vars(P ) to denote the set of variables occurring
in P .

We illustrate by example how parts of our definition correspond
to real SPARQL queries. The following query comes from Wikidata
(“Locations of archaeological sites”, from [32]).

SELECT ?label ?coord ?subj
WHERE
{ ?subj wdt:P31/wdt:P279* wd:Q839954 .

?subj wdt:P625 ?coord .
?subj rdfs:label ?label FILTER(lang(?label)="en") }

The query uses the property path wdt:P31/wdt:P279*, the literal
wd:Q839954, and the triple pattern ?subj wdt:P625 ?coord. It
also uses a filter constraint. In SPARQL, the And operator is de-
noted by a dot (and is sometimes implicit in alternative, even more
succinct syntax).

4 QUERY SIZES AND OTHER COUNTING
MEASURES

We report in Figure 1 the distribution of length of the queries in
terms of the number of their triples. Contrarily to other triple count
distributions reported in previous studies, we include property
paths in our metric. The reason is that a property path pattern of
the form ?x wdt:P31/wdt:P279 ?y is a shorthand notation for two
triples and we feel that it should be considered as such.We therefore
count property path patterns as follows. Let pp be a property path

Here, query-type is one of Select, Ask, Construct, and Describe. The
pattern is the central component of the query, which we will discuss
in more detail next, and the solution-modifier is for performing
aggregation, grouping, sorting, duplicate removal, and returning
only a specific window (e.g., the first ten) of the solutions returned
by the pattern.
Patterns. By I, B, and L we denote the sets of IRIs, blank nodes,
and literals from SPARQL, respectively. LetV = {?x , ?y, ?z, ?x1, . . .}
be an infinite set of variables, disjoint from I, B, and L. As in
SPARQL, we always prefix variables by a question mark. A triple
pattern is an element of (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪

L ∪ V). A property path is a regular expression over the alpha-
bet I. A property path pattern is an element of (I ∪ B ∪ V) ×

pp × (I ∪ B ∪ L ∪ V), where pp is a property path. A SPARQL
pattern P is an expression generated from the following grammar:
P ::= t | pp | Q | P1 And P2 | P Filter R | P1 Union P2 |

P1 Optional P2 | Bind X AS v | Service n P | Values tup T
Here, t is a triple pattern, pp is a property path pattern, Q is again
a SPARQL query, and R is a so-called SPARQL filter constraint.
SPARQL filter constraints R are built-in conditions which can have
unary predicates, (in)equalities between variables, and Boolean
combinations thereof. Bind associates a unary expression to a sin-
gle variablev . Service calls a remote service with name n and sends
it a pattern P . Finally, Values binds a tuple tup to values in a given
table T . We note that property paths (pp) and subqueries (Q) in the
above grammar are new features since SPARQL 1.1. We refer to the
SPARQL 1.1 recommendation [16] and the literature [26] for the
precise syntax of filter constraints and the semantics of SPARQL
queries. We write Vars(P) to denote the set of variables occurring
in P .

We illustrate by example how parts of our definition correspond
to real SPARQL queries. The following query comes from Wikidata
(“Locations of archaeological sites”, from [32]).
SELECT ?label ?coord ?subj
WHERE
{ ?subj wdt:P31/wdt:P279* wd:Q839954 .
?subj wdt:P625 ?coord .
?subj rdfs:label ?label FILTER(lang(?label)="en") }

The query uses the property path wdt:P31/wdt:P279*, the literal
wd:Q839954, and the triple pattern ?subj wdt:P625 ?coord. It also
uses a filter constraint. In SPARQL, the And operator is denoted by
a dot (and is sometimes implicit in alternative, even more succinct
syntax).

4 QUERY SIZES AND OTHER COUNTING
MEASURES

We report in Figure 1 the distribution of length of the queries in
terms of the number of their triples. Contrarily to other triple count
distributions reported in previous studies, we explicitly focus here
on triple counts that include property paths. The reason is that a
property path pattern of the form ?x wdt:P31/wdt:P279 ?y is
a shorthand notation for two triples and we feel that it should be
considered as such.We therefore count property path patterns as fol-
lows. Let pp be a property path encoded as a regular expression. We
say that the size of pp is the number of alphabet symbols in the reg-
ular expression. For example, the property path wdt:P279/wdt:P279
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Figure 1: Percentages of queries with corresponding sizes
(number of triples plus sizes of property paths) for each
dataset — Valid (left) versus Unique (right). The sizes are re-
ported on the left-hand side and range from 0 to ≥ 11.

has size two. The query illustrated in Section 3 contains two triples
of size one and one triple of size two 7.

We analyzed here the triples and property paths inside the Select,
Ask, and Construct clauses and explicitly exclude the queries with
a Describe clause, as discussed in Section 2. The results for the
four data sets can be found in Figure 1. Here, each bar is split in
two, where the left side represents the Valid and the right side the
Unique version of each data set.

The conclusions of this specific analysis are similar to those
made in previous work [8, 21], assessing that user queries are more
diverse than robotic ones. Nevertheless, the triple count distribu-
tions shown in Figure 1 shows the breakdown in terms of the other
dimensions considered in our analysis, encompassing the valid
and unique queries and the OK and timeout queries. The timeout
queries for instance show a relatively higher complexity in terms
of number of triples than the OK ones, and this observation also
applies to RoboticTO queries, that are thus quite different from
RoboticOK queries. This seems to suggest that timeout queries are
queries that failed because of a higher number of triples, which
could be interesting to consider in graph query evaluation and
optimization studies. The information about the average number
of triples confirmed this, since Valid queries have on average 2.58
(2.65) triples, whereas timeout queries have 5.65 (5.94) triples. As a
side remark, the highest number of triples that we observed is in
the RoboticOK Valid logs and is equal to 67, which was found in
68 queries (in 34 queries in the RoboticOK Valid logs, respectively).
The largest size of a property path triple was 19.
Number of Constants and Variables. Counting the number of
triples is only one possible measure of the complexity of a query.
We enrich this analysis by considering further characteristics of
the triples, i.e., whether the triples contain variables or constants.
This information is useful for the shape analysis that we conduct in
Section 6, in which we show actual differentiations in the obtained
shapes by removing or including the constants. We only count the

7Notice that the query size computed as described above even with Kleene-star (‘*’)
and transitive closure operators (‘+’) does not depend on the length of the actual paths
in the graph instance when evaluating the query.

Figure 1: Percentages of queries with corresponding sizes
(number of triples plus sizes of property paths) for each
dataset — Valid (left) versus Unique (right). The sizes are re-
ported on the right-hand side and range from 0 to ≥ 11.

encoded as a regular expression. We say that the size of pp is the
number of alphabet symbols in the regular expression. For example,
the property paths wdt:P279/wdt:P279 and wdt:P279/wdt:P279*
have size two. The query illustrated in Section 3 has size four: it
contains two triples of size one and one triple of size two.7

We analyzed the triples and property paths inside the Select,
Ask, and Construct clauses and explicitly exclude the queries with
a Describe clause, as discussed in Section 2. The results for the
four data sets can be found in Figure 1. Here, each bar is split in
two, where the left side represents the Valid and the right side the
Unique version of each data set.

The conclusions of this specific analysis are similar to those
made in previous work [7, 20], assessing that user queries are more
diverse than robotic ones. Nevertheless, the triple count distribu-
tions shown in Figure 1 shows the breakdown in terms of the other
dimensions considered in our analysis, encompassing the valid
and unique queries and the OK and timeout queries. The timeout
queries for instance show a relatively higher complexity in terms
of number of triples than the OK ones, and this observation also
applies to RoboticTO queries, that are thus quite different from
RoboticOK queries. This seems to suggest that timeout queries are
queries that failed because of a higher number of triples, which
could be interesting to consider in graph query evaluation and
optimization studies. The information about the average number
of triples confirmed this, since Valid queries have on average 2.58
(2.65) triples, whereas timeout queries have 5.65 (5.94) triples. As a
side remark, the highest number of triples that we observed is in
the RoboticOK Valid logs and is equal to 67, which was found in
68 queries (in 34 queries in the RoboticOK Valid logs, respectively).
The largest size of a property path triple was 19.
Number of Constants and Variables. Counting the number of
triples is only one possible measure of the complexity of a query.
We enrich this analysis by considering further characteristics of

7Notice that the query size computed as described above even with Kleene-star (‘*’)
and transitive closure operators (‘+’) does not depend on the length of the actual paths
in the graph instance when evaluating the query.
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Table 3: Number of constants and variables in the triples
(Unique logs)

# Const # Organic # Robotic # Vars # Organic # Robotic

0–9 239,003 33,485,122 0–9 255,383 33,654,282
10–19 21,307 480,936 10–19 3,999 423,415
20–32 153 393,430 20–27 1,081 281,791

the triples, i.e., whether the triples contain variables or constants.
This information is useful for the shape analysis that we conduct in
Section 6, in which we show actual differentiations in the obtained
shapes by removing or including the constants. We only count the
number of distinct variables and constants in these experiments.
Table 3 reports the numbers of constants and variables by intervals
in the Unique OrganicOK and RoboticOK logs.

Precisely, we counted the number of different variables (different
constants, respectively) of each query in the logs and reported the
total number of queries that have this number. For conciseness, we
aggregate these numbers into intervals in Table 3. We can observe
that for numbers of constants and variables greater than 11, the
queries with these numbers of constants are more abundant than
queries with these numbers of variables.
Usage of Wikidata Properties.We then analyzed the organicOK
Unique query logs in order to get a feel of the usage of differentWiki-
data properties (P856, P31,. . . ) appearing in the queries. The total
number of properties found in these logs are 881,490. These are di-
vided into two major namespaces at a top level: www.wikidata.org
(805,196), and www.w3.org (70,829). We report in Figure 2 a sun-
burst diagram showing the segmentation of theWikidata properties
inside the largest top-level namespace qualifier www.wikidata.org.
In order to avoid clutter and for ease of presentation in the paper,
we have solely annotated the sunburst with the properties whose
occurrences are above a given threshold (6,000). More views about
the sunburst including the other top-level properties and with com-
plete information about all the number of occurrences, is available
via an interactive version of the diagram [29]. Hovering over the
various segments of the rings provides the information omitted
here in order to avoid clutter in Figure 2.
Subqueries and Projection. Roughly 1% of the queries in the
Unique Logs use subqueries. This number goes down to 0.37% for
the corresponding subqueries in the Valid logs.

We also ran a test for mining the number of queries that use
projection. Projection is a cause of complexity increase of query
evaluation for CQ queries, that goes from NP-complete is projec-
tion is present to PTIME if projection is absent [5, 18]. Similarly to
[9] we use the test for projection in Section 18.2.1 in the SPARQL
1.1 recommendation [15]. Out of the valid queries from Table 2,
we found 25,569,947 (12.28%) queries that use projection.8 Out of
the valid Organic queries as reported in Table 2, the amount of
queries with projection even rises to 28.85%. These percentages
become 18.01% and 28.05% for the unique valid andOrganic queries,
respectively. In particular, they are much higher than the 13.12% Se-
lect/Ask queries found within the Unique query logs of the DBpedia
corpus in [9].

8This is a lower bound, since our test is sound but incomplete.
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Figure 2: Sunburst distribution of the property qualifiers in
Wikidata queries (UniqueOrganicOK query logs.). An inter-
active version is available online at [29].

5 PROPERTY PATH ANALYSIS
Overall, 49,971,258 (13,480,433) queries in our logs use property
paths, which amounts to a total of 24.03% (38.94%) of the entire
logs. In these queries, we found 165,343 (82,764) property paths in
organic queries and 55,168,101 (14,106,489) in robotic ones. (Notice
that the same query can contain multiple property paths.) This
massive corpus of property paths is the first encountered so far,
and significantly (57x) greater than the one found in a large corpus
in [9] featuring only 247,404 property paths.

Both organic and robotic property path corpuses are interesting
for an analytical study and deserve a deeper inspection in order to
classify the occurring path expressions into distinct types. Indeed,
when we looked at the structure of these path expressions, we found
234 different types of organic expressions, compared to only 64
types of robotic expressions. Such a thorough classification revealed
the different characteristics of the organic property paths with
respect to the robotic ones, as the former exhibit more variety and
heterogeneity than the latter despite their lower occurrences. Here,
the type of a property path is obtained as follows. We replace each
variable or IRI by letters from the alphabet in increasing order. (If a
variable or IRI is repeated in the property path, we replace it by the
same alphabet letter.) For example, wdt:P31∗/wdt:P279∗ is of the
type a∗b∗ and wdt:P31/wdt:P31∗/wdt:P279∗ is of the type aa∗b∗.
Robotic Property Paths. Table 4 contains a summary of the most
common types of property paths in robotic queries. The columns
with “V” represent results for the Valid queries, and the columns
with “U” for the Unique queries. For succinctness, we aggregated
different types together. For example, we aggregated each type
with its reverse type. For instance, the row for ab∗ also contains the
expressions of the form a∗b. Furthermore, we treated â (“follow
an a-edge in reverse direction”) the same as a single label.9 Finally,
we also grouped disjunctions together, denoted by capital letters.
In Table 4, a capital letter A denotes a subexpression that matches

9The operator ˆ is used in 0.80% (1.10%) of robotic and 2.03% (3.18%) of organic queries.
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Table 4: Structure of property paths for all robotic queries

Expression Type AbsoluteV RelativeV AbsoluteU RelativeU

a∗ 27,850,487 50.48% 1,392,865 9.87%
ab∗ , a+ 9,417,166 17.07% 2,816,134 19.96%
ab∗c∗ 823,153 1.49% 67,502 0.48%
A∗ 328,895 0.60% 51,860 0.37%
ab∗c 122,286 0.22% 1,680 0.01%
a∗b∗ 62,784 0.11% 608
abc∗ 27,287 0.05% 4,083 0.03%
a?b∗ 15,893 0.03% 11,999 0.09%
A+ 4,674 0.01% 2,043 0.01%
Ab∗ 1,562 674

Other transitive 1,643 161

a1 · · · ak 13,382,005 24.26% 9,368,442 66.41%
A 3,043,725 5.52% 381,434 2.70%
A? 31,150 0.06% 296

a1a2? · · · ak ? 25,872 0.05% 5,940 0.04%
â 21,202 0.04% 471

abc? 7,620 0.01% 8
Other non-transitive 697 289

Total 55,168,101 100% 14,106,489 100%

a disjunction of at least two symbols. Empirically, an A either de-
notes an expression of the form !a, (a |!a), or a disjunction of the
form (a1 | · · · |ak ) with k > 1. We divided Table 4 into transitive
expressions (top) and non-transitive expressions (bottom). Transitive
expressions are those that match arbitrarily long paths (i.e., they
use the operators ∗ or +). The empty cells represent values that
round down to 0.00%.

Interestingly, we see significant differences between the numbers
of expressions in the valid and in the unique sets. Whereas the type
a∗ accounts for 50.48% of the expressions in the valid data set, this
drops to 9.87% in the unique set. On the other hand, concatenations
of symbols (type a1 · · ·ak ) represent 24.26% in the valid queries,
but over 66% in the unique queries. To further understand this phe-
nomenon, we focused on the valid RoboticOK and OrganicOK and
computed the most popular 20 queries containing a property path
with Kleene-star. The top most popular robotic query with prop-
erty paths (having 281, 096 occurrences) belong to the second most
occurring type in Table 4 since it contains a single path expression
of the kind wdt:P31/wdt:P279∗. The query is in fact a conjunctive
regular path query. 10
Organic Property Paths. Table 5 contains results on the Organic
datasets. Since we had 234 different types of expressions, we needed
to aggregate more aggressively to make the results presentable. We
grouped the types into 41 different categories, from which we omit-
ted some in the table due to space restrictions. The main difference
with Table 4 is that we also allow a capital letter to denote a single
symbol. So, A can denote expressions equivalent to a, (a1 | · · · |ak ),
!a, or (!a |a). The other difference is that we grouped the types (ab)∗
and a(bc )∗ together in the type ∼(ab)∗. These expressions stand
out from the rest, since they are the only type of transitive expres-
sions we found that put length constraints on arbitrarily long paths.
Indeed, all other transitive expressions allow paths of arbitrary
length, once the length exceeds a certain value. This is not the case
for (ab)∗, since it only allows paths of even length.

10By looking at the top most popular organic query (with 1, 778 occurrences), we
noticed that it belongs to the first most occurring type in Table 5 and exhibits the same
single path expression. As a side remark, we can notice that the latter query is fairly
more complex and uses Union, Filter, Bind, and Service clauses.

Table 5: Structure of property paths for all organic queries

Expression Type AbsoluteV RelativeV AbsoluteU RelativeU

AB∗ 57,913 35.03% 28,034 33.87%
A∗ 41,777 25.27% 22,071 26.67%

ABC∗ 6,497 3.93% 3,044 3.68%
a∗b∗ 3,330 2.01% 849 1.03%
ab∗c∗ 2,704 1.64% 1,172 1.42%

a∗B1?b2? · · ·bk ? 1,789 1.08% 422 0.51%
ab |c∗d 1,514 0.92% 534 0.65%
a∗ |b∗ 347 0.21% 253 0.31%
abCD∗ 283 0.17% 219 0.26%
ab∗c 113 0.07% 90 0.11%
a∗ |B 102 0.06% 76 0.09%
∼ (ab )∗ 101 0.06% 82 0.10%
ab∗c∗d 86 0.05% 72 0.09%
ab∗ |c 70 0.04% 59 0.07%
a∗b?c 56 0.03% 27 0.03%
a∗b∗c∗ 32 0.02% 28 0.03%

ab∗ |b+a∗ 16 0.01% 12 0.01%
ab+c 13 0.01% 12 0.01%

ab∗ |cd∗ 13 0.01% 12 0.01%
a∗bc∗ 11 0.01% 11 0.01%

Other transitive 22 0.01% 20 0.02%

A1a2 · · · ak 31,032 18.77% 15,754 19.03%
A 13,248 8.01% 7,592 9.17%

a1? · · · ak ? 1,938 1.17% 1,470 1.78%
A? 1,178 0.71% 302 0.36%

ab1? · · ·bk ? 1,117 0.68% 529 0.64%
ab |c 27 0.02% 5 0.01%

Other non-transitive 14 0.01% 13 0.02%

total 165,343 100.00% 82,764 100.00%

Here, the percentages in the unique sets are quite similar to those
in the valid sets. The Organic queries generally contain more chal-
lenging property paths to evaluate. On average, organic property
paths are also larger than robotic ones. They contain 2.07 (2.01)
literals on average, whereas robotic property paths only contain
1.49 (1.89) literals on average. There were even expression types
which occurred more often in the TO (timeout) logs than in the OK
logs, such as ∼(ab)∗. This is interesting, because such expressions
are known to be complex (NP-complete) to evaluate under simple
path semantics [3].
Additional Insights onWikidata Property Paths.We conclude
the section with a discussion of the differences between Tables 4
and 5 and the results of the property path analysis by Bonifati
et al. [9]. The remarkable difference between the present study
and the former (which was done on a corpus mainly consisting
of DBPedia queries) is that here, a much larger fraction of the
queries use property paths. This is probably due to the peculiar
characteristics of the Wikidata data. Property paths are often used
in queries performing class navigation in Wikidata and emulating
ontological reasoning. Wikidata has relatively long paths in the
data that are labeled with the same label (and that are popular to
query, e.g., InstanceOf paths), whereas DBpedia has comparably
shorter paths and is more flat.

The remarkable similarity, however, is in the structure of the
property paths. Martens and Trautner [21] defined the class of
simple transitive expressions, which are syntactically very restricted,
but covered over 99% of the property paths in the corpus of Bonifati
et al. [9]. In our corpus, 1.61% (0.48%) of the robotic and 3.83% (2.72%)
of the organic property paths are not simple transitive expressions.
The most significant reason why property paths fall out of this
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wd:Q9068 ?var1 ?var2?var3 wdt:P19 wdt:P17wdt:P106

Figure 3: Visualization of a query as a graph

fragment is the use of a∗b∗ as a subexpression, whereas simple
transitive expressions only use one subexpression with Kleene star.

Furthermore, all property paths except 198 (98) are in Ctract,
which is a broader class introduced by Bagan et al. [3] and which
precisely characterizes the set of regular expressions for which the
data complexity under simple path semantics is tractable if P , NP.

6 STRUCTURAL ANALYSIS AND RECURSIVE
PROPERTIES

Consider the following query, which searches the occupations
(P106) of Voltaire (Q9068), and returns the place (P19) and country
(P17) of birth.

SELECT * WHERE { wd:Q9068 wdt:P19 ?var1 . ?var1 wdt:P17 ?var2
. wd:Q9068 wdt:P106 ?var3 }

This query can be visualized as a graph, see Figure 3. Answering
the query essentially boils down to matching this graph in the data
and returning answers for each such match.

This query is an example of a conjunctive query, i.e., a query
that only uses the And operator. For conjunctive queries, there
is an extensive body of research that correlates the shape of the
graph with the complexity of their evaluation problem (see, e.g.,
[10, 13, 17, 33]). In particular, cycles in the graph play a major role.
In general, conjunctive query evaluation is well known to be NP-
complete. On an intuitive level, the reason is that, if a conjunctive
query has the shape of a k-clique (which is heavily cyclic), deciding
if it returns a non-empty result is equivalent to deciding if the data
has a k-clique, which is NP-complete. On the other hand, using
Yannakakis’ algorithm, we can evaluate acyclic conjunctive queries
in polynomial time [33].

It is known that even a single cycle can have a significant impact
on the run-time of queries [9, 16]. Therefore, for queries that behave
similar to conjunctive queries, the shape of their graph is important
for understanding their complexity. Furthermore, it gives useful
insights on the structure of real queries.

In the following, we will define the graph shape of several kinds
of queries. We focus exclusively on queries that behave similar
to conjunctive queries and for which the cyclicity of the graph
shape correlates with the complexity of the evaluation. We start
by considering conjunctive queries and add other operators one by
one.

Bonifati et al. [9] performed a graph shape analysis on the queries
in their corpus, but the corpus does not provide much insight for
Wikidata, because it only included 308 Wikidata queries. Further-
more, they only considered shapes of conjunctive queries, extended
with (safe use of) Filter and Optional.11 Since only 25.89% (42.48%)

11By safe use we refer to the use of these operators so that the queries still behave
similar to conjunctive queries.

of our robotic and 17.89% (21.15%) of our organic queries are eligible
for such an analysis, we extended the analysis to incorporate (the
safe use of) four extra features: property paths, Bind, Values, and
Service. By doing so, we were able to make the analysis applicable
to 2 to 3 times more queries in every fragment, that is, 85.22% (88.39%)
of the robotic and 51.50% (65.22%) of the organic queries. Notice that
the queries thereby obtained are not merely subsets of the queries
that use a given set of keywords. This obviously implies that the
shape test is more sophisticated than the keyword test. We explain
how we deal with each keyword separately in Sections 6.2–6.4.

6.1 Graph Patterns and Canonical Graphs
In the following we want to define the graphs of different types of
queries. These graphs will be undirected, that is, G = (V ,E) where
V is its (finite) set of nodes and E is its set of edges, where an edge
e is a set of one or two nodes, i.e., e ⊆ V and |e | = 1 or |e | = 2.

We need to determine which queries can be adequately repre-
sented as graphs. Since graphs are node pairs and SPARQL queries
have triple patterns, we need to be careful with the use of vari-
ables in the predicate position. In our corpus, 91.68% (96.43%) of
the queries only use triple patterns (s,p,o) where p is an IRI, so
these queries can be adequately represented as graphs. We also
allow p ∈ Vars if p is not used elsewhere in the query (in this case,
p serves as a wildcard, possibly binding to a value that is returned
to the output.). We call such patterns graph patterns.

The canonical graph of a graph pattern P is the graph GP =

(VP ,EP ) with EP = {{x ,y} | (x , ℓ,y) is a triple pattern in P and
ℓ ∈ I ∪V} and VP = {x | (x , ℓ,y) ∈ EP or (y, ℓ,x ) ∈ EP }.

6.2 Conjunctive Queries
Conjunctive queries are the basic building blocks of our shape
analysis. In the context of SPARQL, we define them as follows.

Definition 6.1. A conjunctive query (CQ) is a SPARQL pattern
that only uses the triple patterns and the operator And.

In our corpus, 20.88% (33.69%) of the queries are CQs, which
is quite low compared to the study of Bonifati et al. [9]. Part of
the reason is that Wikidata queries extensively use Service, most
commonly for Wikidata’s labeling service [7]. In our logs, 8.38%
(12.94%) of the queries use Service in some way.

The good news is that 99.97% (99.997%) of the CQs are graph
patterns. We call such CQs eligible for graph shape analysis. We
note that it is also possible to investigate the shape (or cyclicity) of
non-eligible CQs, but we need to consider their hypergraphs, see
Section 7.

The importance of the shape of conjunctive queries becomes
clear in the following result, linking the treewidth (tw) of the query’s
graph to the complexity of query evaluation. The precise definition
of treewidth is not important for the paper but, intuitively, treewidth
measures how close the graph is to a tree. For instance, a tree has
treewidth 1 and a k-clique (which is very cyclic) has treewidth k .
Queries with tw = 1 are also called acyclic.

Theorem 6.2 (cfr. [10, 13, 17]). LetG be a graph andQ an eligible
conjunctive query for which the canonical graph has treewith k . Then
it can be tested in time |G |O (k ) |Q |O (k ) ifQ returns a non-empty result
on G.
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6.3 Adding Filter and Optional
Bonifati et al. [9] investigated the structure of graph patterns that
only use the operators And, Optional, and Filter. In our corpus,
27.72% (44.24%) of the queries are in this fragment. Our extension of
CQs with Filter and Optional is very similar to the one of Bonifati
et al., that is, we focus on well-designed patterns (cf. [25]) with
interface width 1 (cf. [4]). Our main difference is that we now allow
binary filter constraints to be edges in the graph.

6.4 Adding Recursion, Bind, Service, and
Values

Although the previous tests already classify 53,804,198 (14,649,616)
queries to be eligible for graph shape analysis, this is still only
25.87% (42.32%) of our queries. We now discuss how property paths
(recursion), Bind, Service, and Values can be incorporated to in-
crease the number of suitable queries to 177,022,071 (30,540,864),
or 85.11% (88.22%) of the logs.

Property paths are unproblematic. Conjunctive queries extended
with property paths closely correspond to the well known conjunc-
tive two-way regular path queries (C2RPQs), which form a basis of
navigational query languages for graphs. Indeed, property paths
are very closely related to regular path queries and, due to the
ˆ-operator, they can navigate edges in both forward and backward
direction, which makes them two-way. Although there are some
semantical differences between two-way regular path queries and
property paths [1, 15, 19], these differences are not crucial for the
present analysis.

Definition 6.3. A conjunctive two-way regular path query (C2RPQ)
is a SPARQL pattern that only uses triple patterns, the operator
And, and property paths.

Every C2RPQ that is a graph pattern is suitable. The graph of a
C2RPQ P is obtained fromGP by adding the edges {{x ,y} | (x ,pp,y)
is a property path pattern in P } to EP (and adding nodes to VP if
necessary).

Adding Filter and Optional to C2RPQs is analogous to adding
them to CQs. The resulting classes of queries are referred to as
C2RPQF and C2RPQOF. As such, we obtain that 46.03% (76.44%) of
our queries are C2RPQOF queries that are suitable for graph shape
analysis.

Concerning Bind, we follow a similar approach to Filter. We call
a Bind-condition k-ary if it involves k variables. Unary and binary
Bind-conditions are considered to be suitable for graph analysis and
are materialized as edges in the graph. Higher-arity Bind-conditions
are considered in Section 7.

Values-constructs are essentially used to test if a tuple of vari-
ables is in a given set. For instance, the subquery

VALUES (?book ?title)
{ (:book1 "Robin Hood")

(:book2 "Little Red Riding Hood") }

emposes a binary constraint and is satisfied when the pair of vari-
ables (?book, ?title) can be bound to one of the pairs in the body. In
the query corpus, it is used almost exclusively for unary conditions,

that is, to test if the value of a single variable is in a given set of
constants. We therefore also treat Values similar to Filter and Bind.
That is, we call a Values block k-ary if there is a k-ary tuple follow-
ing the Values keyword. Unary and binary Values subqueries are
suitable for graph shape analysis and we extend the graph with an
edge for each binary Values constraint. Again, higher arity Values
conditions are considered in Section 7.

Service is used extensively in Wikidata queries, most commonly
for Wikidata’s labeling service. For this reason, Bielefeldt et al. [7]
ignore the labeling service entirely in their co-occurrence analysis
of SPARQL features. Similarly to before, we say that a Service sub-
query S isk-ary if it containsk variables. All unary or binary Service
subqueries are suitable for graph analysis. When we consider the
graph of patterns with Service, we add edges of the form {x ,y} for
all binary Service subqueries, in which x and y are the variables.
Higher arity Values conditions are considered in Section 7.

By C2RPQ+ we denote the entire fragment that uses And, Op-
tional, Filter, property paths, Bind, Service, and Values and that is
suitable for graph analysis. In total, this amounts to 176,679,495
(30,371,003) robotic and 342,576 (169,861) organic queries, which
make up 85.22% (88.39%) and 51.50% (65.22%) of the robotic and
organic queries, respectively.

6.5 The Set of Shape Analysis Experiments
We have analyzed the graphs of 8 fragments of queries, namely CQ ,
C2RPQ , CQF, C2RPQF, CQOF, C2RPQOF, CQOF+, and C2RPQ+.
All fragments were analyzed across three dimensions: robotic versus
organic, Valid versus Unique, and with constants versus without
constants. In the analyses without constants, we removed all nodes
in the graphs that originated from IRIs or literals.12 Furthermore,
for all fragments, we analyzed the time-out (TO) queries separately
from the others (OK). This results in 64 separate runs of the shape
analysis.

We classified the graphs of queries into the following set of
shapes, inspired by [9]. A chain (of length k) is graph that is iso-
morphic to the undirected graph with edges {x0,x1}, {x1,x2}, . . . ,
{xk−1,xk }. As an edge case, we allow chains of length zero, i.e.,
a single node. A chain set is a graph in which every connected
component is a chain.

A tree is a nonempty undirected graph such that, for every pair
of nodes x and y, there exists exactly one undirected path from
x to y. A forest is a nonempty graph in which every connected
component is a tree.

A star is a tree for which there exists at most one node with
more than two neighbors. Hence, every chain is a star.

We also recall the definition of flowers from Bonifati et al. A petal
is a graph consisting of a source node s , target node t , and a set of
at least two node-disjoint paths from s to t . (For instance, a cycle
is a petal that uses two paths.) A flower is a graph consisting of a
node x with three types of attachments: chains (the stamens), trees
that are not chains (the stems), and petals. Finally, a bouquet is a
graph in which every connected component is a flower.

12We do not have the space to present all these analyses, but we plan to release a full
version on ArXiv as soon as the paper is accepted.
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Table 6: Cumulative shape analysis of nonempty graph patterns in C2RPQ+ across the valid logs

C2RPQ+ with constants / Valid
Shape #Queries Relative % #Queries Relative %

(Organic) (Organic) (Robotic) (Robotic)
node (without edges) 0 0.00% 0 0.00%

chain (length ≤ 1) 107,436 31.48% 125,277,683 71.49%
chain 207,292 60.74% 158,150,895 90.25%
star 290,665 85.17% 171,767,410 98.02%
tree 329,701 96.61% 171,885,247 98.09%

flower 335,271 98.24% 172,070,177 98.19%
chain set 209,540 61.40% 158,723,217 90.57%

forest 333,725 97.79% 172,461,994 98.41%
bouquet 339,440 99.46% 172,646,921 98.52%
tw ≤ 2 341,221 99.98% 175,240,211 100.00%
tw ≤ 3 341,268 100.00% 175,240,228 100.00%
tw ≤ 4 341,274 100.00% 175,240,237 100.00%
total 341,274 100.00% 175,240,237 100.00%

Table 7: Cumulative shape analysis of nonempty graph patterns in C2RPQ+ across the valid logs

C2RPQ+ without constants / Valid
#Queries Relative % #Queries Relative %
(Organic) (Organic) (Robotic) (Robotic)

85,601 25.13% 63,048,127 36.58%
200,597 58.89% 155,126,595 89.99%
259,074 76.06% 163,055,757 94.59%
312,128 91.63% 170,205,746 98.74%
321,914 94.50% 170,243,847 98.76%
323,830 95.07% 170,413,306 98.86%
273,992 80.44% 165,014,582 95.73%
337,730 99.15% 172,203,761 99.90%
339,661 99.71% 172,373,220 100.00%
340,632 100.00% 172,375,717 100.00%
340,632 100.00% 172,375,717 100.00%
340,632 100.00% 172,375,717 100.00%
340,632 100.00% 172,375,717 100.00%

6.6 Shape Classification for C2RPQ+
Due to space constraints, we cannot present our complete shape
analysis, but we will show and discuss the results on the valid
queries in the largest fragment, the C2RPQ+ queries. Furthermore,
we give some insights about how the results change for the other
fragments. The results for the valid C2RPQ+ queries are in Table 6.
We note that some of the queries were empty (0.8% with constants
and 2.44% after removing constants); we did not include them.

In Table 6, we see several trends that we also observed in the
analysis for the other fragments. First of all, in the shapes that
include constants, stars are quite common. In the C2RPQ+ queries,
85.17% (87.13%) of the organic and 98.02% (99.30%) of the robotic
queries are stars. The number of acyclic queries is even larger:
consistently over 99% when constants are absent. As opposed to
valid queries, in the timeout logs, the number of cyclic queries
significantly increases. For organic CQs, for instance, the number

of cyclic queries goes up to about 10%. 13 This number decreases
somehow for more complex query fragments, but is still about
7.5% for the unique C2RPQ+ queries (both organic and robotic)
and around 3%–4% if constants are removed. Together with the
observation from Section 4 that valid queries contain 2.58 triples on
average, whereas valid timeout queries have 5.65 triples on average,
this suggests that cyclicity and query size play an important role in
efficient query evaluation.

The logs strongly confirm a hypothesis that is often stated in
theoretical research: the cyclic queries in practical applications are
onlymildly cyclic, i.e., tw ≤ k for small values of k . This means that
database queries typically do not have large k-cliques encoded in
their shape, but remain tree-like. Indeed, the largest treewidth we
found in the entire logs was four, for which we found 15 (5) queries.

13We omit the exact numbers due to space constraints.
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7 HYPERGRAPH ANALYSIS
Hypergraphs generalize graphs in the sense that they allow more
than two nodes per edge. As such, the queries that were not suit-
able for graph shape analysis in Section 6 because they either went
beyond graph patterns or used Filter, Service, Bind, or Values con-
straints with arity three or more can be considered here. This
amounts to a total of 1,915,550 (1,229,035) CQOF+ queries that
were not yet analysed in Section 6.

We keep the restriction on well-designed Optional constructs
with interface width 1, since for these queries, there still is a cor-
relation between the cyclicity of the hypergraph and complexity
of query evaluation [4]. We do not consider queries with property
paths in the hypergraph analysis.

A hypergraph is a pairH = (V, E) whereV is its finite set of
nodes and E ⊆ 2V is a set of hyperedges. The canonical hypergraph
of a SPARQL pattern P is defined as E = {X | there is a triple pattern
t in P such that X is the set of blank nodes and variables appearing
t } andV is the union of the nodes in the edges in E.

Using the tool detkdecomp [12], we analyzed the hypergraphs
of all CQOF+ queries for which the Optional constructs are well-
designed and have interface width one. Overall, we found 590,005
(273,947) remaining queries with hypertreewidth two. All others
new queries had hypertreewidth one.

8 QUERY SIMILARITY SEARCH
Massive query logs are valuable sources of information as long
as they are made usable for exploration and analysis. In order to
improve the usability of the logs, we designed a query similarity
search facility that will be released with our code and whose prin-
ciples and effectiveness are discussed here. Let us first observe that
string similarity search is not suitable for Wikidata logs since they
have been modified by an anonymization process prior to their
release. Hence, one cannot find a query by simply looking at its
exact original string or a sufficiently approximate version of it, by
applying string edit distance (SED), for instance. So, how can we
enable query similarity search in Wikidata query logs?

Given the differentiations of these logs in terms of the structural
features of the underlying queries as explained in Section 6, we
opted for using the query structure as a yardstick to compare queries
in terms of their similarity. This choice solves several problems
when comparing queries: comments, prefixes, and variable names
do not affect the structure of a query and can be excluded from the
computation of query similarities. Furthermore, the anonymization
of the Wikidata logs renames all variable names to names with
ascending numbers (?var1, ?var2, etc., see Figure 3). Therefore, if a
new variable in the query is placed before other variables, it will
shift the names of all subsequent variables in the anonymized ver-
sion, even though they were unchanged in the original query. This
could potentially lead the similarity engine to believe that a large
modification took place even though it did not. The anonymisation
also removes all prefixes and inlines them, hence the impact of
changing a single IRI could become large depending on the length
of the IRI in case of adoption of a SED measure.

To enable a structural search on Wikidata queries, we translate
the abstract syntax tree (AST) of a query into a tree structure as
follows. Recall the definition of a SPARQL query Q in Section 3

SELECT

⋆ pattern

triple

var P31 Q146

SERV ICE

triple

servicePar lanд ”en”
Figure 4: Abstract Syntax Tree of an example query

as a triple (query-type, pattern P , solution-modifier). The query-
type and the solution-modifier of the query respectively become
the root and a leaf node in the tree (with a value for the latter),
whereas the pattern P is a subtree instantiated as a triple t with three
leaves (⟨s,p,o⟩), or a property path pattern, or a subtree rooted in
And, Filter,Union,Optional,Graph whose respective patterns are
also subtrees, or, recursively, the subtree of a query Q .

Figure 4 exemplifies the translation of the following Wikidata
query from the logs into the AST.

SELECT ?item ?itemLabel WHERE { ?item wdt:P31 wd:Q146.
SERVICE wikibase:label
{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en"}}

Notice that in Figure 4, we ignore the actual instantiation of the
variable ?item by naming it var and we also ignore the variables that
are used in the target list of the Select clause for the same reason.
We also removed the namespace prefixes. We now measure query
similarity by using a tree edit distance (TED) measure. Each node
in the above example is given a weight contributing to the TED.
In particular, in the above AST for the example query, all nodes
have equal weight (= 1 to not introduce bias). Adjustments of the
weights are of course possible targeting a specific user requirement.
The above example AST tree has thus a total weight of 12, this
being the sum of the weight of its nodes. Within the logs, we found
a query almost identical to the above example that only changed
the object wd:Q146 to wd:Q11538. This renaming a single node in
a triple would result in a similarity of 11/12 = 0.92.

Renaming two nodes in a triple would result in a similarity of
0.83. Adding a single triple anywhere, for example, outside the
Service clause, would result in a total weight of 16. Such a change
amounting to a total weight of 4would result in a similarity of 12/16
= 0.75. Conversely, this can be seen as as a removal by starting with
a tree exhibiting the additional triple and deleting it.

As for the implementation of the TED algorithm, we opted for an
available implementation of the APTED algorithm [23, 24], because
the implementation was easy to embed into our software, offered
the option to use different weights for nodes, and yielded good
performance results in our tests.

To calculate the similarity between an initial query Q and a new
query Q2, we take the size of the largest AST and divide it with
the calculated TED. We invert this value by subtracting it from
1.0 in order to measure similarity instead of dissimilarity. When
collecting matches in a collection of queries (within the same log
file), we used a minimum threshold of 0.75. A threshold of 0.5 would
mean that two queries are equally similar and dissimilar, so the
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SELECT

⋆ pattern

triple

var P31 Q146

SERV ICE

triple

servicePar lanд ”en”
Figure 4: Abstract Syntax Tree of an example query

as a triple (query-type, pattern P , solution-modifier). The query-
type and the solution-modifier of the query respectively become
the root and a leaf node in the tree (with a value for the latter),
whereas the pattern P is a subtree instantiated as a triple t with three
leaves (⟨s,p,o⟩), or a property path pattern, or a subtree rooted in
And, Filter,Union,Optional,Graph whose respective patterns are
also subtrees, or, recursively, the subtree of a query Q .

Figure 4 exemplifies the translation of the following Wikidata
query from the logs into the AST.
SELECT ?item ?itemLabel WHERE { ?item wdt:P31 wd:Q146.
SERVICE wikibase:label
{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en"}}

Notice that in Figure 4, we ignore the actual instantiation of the
variable ?item by naming it var and we also ignore the variables that
are used in the target list of the Select clause for the same reason.
We also removed the namespace prefixes. We now measure query
similarity by using a tree edit distance (TED) measure. Each node
in the above example is given a weight contributing to the TED.
In particular, in the above AST for the example query, all nodes
have equal weight (= 1 to not introduce bias). Adjustments of the
weights are of course possible targeting a specific user requirement.
The above example AST tree has thus a total weight of 12, this
being the sum of the weight of its nodes. Within the logs, we found
a query almost identical to the above example that only changed
the object wd:Q146 to wd:Q11538. This renaming a single node in
a triple would result in a similarity of 11/12 = 0.92.

Renaming two nodes in a triple would result in a similarity of
0.83. Adding a single triple anywhere, for example, outside the
Service clause, would result in a total weight of 16. Such a change
amounting to a total weight of 4would result in a similarity of 12/16
= 0.75. Conversely, this can be seen as as a removal by starting with
a tree exhibiting the additional triple and deleting it.

As for the implementation of the TED algorithm, we opted for an
available implementation of the APTED algorithm [24, 25], because
the implementation was easy to embed into our software, offered
the option to use different weights for nodes, and yielded good
performance results in our tests.

To calculate the similarity between an initial query Q and a new
query Q2, we take the size of the largest AST and divide it with
the calculated TED. We invert this value by subtracting it from
1.0 in order to measure similarity instead of dissimilarity. When
collecting matches in a collection of queries (within the same log
file), we used a minimum threshold of 0.75. A threshold of 0.5 would
mean that two queries are equally similar and dissimilar, so the
step to 0.75 is right in the middle between this and being classified
as identical (which corresponds to similarity equal to 1). Based on
manually inspecting samples, the threshold of 0.75 already seemed
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Figure 5: Number of queries that exhibit a similarity degree
between 75% and 100%.

to be rather lenient, and our method based on TED yielded more
predictable results for us than another method we experimented
with based on SED. For example, a typical Wikidata entity has a
string length of about 36. Even if all triples are changing, this can
result in almost a 0.9 string similarity for the entire query, because
the prefixes of entities are always the same.

In order to measure the structural similarity of Wikidata queries,
we focused on the OrganicOK query logs by considering their
Unique version only.13 Since we needed seed queries for which we
want to find similar queries, we considered the well known set of
online Wikidata examples from [32]. We extracted14 356 out of the
available 412 queries, which were the ones that could be parsed by
Jena. It turns out that matches for most online example queries are
found in the Wikidata logs analysed in our paper. Only 28 queries
could not be matched, while the rest had at least one match above
the threshold of 0.75.

Figure 5 shows in logscale the number of similar queries that we
found in theOrganicOKUnique query logs in the order of ascending
similarity. We can observe some outliers in several buckets in the
scatterplot, showing that these queries have higher number of
similar counterparts with respect to their pairs in the same bucket.
The entire log could be scanned for the similarity search quite
efficiently in less than 20 mins (without any optimization.)

9 RELATEDWORK
Several empirical studies of SPARQL query logs have been con-
ducted in the literature investigating statistical features, such as
such as occurrences of triple patterns and types of queries [3,
15, 23, 29] along with recent studies on more complex features
of the queries, such as structural features and complexity of the
queries [10, 27]. However, the analysis of Wikidata queries has been
limited in the past due to their unavailability. Bonifati et al. [10] only
focused on the online 308 Wikidata queries in their large corpus
and, more recently, Malyshev et al. [21] and Bielefeld et al. [8] were
the first to analyze a massive collection of Wikidata queries. Maly-
shev et al. first introduced theWikidata SPARQL serviceWDQS and
analyzed basic characteristics of Wikidata queries related to their
usage in this service spanning from SPARQL feature prevalence
and correlation to annotations and language distributions. They

13The same analysis can be applied to the other logs but is probably less interesting
for the present discussion.
14On August 23, 2018. Jena version same as in Section 2.
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step to 0.75 is right in the middle between this and being classified
as identical (which corresponds to similarity equal to 1). Based on
manually inspecting samples, the threshold of 0.75 already seemed
to be rather lenient, and our method based on TED yielded more
predictable results for us than another method we experimented
with based on SED. For example, a typical Wikidata entity has a
string length of about 36. Even if all triples are changing, this can
result in almost a 0.9 string similarity for the entire query, because
the prefixes of entities are always the same.

In order to measure the structural similarity of Wikidata queries,
we focused on the OrganicOK query logs by considering their
Unique version only.14 Since we needed seed queries for which we
want to find similar queries, we considered the well known set of
online Wikidata examples from [32]. We extracted15 356 out of the
available 412 queries, which were the ones that could be parsed by
Jena. It turns out that matches for most online example queries are
found in the Wikidata logs analysed in our paper. Only 28 queries
could not be matched, while the rest had at least one match above
the threshold of 0.75.

Figure 5 shows in logscale the number of similar queries that we
found in theOrganicOKUnique query logs in the order of ascending
similarity. We can observe some outliers in several buckets in the
scatterplot, showing that these queries have higher number of
similar counterparts with respect to their pairs in the same bucket.
The entire log could be scanned for the similarity search quite
efficiently in less than 20 mins (without any optimization.)

9 RELATEDWORK
Several empirical studies of SPARQL query logs have been con-
ducted in the literature investigating statistical features, such as
such as occurrences of triple patterns and types of queries [2,
14, 22, 28] along with recent studies on more complex features
of the queries, such as structural features and complexity of the
queries [9, 26]. However, the analysis of Wikidata queries has been
limited in the past due to their unavailability. Bonifati et al. [9] only
focused on the online 308 Wikidata queries in their large corpus
and, more recently, Malyshev et al. [20] and Bielefeld et al. [7] were
the first to analyze a massive collection of Wikidata queries. Maly-
shev et al. first introduced theWikidata SPARQL serviceWDQS and

14The same analysis can be applied to the other logs but is probably less interesting
for the present discussion.
15On August 23, 2018. Jena version same as in Section 2.

analyzed basic characteristics of Wikidata queries related to their
usage in this service spanning from SPARQL feature prevalence
and correlation to annotations and language distributions. They
also isolated the robotic and organic queries, on whose classifica-
tion we rely in this paper (modulo a small correction highlighted
in Section 2). This classification considered as organic the queries
issued by a browser and robotic the remaining queries. They further
corrected the first number by identifying high-volume traffic from
a single source (more than 2,000 entries), in which case the queries
would be considered as machine-generated. They also identified the
C2RPQs fragment, i.e. the largest fragment encountered so far of
conjunctive 2-way regular path queries on which we focus in this
paper for an in-depth analysis. To the best of our knowledge, the
latter is the largest fragment of recursive graph queries available
to our community. In this paper, we address the first large-scale
structural analysis of this gigantic query collection and articulate
it as follows. We provide a structural classification of real-world
property paths, on the first large set of property paths relevant for
Wikidata, and 57x larger than the set considered mainly for DBpe-
dia in Bonifati et al. [9]. We also investigate the shape of C2RPQs,
which could not be possible with the classification for only con-
junctive queries (CQs) in Bonifati et al. [9]. The occurrences of
property paths in the latter corpus is negligible with respect to the
size of the C2RPQ fragment considered in our work (smaller by
two orders of magnitude).

10 CONCLUSIONS AND LESSONS LEARNED
We have presented an in-depth analysis of the recently released
Wikidata query logs and highlighted the presence of their most
prominent query fragment, i.e.C2RPQs. This fragment corresponds
to highly complex recursive queries with joins and property paths.
Apart from simple counting measures on this fragment, we have
focused on tailoring property path analysis and shape analysis to
these queries, whereas previous work merely looked at conjunctive
queries (CQs) in DBpedia logs [9]. Even though we agree with
Bielefeldt et al. [7] on the difficulty of obtaining stable observations
from these query logs due to massive presence of robotic traffic,
we discovered several similarities, like low hypertreewidth and
structure of property paths seem to be relatively consistent between
the present study and previous work.

But what about the distinguishing features of these logs com-
pared to previous logs and the findings that were possible on this
newly discovered fragment, i.e. C2RPQs? Entirely new observa-
tions were made across the distinction in terms of Valid and Unique
logs, further segmented into RoboticOK and OrganicOK, the ad-
dition of timeout logs never analysed before, which led us to add
interesting dimensions to the analysis.

We now revisit the research questions posed at the end of Sec-
tion 1 and we succinctly report the main findings of our analysis
for those questions. About the distributions of sizes, we found out
that the RoboticOK queries are less skewed in terms of sizes than
the OrganicOK queries and this also applies to OrganicTO and
RoboticTO queries, that are also inherently more complex in terms
of sizes than the RoboticOK plus OrganicOK queries.
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Next, property paths occur in these logs 57x more than in pre-
viously analyzed logs, which made us focus on the most represen-
tative query fragment C2RPQs. We noticed that a bigger variety
of property path classes again occurs with Organic queries com-
pared to Robotic queries. Still, we see that almost all property paths
match paths of any possible length once a certain minimum length
is exceeded. (Typical such expressions are ab∗ or ab∗c .) Expressions
that do not satisfy this property, like (ab)∗, appear as well, but are
less prominent. In fact, the most occurring types of property paths
found were similar to those found in an earlier study [9], which may
allow us to identify subclasses of expressions that are important in
practice. Such a discovery might spur interesting query processing
and query optimization questions around C2RPQs, which were not
addressed for the much simpler fragments of CQs. For instance,
landmarking indexes have been introduced for one of the promi-
nent classes of Robotic queries (A∗) in Valstar et al. [30], but also
the other prominent classes need attention when designing indexes
for C2RPQs.

In our analysis, we also addressed the question on the promi-
nence of CQs and C2RPQs in these logs compared to other logs,
thus bringing to the surface the most occurring recursive fragment
of C2RPQs enriched with And, Optional, Filter, Bind, Service and
Values (C2RPQ+). We ran a shape classification with and without
constants for several fragments ranging between the class of CQs
and C2RPQ+ by considering/excluding constants. Here, we see that
star shapes and tree-like queries are very common. The shape anal-
ysis with or without constants also led us to identify shifts in the
shape classes due to removal of constants that are worth looking
at. For instance, if we remove constants from the graph shape of
queries in the logs, many (25% organic and 36% robotic) disintegrate
to a single node. Constants have been disregarded in the study of
C2RPQs, where indexing techniques have mainly considered the
labeled paths as key index terms. The combination of indexing
techniques looking at constants and labeled paths could thus be
a direction to pursue in future studies on indexing structures and
index maintenance for these queries [8]. The timeout queries are
also interesting because they are on average larger in size and more
cyclic than the valid queries.

Concerning treewidth and hypertreewidth, the logs strongly
confirm a hypothesis that is often stated in theoretical research: the
cyclic queries in practical applications are only mildly cyclic. This
means that database queries typically do not have large k-cliques
encoded in their shape, but remain tree-like. This observation is in
line with the data from a previous study [9].

Next, a novel Wikidata-specific query similarity search allows
to efficiently navigate the query logs starting from an initial query
that the user has at her disposal. This search improves the usability
of the Wikidata query logs for both recursive and non-recursive
queries and is valuable for identifying subsets of similar queries on
which further assessment is possible.

After pre-processing, i.e., computing the Valid and Unique data
sets, our entire analysis (except query similarity search, whose
performance has been separately measured) takes 12 hours on a 24
core machine with a 2.6 GHz CPU and 128 GB RAM.

We believe that isolating complex query fragments and studying
suitable sophisticated metrics is valuable for the community and
may lead to further studies and assessment of these logs. We believe

that this work can serve as a basis for researchers to find further
interesting fragments of queries to study; we report what we see
in the logs. However, one should always keep in mind that we are
looking at specific query logs. It cannot be concluded from this study
that a given fragment, operator, or type of query is not interesting
to study.
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