Querying Graphs

Synthesis Lectures on Data
Management

Editor
H.V. Jagadish, University of Michigan

Founding Editor
M. Tamer Ozsu, University of Waterloo

Synthesis Lectures on Data Management is edited by H.V. Jagadish of the University of Michigan.
'The series publishes 80-150 page publications on topics pertaining to data management. Topics
include query languages, database system architectures, transaction management, data
warehousing, XML and databases, data stream systems, wide scale data distribution, multimedia
data management, data mining, and related subjects.

Querying Graphs
Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets
2018

Query Processing over Incomplete Databases
Yunjun Gao and Xiaoye Miao
2018

Natural Language Data Management and Interfaces
Yunyao Li and Davood Rafiei
2018

Human Interaction with Graphs: A Visual Querying Perspective
Sourav S. Bhowmick, Byron Choi, and Chengkai Li
2018

On Uncertain Graphs
Arijit Khan, Yuan Ye, and Lei Chen
2018

Answering Queries Using Views
Foto Afrati and Rada Chirkova
2017

iv

Databases on Modern Hardware: How to Stop Underutilization and Love Multicores
Anatasia Ailamaki, Erieta Liarou, Pinar T6ziin, Danica Porobic, and Iraklis Psaroudakis

2017

Instant Recovery with Write-Ahead Logging: Page Repair, System Restart, Media
Restore, and System Failover, Second Edition

Goetz Graefe, Wey Guy, and Caetano Sauer
2016

Generating Plans from Proofs: The Interpolation-based Approach to Query
Reformulation

Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura

2016

Veracity of Data: From Truth Discovery Computation Algorithms to Models of
Misinformation Dynamics

Laure Berti-Equille and Javier Borge-Holthoefer
2015

Datalog and Logic Databases

Sergio Greco and Cristina Molinaro
2015

Big Data Integration

Xin Luna Dong and Divesh Srivastava
2015

Instant Recovery with Write-Ahead Logging: Page Repair, System Restart, and Media
Restore

Goetz Graefe, Wey Guy, and Caetano Sauer
2014

Similarity Joins in Relational Database Systems
Nikolaus Augsten and Michael H. Bohlen
2013

Information and Influence Propagation in Social Networks
Wei Chen, Laks V.S. Lakshmanan, and Carlos Castillo
2013

Data Cleaning: A Practical Perspective
Venkatesh Ganti and Anish Das Sarma
2013

Data Processing on FPGAs
Jens Teubner and Louis Woods
2013

Perspectives on Business Intelligence

Raymond T. Ng, Patricia C. Arocena, Denilson Barbosa, Giuseppe Carenini, Luiz Gomes, Jr.,
Stephan Jou, Rock Anthony Leung, Evangelos Milios, Renée J. Miller, John Mylopoulos, Rachel
A. Pottinger, Frank Tompa, and Eric Yu

2013

Semantics Empowered Web 3.0: Managing Enterprise, Social, Sensor, and Cloud-based
Data and Services for Advanced Applications

Amit Sheth and Krishnaprasad Thirunarayan

2012

Data Management in the Cloud: Challenges and Opportunities
Divyakant Agrawal, Sudipto Das, and Amr El Abbadi
2012

Query Processing over Uncertain Databases
Lei Chen and Xiang Lian
2012

Foundations of Data Quality Management
Wenfei Fan and Floris Geerts
2012

Incomplete Data and Data Dependencies in Relational Databases

Sergio Greco, Cristian Molinaro, and Francesca Spezzano
2012

Business Processes: A Database Perspective
Daniel Deutch and Tova Milo
2012

Data Protection from Insider Threats
Elisa Bertino
2012

Deep Web Query Interface Understanding and Integration
Eduard C. Dragut, Weiyi Meng, and Clement T. Yu
2012

P2P Techniques for Decentralized Applications
Esther Pacitti, Reza Akbarinia, and Manal EI-Dick
2012

Query Answer Authentication
HweeHwa Pang and Kian-Lee Tan
2012

Declarative Networking
Boon Thau Loo and Wenchao Zhou
2012

Full-Text (Substring) Indexes in External Memory
Marina Barsky, Ulrike Stege, and Alex Thomo
2011

Spatial Data Management
Nikos Mamoulis
2011

Database Repairing and Consistent Query Answering

Leopoldo Bertossi
2011

Managing Event Information: Modeling, Retrieval, and Applications
Amarnath Gupta and Ramesh Jain
2011

Fundamentals of Physical Design and Query Compilation
David Toman and Grant Weddell
2011

Methods for Mining and Summarizing Text Conversations
Giuseppe Carenini, Gabriel Murray, and Raymond Ng
2011

Probabilistic Databases
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch
2011

Peer-to-Peer Data Management
Karl Aberer
2011

Probabilistic Ranking Techniques in Relational Databases
Thab F. Ilyas and Mohamed A. Soliman
2011

Uncertain Schema Matching
Avigdor Gal
2011

Fundamentals of Object Databases: Object-Oriented and Object-Relational Design
Suzanne W. Dietrich and Susan D. Urban
2010

Advanced Metasearch Engine Technology
Weiyi Meng and Clement T. Yu
2010

Web Page Recommendation Models: Theory and Algorithms

Sule Giindiiz-Ogiidiicii
2010

Multidimensional Databases and Data Warehousing
Christian S. Jensen, Torben Bach Pedersen, and Christian Thomsen
2010

Database Replication
Bettina Kemme, Ricardo Jimenez-Peris, and Marta Patino-Martinez

2010

Relational and XML Data Exchange
Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak
2010

User-Centered Data Management

Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

Data Stream Management

Lukasz Golab and M. Tamer Ozsu
2010

Access Control in Data Management Systems
Elena Ferrari

2010

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel

2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeftrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2018 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

Querying Graphs
Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets

www.morganclaypool.com

ISBN: 9781681734309 paperback
ISBN: 9781681734316 ebook
ISBN: 9781681734323 hardcover

DOI 10.2200/500873ED1V01Y201808DTMO051

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #51

Series Editor: H.V. Jagadish, University of Michigan
Founding Editor: M. Tamer Ozsu, University of Waterloo
Series ISSN

Print 2153-5418 Electronic 2153-5426

www.morganclaypool.com

Querying Graphs

Angela Bonifati
Université Claude Bernard Lyon 1

George Fletcher

Technische Universiteit Eindhoven

Hannes Voigt

Neo4j/Technische Universitit Dresden!

Nikolay Yakovets

Technische Universiteit Eindhoven

SYNTHESIS LECTURES ON DATA MANAGEMENT #51

1\@ MORGAN CLAYPOOL PUBLISHERS

! Author is now at Neo4j. The book was mainly written while the author was still at Technische Universitit Dresden.

ABSTRACT

Graph data modeling and querying arises in many practical application domains such as social
and biological networks where the primary focus is on concepts and their relationships and the
rich patterns in these complex webs of interconnectivity. In this book, we present a concise
unified view on the basic challenges which arise over the complete life cycle of formulating and
processing queries on graph databases. To that purpose, we present all major concepts relevant
to this life cycle, formulated in terms of a common and unifying ground: the property graph
data model—the pre-dominant data model adopted by modern graph database systems.

We aim especially to give a coherent and in-depth perspective on current graph query-
ing and an outlook for future developments. Our presentation is self-contained, covering the
relevant topics from: graph data models, graph query languages and graph query specification,
graph constraints, and graph query processing. We conclude by indicating major open research
challenges towards the next generation of graph data management systems.

KEYWORDS

graph databases, property graphs, graph query languages, graph constraints, graph
query specification, graph data representation, graph query processing

Contents

Foreword XV
Acknowledgments L xvii
Introduction 1
DataModels 3
2.1 Property Graph Model. 3
2.2 Variationsofthe PGM 6
2.2.1 Specializations 6
2.2.2 Structural Extensions o i 6
2.2.3 Data Representation Extensions............................... 11
224 SUMMAIY ...ttt 11
2.3 Bibliographic and Historical Notes 13
QueryLanguages i 15
3.1 Basic Functionality 15
3.1.1 Regular Path Queries i i 15
3.1.2 Conjunctive Graph Queries 16
3.1.3 Conjunctive Regular Path Queries 18
3.1.4 Unions of Conjunctive Regular Path Queries 19
3.1.5 Relation Algebra 20
3.2 Regular Property Graph Queries.......... ..., 21
3.2.1 Regular Property Graph Logic................................ 22
3.2.2 Regular Property Graph Algebra 25
3.2.3 Equivalence and Complexity of RPGLog and RPGA 27
3.3 RPGQOIN COntEXt © vttt ettt ettt ettt ettt ettt et 28
3.3.1 Important Fragments of RPGQccoiuunnn. 28
3.3.2 Extending RPGQ For Composability 29
3.3.3 RPGQ and Practical Graph Query Languages 33

3.4 Bibliographic and Historical Notes, 35

Constraints 37
41 Preliminaries........ 37
4.2 Graph Functional Dependenciest 38
420 Syntax ... 38
422 Semantics...........ouiiiiiiiii 39
4.2.3 Satisfiability 41
424 Implication i 43
425 Validation 44
4.3 Graph Entity Dependencies i, 45
4.3.1 Definition and Special Cases 46
4.3.2 Preliminaries 47
4.3.3 Chasing Graph Entity Dependencies..................., 47
4.3.4 Satisfiability, Implication, and Validation........................ 48
4.3.5 Extension to Graph Denial Constraints. 50
4.3.6 Applications and Practical Impact of Graph Dependencies 51
4.4 Other Constraints for Graph Data Management 52
4.41 Graph Neighborhood Constraints 52
4.4.2 Graph-to-Graph Constraints 53
4.5 Bibliographic and Historical Notes, 54
Query Specification 57
5.1 Path Query Specification 57
5.1.1 'The Definability Problem for Graph Queries 58
5.1.2 Complexity of Definability for Graph Queries 59
5.1.3 From Definability to Learnability of Graph Queries............... 59
5.1.4 Interactive Graph Query Specification.......................... 62
5.2 Graph Searching for Querying i 66
5.3 Query-Driven Graph Exploration.............. oo .. 68
5.4 Bibliographic Notes i i 71
Data Structuresand Indexesl 73
6.1 Conceptual Schemas of PGM Representation 74
6.2 Direct Representation of Ternary Relations 76
6.2.1 Value Compression, 76
6.2.2 Valuelndexing......... i 79
6.3 Pivoted Representation of Ternary Relations 81

6.4 Adjacency Indexing il 84
6.4.1 Uncompressed Adjacency Representation 84
6.4.2 Compressed Adjacency Representation 87
6.5 Reachability Indexing. 88
6.5.1 General Considerationsooiiiiiiiinan. 89
6.5.2 Techniques. i i 90
6.6 Structural Indexing. 97
6.7 Bibliographic and Historical Notes, 99
QueryProcessing 103
71 QueryPipeline 104
7.2 Subgraph Matching Queries il 105
7.2.1 DFS-Based algorithms L. 105
7.2.2 BFS-Based Algorithms........ ..ot 110
7.2.3 Discussioniiiii 111
7.3 Regular Path Queries i 113
7.3.1 Relational Algebra and Datalog-Based Approaches 114
7.3.2 Finite Automata-Based Approaches........................... 115
7.4 Unions of Conjunctive Regular Path Queries 116
7.5 Bibliographic and Historical Notesot 116
Physical Operators 119
8.1 Transitive Closure. i 119
82 Multi-Way Joins 124
8.3 Cardinality Estimation. o oo 128
8.3.1 Cardinalityof Paths, 128
8.3.2 Cardinality of Patterns oo, 133
8.4 Further Optimizations i, 135
8.5 Bibliographic and Historical Notest 138
Research Challenges i 141
Bibliography 143

Authors’ Biographies 165

Foreword

'The current surge of interest in Graph Data Bases (GDBs) reflects the popularity of their
data models based on nodes and edges, which, in many applications, provide a more intuitive
conceptualization for entities and relationships than the one oftered by Relational Data Bases
(RDBs). 'This has inspired the design and development of many GDB systems and their use in
a wide range of applications. Indeed to date, we counted more than 20 GDB systems devel-
oped and used in application areas such as Semantic Web, Social Networking, Fraud Detection,
Recommendation Systems, Life Science, and Knowledge Bases.

For all their remarkable achievements, GDBs still lack the conceptual coherence that
RDBs have been blessed with from the beginning as a result of E.F. Codd’s seminal contri-
butions which, combined with the major research advances in theory and systems that followed,
provide the subject of numerous textbooks. However, the fast-expanding technology of GDBs
is still quite far from achieving similar levels of conceptual unification and this create hurdles
for researchers, instructors, and students alike.

'This book tackles this problem head on by presenting a comprehensive unified treatment
of GDBs, as needed to serve as a reference book for experts and a textbook for graduate stu-
dents. The book’s coverage begins with a formal treatment of the Property Graph Data Model
that is common to most GDBs. Then, the book discusses GDB query languages and, moving
past their many differences, it proposes a core property graph query language and elucidates its
properties both in terms of graph logic and graph algebra. After that, the book covers tech-
niques for efficient GDB implementation, including data structures, indexes, query operators,
and processing, for which the presentation underscores how solutions different from those of
traditional DBs are often required. Furthermore, the departures from traditional technology are
even more dramatic for (i) integrity constraints, which lose their key role in normal-form RDB
schema design, but find new important uses in GDBs, and (ii) interactive query specification via
examples and counter-examples that have proven to be surprisingly effective with GDBs. The
book’s comprehensive treatment is further enhanced by extensive references and suggestions on
open research problems for further investigation.

Carlo Zaniolo
Computer Science Department

University of California at Los Angeles (UCLA)

Acknowledgments

'The authors would like to warmly thank the many people who helped us to make this book a
reality. First and foremost, we thank our families and partners for their patience and support
throughout the many months dedicated to the writing of this book.

We also give many thanks to the Editor H.V. Jagadish and the Founding Editor M. Tamer
Ozsu for the opportunity and encouragement to publish this book. During the writing, the staff
at Morgan & Claypool were just awesome, especially Diane Cerra. Thank you all for keeping
the writing moving forward. We also thank the three reviewers for their critical and insightful
teedback.

Our sincere thanks further go to Carlo Zaniolo for kindly writing the Foreword. We are
greatly honored by your contribution!

Finally, we give our heartfelt thanks to colleagues for reading early drafts. We especially
thank Sourav Bhowmick, Stefania Dumbrava, Jan Hidders, Wilco van Leeuwen, Davide Mot-
tin, Oskar van Rest, and Kaijie Zhu for their detailed proofreading and helpful comments.

'The work presented here was supported in part by a donation from Oracle Labs and by
the CNRS Mastodons grant MedClean (2016-2018).

Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets
September 2018

CHAPTER 1

Introduction

Things are interesting only in so far as they relate themselves to other things; only then can
you put two and two together and tell stories about them. Such is science itself and such is
all the knowledge that interests [huJmankind.

D’arcy Wentworth Thompson (1860-1948)

Graph data management systems have experienced a renaissance in recent years. The reason for
this is clear: with a confluence of trends in society, science, and technology, graph-structured
data sets are increasingly being constructed, collected, and made available for analysis. Com-
mon everyday examples of massive and ever-growing graph data collections include social, bio-
chemical, ecological, citation, communication, mobility, and transportation networks [New-
man, 2018]. Graph data modeling and querying arises in such applications where the primary
focus is on zhings and their relationships and the rich patterns in these complex webs of connec-
tivity. In a social network such as LinkedIn! or Viadeo,? for example, we primarily have people
and institutions as the things (i.e., nodes, vertices) and social connections such as “follows” and
“works for” as the relationships (i.e., edges). In this domain, a job-seeker may be interested in
answers to queries such as “Who are the people in my social network with a shared professional
society membership who live in my city?” As another example, in biological network data sources
such as BioGRID? or UniProtKB,* we typically have entities such as proteins as the things and
the interactions between proteins as the relationships. Here, a scientist might be interested in
querying for interaction pathways which have not been explored before in the literature, toward
insight for new medical treatments. Teasing out such hidden patterns in graph databases are of-
ten a basis for knowledge and value creation in many contemporary application domains across
the sciences and society.

'The study of query languages is central in the design and engineering of data intensive sys-
tems. Reflecting the interest and tremendous growth in graph database systems, much progress
has been made recently in our understanding of graph query languages, ranging from their the-
oretical foundations to their practical use and efficient realization. Several recent surveys have
Ihttps://www.linkedin.com
2http://www.viadeo.com

3The Biological General Repository for Interaction Datasets, https://thebiogrid.org.
#The Universal Protein Resource, http: //www.uniprot.org.

https://www.linkedin.com
http://www.viadeo.com
https://thebiogrid.org
http://www.uniprot.org

2 1. INTRODUCTION

covered different aspects of graph analytics, ranging from graph data models and query lan-
guages [Angles and Gutiérrez, 2008, Angles et al., 2017] to graph mining [Koutra and Falout-
sos, 2017], distributed graph processing [Heidari et al., 2018, Kalavri et al., 2018, McCune
et al., 2015], and big graph analytics platforms [Yan et al., 2017].

To the best of our knowledge, a comprehensive overview of the “life of a graph query” is
currently missing in the literature. The present book complements existing surveys and mono-
graphs on graph data management, addressing this important gap in the literature. Given the
fundamental role of query languages, there is a clear need for such a treatment. Furthermore,
as the study of graph query processing solutions is reaching a first stage of maturity, both in
academia and in industry, we believe that now is an especially crucial moment for such an
overview.

Our overarching goal is to present a unified coherent view on the current understanding
of the basic challenges arising over the complete life cycle of a graph query. To that purpose,
we present all major concepts relevant to this life cycle, formulated in terms of a common and
unifying ground: zhe property graph data model, the predominant data model adopted by prac-
tical graph database systems [Francis et al., 2018, van Rest et al., 2016]. As part of the life
cycle of graph queries, we present in-depth the various components of this cycle, encompassing
graph data models, graph query languages and query specification, graph constraints, graph data
structures and indexes, graph query processing, and graph physical operators.

In particular, in Chapters 2 and 3 we introduce the property graph data model and a core
property graph query language. This is followed in Chapters 4 and 5 with a presentation of the
state of the art in graph constraints and query specification. We then turn to core concepts in
efficient graph representation, query processing, and query operators in Chapters 6, 7, and 8.
We conclude in Chapter 9 by indicating major open research challenges in each of the topics
surveyed. Each chapter includes a bibliographical and historical discussion, giving pointers into
the rich history and literature on graph data management.

'The primary audience of the book is developers or researchers of graph database and graph
analytics systems and tools. Another important audience of the book is students and teachers
interested in graph data management. We have written the book to be self-contained. The reader
is only assumed to have a background in the basics of computer science and information systems.
Hence, the book is accessible to senior undergraduate students and graduate students, and can
be used as a textbook for an advanced seminar.

Our hope is that this unified presentation of the state of the art in querying graphs will
contribute toward further coherence and consolidation in the graph query processing commu-
nity, setting foundations and directions for the next generation of graph database systems.

CHAPTER 2

Data Models

In this chapter, we introduce the property graph model. The property graph model is important
for graph-based data management as it is implemented in many systems and used as a reference
model for various research work. Our aim in this chapter is two-fold. First, we introduce the
basic concepts of the property graph model, following the LDBC’s Graph Query Language Task
Force [Angles et al., 2018a].} Second, we discuss a number of variations of the property graph
model in terms of specializations and structural extensions. This illustrates how the property
graph model fits into the family of existing graph models.

2.1 PROPERTY GRAPH MODEL
'The Property Graph Model (PGM) represents data as a directed, attributed multi-graph. Ver-

tices and edges are rich objects with a set of labels and a set of key—value pairs, so-called proper-
ties. Figure 2.1 shows a simple example of a property graph. The graph has the three vertices (10,
11, and 12) and three directed edges (20, 21, and 22) connecting them. Labels are descriptive
class information tagged to the objects and indicate which kind of real-world entity an object
represents. As can be seen in the figure, we denote labels prefixed with a colon. In the example,
vertex 11 has two labels: :Expert and :Father. Properties provide the actual data an object repre-
sents. The property key specifies the meaning of the property value. For instance, edge 22 has
one property with key since and value 2006. Since labels are purely descriptive, they do not imply
any properties. Objects can instantiate an arbitrary set of properties independent of their labels.

For a formal definition, let O be a set of objects, L be a finite set of labels, KC be a set of
property keys, and N be a set of values. We assume these sets to be pairwise disjoint. A property
graph is a structure (V, E,n, A, v) where

* V' C O is a finite set of objects, called vertices;
* E C O is a finite set of objects, called edges;
* n: E — V x V is afunction assigning to each edge an ordered pair of vertices;

* A:VUE — P(L) is a function assigning to each object a finite set of labels (i.e., P(S)
denotes the set of finite subsets of set S); and

*v:(VUE)xK — N is a partial function assigning values for properties to objects,

The Linked Data Benchmark Council, http://ldbcouncil.org/.

http://ldbcouncil.org/

4 2. DATAMODELS

21 :worksFor
since = 1990
status = 'self-employed'

20 :knows 22 :knows
Q since = 2011 since = 2006
_/
10 :Novice 11 :Expert :Father 12 :Apprentice
name = 'Jason' name = 'Michael' name = 'Matthew'
born = 1995 born = 1976 born = 1989
middlelnitial ='J.’ graduated = 1998 class =2

twitter = '@jj05'

Figure 2.1: An example of a property graph.

such that the object sets V and E are disjoint (i.e., V N E = @) and the set of domain values
where v is defined is finite.

Figure 2.2 shows a larger property graph example G, used later on in the book.
The displayed graph is defined as Gex = (V,E,n,A,v), where V ={10,11,...,16},
E =1{20,21,...,29}, A is defined as visualized (e.g., A(11) = :Expert and A(21) = :worksFor),
1 is defined as visualized (e.g., 7(20) = (10, 11)), and v is defined as follows: v(10, salary) =
1000, v(11, salary) = 3000, v(12, salary) = 2000, v(12,level) = 'A',v(20, year) =
2016, v(23, year) = 2017, and v(29, since) = 1997.

For convenience, we assume the following notation. in(v) denotes the set of incom-
ing edges of vertex v, with in(v) = {e € E | m2(n(e)) = v)}.> Likewise, out(v) denotes the
set of outgoing edges of vertex v, with out(v) = {e € E | m1(n(e)) = v)}. Further, adj(v) =
in(v) U out(v) is the set of all edges adjacent to v. src(e) denotes the source vertex of edge
e, with src(e) = m1(n(e)). Analogously, trg(e) denotes the target vertex of edge e, with

trg(e) = ma(n(e)).

2

7; projects an n-tuple to its i-th element, i.e., w; ((X1,...,%;,...,%X)) = X;.

2.1. PROPERTY GRAPH MODEL 5

L66T = 90UIS
lo4sylom: og

padx3: 91 padx3: g1 aojuaiddy: {1

b J0{SYIOM: 82 _

SMOUY: 62 yy

104SHIOM: /2 104S)I0M: 9g SMOUY: G2
L10g = tedh
smouy: gg 000¢ = Asejes
wadx3: |1

A

< SMOUY: #2
oonualddy: g} V. = I9A9]
000z = Areres
aonualddy: z|

910z = Jeak
SMOWY: 02 000T = Alejes
9OINON: 0]

SMOUY: 22

lo4SyIoM: |2

Figure 2.2: A larger example of a property graph.

6 2. DATAMODELS
2.2 VARIATIONS OF THE PGM

2.2.1 SPECIALIZATIONS

'The PGM incorporates four basic traits of contemporary graph data models, namely direction,
multi-graph, labels, and properties, in one unifying model.

Direction. A property graph is a directed graph; the PGM defines edges as ordered
pairs of vertices. Hence, edges have a direction. Graphs with undirected edges consider
edges as 2-element subsets of the set of vertices, i.e., the codomain of 7 is codom(n) =
{{x.y} | x,y € V.x # y}. Several practical systems support a “mixed” model where graphs can
have both undirected and directed edges.

An undirected edge {x, y} can be represented in a directed graph by two oppositely di-
rected edges (x, y) and (y, x). In this sense, directed graphs are a generalization of undirected

graphs.

Multi-graph. A property graph is a multi-graph; the PGM allows multiple edges between a
given pair of vertices. Simple graphs (in contrast to multi-graphs) additionally require 7 to be
injective (one-to-one). Multi-graphs are a generalization of simple graphs.

Labels. A property graph is a multi-labeled graph; the PGM allows vertices and edges to
be tagged with zero or more labels. This trait exists in other variations of graph data. A graph
model may require exactly one label per vertex and edge, i.e., codom(1) = L. Some graph models
allow labels for either vertices or edges only, i.e., dom(A) = V or dom(1) = E, respectively. Un-
labeled graphs can be represented in a labeled graph model by simply not assigning any labels, so
that Vx € VU E : A(x) = @, or assigning a dummy label 0, so that Vx € V U E : A(x) = {0}.
Multi-labeled graphs are a generalization of all of these variations.

Properties. A property graph is a key—value-attributed graph; the PGM allows vertices and
edges to be enriched with data in the form of key—value pairs. This trait also exists in other graph
data model variations. Instead of key—value pairs “data-attributed” graph models only support
vertices and edges being attributed with a chunk of binary data, i.e., v : V U E — {0, 1}*. Binary
data can be represented in a key—value pair with a dummy key 0. Other graph models allow
to attribute either vertices or edges only, i.e., dom(v) = V or dom(v) = E, respectively. Key—
value-attributed graphs are a generalization of data-attributed graphs as well as non-attributed

graphs.

2.2.2 STRUCTURAL EXTENSIONS

Various extensions to the PGM have been proposed in recent years. We will briefly discuss the
most important of these, with a focus on extensions that add or enrich object types of the model,
i.e., those that concern the graph structure.

2.2. VARIATIONS OF THEPGM 7

Objectified paths. We can extend the PGM with objectified paths, i.e., having paths as first-
class citizens along side vertices and edges. We refer to this extended model as Objectified Paths
PGM (OPPGM). Vertices are the first-order objects in a graph. In multi-graphs, such as prop-
erty graphs, edges are second-order objects. Edges attach data, in the form of labels and proper-
ties, to (ordered) pairs of vertices, i.e., they are statements about specific subsets of lower-order
objects. In that sense, objectified paths are third-order objects that attach labels and properties
to sequences of edges. Figure 2.3 shows an example of an objectified path. Path 30 presents the
edge sequence [20, 22] and has the label :knowsindirectly and two properties. Obviously, a graph
can have multiple objectified paths which can represent identical or overlapping edge sequences.

21 :worksFor

since = 1990 30 :knowsIndirectly
status = 'self-employed' since = 2006
distance = 2
E 20 :knows 22 :knows E
O since = 2011 since = 2006 O
‘ Y '

10 :Novice 11 :Expert :Father 12 :Apprentice
name = 'Jason' name = 'Michael' name = 'Matthew'
born = 1995 born = 1976 born = 1989

middlelnitial = 'J.' graduated = 1998 class = 2

twitter = '@jj05'
Figure 2.3: A property graph with an objectified path.
Formally, an OPPGM graph extends a PGM graph as defined in Section 2.1 to a structure
(V,E,P,n,8,A,v) where
* P C O is a finite set of objects, called paths;
* §: P — J,s0 E" is a total function assigning to every path a sequence of edges;’
* A:VUEUP — P(L) is a function assigning to each object a finite set of labels; and
*v:(VUEUP)xK — N isa partial function assigning values for properties to objects,
such that
* the object sets V, E, and P are pairwise disjoint;*

* foreach p € P,itholds for §(p) = [e1, ..., e¢] that trg(e;) = src(e;j4+1) foreach0 < i <
£; and

* the set of domain values where v is defined is finite.

SE" = Ex---xE.
n times

4Forexample,VﬂE=VﬂP=EﬂP=Q.

8 2. DATAMODELS

Objectified subgraphs. We can also consider extending the PGM with objectified
subgraphs—in short, OSPGM-—which has subgraphs as first-class citizens next to vertices and
edges. As with objectified paths, objectified subgraphs are higher-order objects and allow us
to make statements about specific subsets of vertices and edges that constitute a graph them-
selves. Figure 2.4 shows a property graph with two objectified subgraphs. Subgraph 31 labeled
‘TrainingTandem consists of vertices 10 and 11 and edge 20, while subgraph 32 labeled :Interview
encompasses vertices 11 and 12 and edges 21 and 22. The objectified subgraphs of a base graph
may overlap and their union may also be a subset of the base graph. Each individual objecti-
fied subgraph must have at least one vertex. Since a OSPGM graph can have an empty set of
subgraphs, clearly OSPGM is a strict generalization of PGIM.

21 :worksFor 32 :Interview

since = 1990 date = 6.9.2006 !

status = 'self-employed'

N
1

31 :TrainingTandem
field = 'Electronics’

__

22 :knows

1

1

|

1

since = 2006 O !
N 1
1

1

1

1

1

1

1

1

1

20 :knows

since = 201i
! /

1
10 :Novice ! 11 :Expert :Father 12 :Apprentice
name = 'Jason’ ! name = 'Michael' name = 'Matthew'
born = 1995 1
middlelnitial = 'J.' : graduated = 1998 class =2
twitter = '@jj05' S ’

1
1
1
:
born = 1976 born = 1989
1
I
!
1

Figure 2.4: A property graph with two objectified subgraphs.
Formally, an OSPGM graph extends a PGM graph as defined in Section 2.1 to a structure
(V. E,G,n,y.A,v) where
* G C O is a finite set of objects, called subgraphs;

* y:G — P(V) x P(E) is a total function assigning every subgraph a pair of vertex set and
edge set;

* A:VUEUG — P(L) is a function assigning a label to objects; and

*v:(VUEUG)x K — N is a partial function assigning values for properties to objects,
such that

* the object sets V, E, and G are pairwise disjoint;

* the subgraphs g € G are well-formed graphs, in the sense that all edges of subgraph g
are adjacent to vertices of g, i.e., for every e € m2(y(g)) it holds that n(e) € 71 (y(g)) x

m1(y(g)); and

2.2. VARIATIONS OF THEPGM 9

* the set of domain values where v is defined is finite.

Hypervertices. In another direction, we can extend PGM with hypervertices—in short
HVPGM—where a (hyper)vertex denotes a (possibly empty) subgraph, i.e., it considers ob-
jectified subgraphs as vertices. Hypervertices denoting empty subgraphs represent vertices in
the traditional sense while hypervertices denoting non-empty subgraph represent higher-order
objects. Since hypervertices can be linked with edges, HVPGM allows linking a subgraph to
other subgraphs and even to the hypervertices they contain. Figure 2.5 shows a property graph
with hypervertices. Hypervertex 10 labeled :Novice denotes an empty subgraph. In contrast, hy-
pervertex 32 labeled :Interview denotes a non-empty subgraph consisting of hypervertices 11 and
12 and edges 21 and 22. Hypervertex 32 has two outgoing edges 23 and 24 linking it to hyper-
vertex 31—another subgraph—and to hypervertex 12—a vertex contained in 32—respectively.
'The hypervertices may overlap and their union may also be a subset of the whole graph. Since
hypervertices may have no adjacent edges, HVPGM is a strict generalization of OSPGM.

23 :ledTo 24 :interviewee
by = 'word of mouth’

32 :Interview |
date = 6.9.2006

21 :worksFor
since = 1990
status = 'self-employed'

31 :TrainingTandem
field = 'Electronics’
year =3

__

20 :knows

Q since = 2011 R

22 :knows

1
1
1
1
1
1
1
1
:
1
since = 2006 ‘O !
N 1
1
1
1
1
1
1
1
1
1

1
1
10 :Novice ' 11 :Expert :Father 12 :Apprentice
name = 'Jason' ! name = 'Michael' name = 'Matthew'
born = 1995 1
middlelnitial = 'J.' | graduated = 1998 class =2
twitter = '@jjo5' e e e ’

1
1
1
1
1
1
1
I
born = 1976 1 born = 1989
:
1
L
1

Figure 2.5: A property graph with hypervertices.

A HVPGM graph extends a PGM graph as defined in Section 2.1 to a structure
(V, E,n,y, A,v) where

* V C O is a finite set of objects, called hypervertices; and

*y:V —=>"P(V)xP(E) is a total function assigning every hypervertex a hypervertex set
and an edge set,

such that

* the object sets V and E are disjoint, i.e.,, V N E = @;

10 2. DATA MODELS

* the hypervertices are well-formed graphs in the sense that all edges of hypervertex v
are adjacent to hypervertices of v, i.e., for every e € m»(y(v)) it is the case that n(e) €

m1(y(v)) x w1 (y(v)); and
* the set of domain values where v is defined is finite.

Hyperedges. Finally, we can consider extending PGM with hyperedges—in short
HEPGM-—where a (hyper)edge links a non-empty sequence of vertices without repetitions.
Figure 2.6 shows a property graph with hyperedges. Hyperedge 20 labeled :knows links the two
vertices 10 and 11 like a standard directed edge, while hyperedge 21 labeled :worksFor links only
vertex 11 with itself like a standard directed loop edge. Hyperedge 23, however, links the three
vertices 10, 11, and 12. The hyperedges may have overlapping vertex sets and the union of their
vertex sets may also be a subset of all vertices in the graph. Since all hyperedges may have exactly
two vertices, HEPGM is a strict generalization of PGM. It is worth pointing out that hyper-
edges do not generalize objectified paths. Hyperedges represent sequences of vertices without
repetitions, while objectified paths represent sequences of edges, which may involve repetition
of edges and adjacent vertices.

21 :worksFor
since = 1990
status = 'self-employed'

20 :knows 22 :knows
C since = 2011 since = 2006
]

23 :collaboratesWith -
name = 'Laser light'

10 :Novice 11 :Expert :Father 12 :Apprentice
name = 'Jason' name = 'Michael' name = 'Matthew'
born = 1995 born = 1976 born = 1989
middlelnitial = 'J.' graduated = 1998 class =2

twitter = '@jj05'

Figure 2.6: A property graph with hyperedges.

Formally, a HEPGM graph extends a PGM graph as defined in Section 2.1 to a structure
(V,E,n,y, A,v) where

* E C O is a finite set of objects, called hyperedges; and

* 0 E = Uxepag {[x(1),....7(|X])] | 7 is a bijection from {1,...,|X[} to X} is a
function assigning to each edge a non-empty sequence of vertices without repetition,

such that the object sets IV and E are disjoint and the set of domain values where v is defined is
finite.

2.2. VARIATIONS OFTHEPGM 11
Note that hyperedges as defined in the HEPGM are directed. For undirected hyperedges

as common in the literature on hypergraphs the codomain of 7 is simply P(V) \ 9. However,

undirected hyperedges do not generalize the directed edges of the PGM.

2.2.3 DATA REPRESENTATION EXTENSIONS

Data representation extensions to the PGM are less fundamental than structural extensions.
They do not concern the graph structure but rather the data properties, i.e., value representa-
tions at the level of objects of a graph. These extensions are of practical relevance and are com-
mon in implemented systems. They increase practical convenience, for example, when specifying
query predicates. Conceptual and theoretical work on graph querying typically neglects these
extensions. We briefly discuss the most important of such extensions.

Value types. Most implemented PGMs have typed values (e.g., integers and strings). Value
types specify the default interpretation of a value in the context of query predicates. If 7 is the
finite set of value types supported by a system, then the system maintains a functiont : N' — T,
which specifies the value type of every value.

Multiple values. Some systems allow a property to have more than one value. For
instance, a vertex representing a person may have a property hobbies with values
{'Hiking', 'Climbing', 'Reading'}. With multiple values, the codomain of v is P(N'). Multiple

values may also be seen as the support of just another type of values, namely sets.

Explicit identity. Many systems expose an explicit identity of the objects. Let Z be a set of
identities used by a system, then the system exposes an injective function ¢ : O — Z, which
assigns an explicit identity to each object. Typically, the domain of a standard data type such as
Integer or Long is used as Z.

2.2.4 SUMMARY

Figure 2.7 shows PGM in a hierarchy of model expressiveness with specializations (Sec-
tion 2.2.1) and structural extensions (Section 2.2.2) of the PGM. Read bottom-up, the figure
shows which trait has to be added to a graph data model to obtain a graph data model of richer
expressiveness. Incorporating all the traits discussed in Section 2.2.1, the PGM subsumes many
other more specialized graph data models. While the discussed structural extensions certainly
have an appeal, they also complicate the data model, multiply modeling alternatives, and are not
necessarily intuitive for the common user. By omitting these extensions, the PGM strikes a good
balance between expressiveness and complexity. This is a characteristic that renders the PGM
particularly well-suited for data management, since it offers high modeling expressiveness while
still being simple and intuitive.

12 2. DATA MODELS

4

A A
Hypervertices Hypervertices Hyperedges
OPPGM OSPGM
X A
Objectified paths Objectified subgraphs
Multiple edge labels
Neo4j/PGQL PGM
Y
Multiple vertex labels
Blueprints PGM
AAX
Edge and vertex properties,
single vertex label
|
RDF graph / Data graph \ Weighted graph
X A 7
Multi-graph, Vertex data Edge data
single edge label

\ Directed graph

e

4
Direction

Simple graph

Figure 2.7: Hierarchy of PGM variants and extensions.

2.3. BIBLIOGRAPHIC AND HISTORICAL NOTES 13
2.3 BIBLIOGRAPHICAND HISTORICAL NOTES

Graph data models have a long history of study in the database community. Predating relational
database systems, the CODASYL network data model resembles essentially graph data. Graph
data models first gained broad academic attention in the late 1980s and the first half of the 1990s
with the rise of object-oriented programming and advent of object-oriented database systems.
Angles and Gutiérrez [2008] provide an excellent survey of the graph data models proposed and
discussed at the time, where the reader can find a presentation and discussion of the precursors to
the data models discussed in Section 2.2.2; as another recent overview of graph data models we
also recommend [Gutierrez et al., 2018]. With the continued dominance of relational DBMSs
at the time, none of these efforts gained sustainable traction in industry and attention declined.

With the emergence of XML in the 1990%, focus shifted to semistructured and tree-
structured data. Today, tree-structured data models are still relevant particularly in the context of
document stores. Popular document data models are XML [W3C, 2008] and JSON [Crockford,
2006]. JSON-based document stores, such as MongoDB [Chodorow and Dirolf, 2010] and
Marklogic, are commonly used for web applications, where JSON is the dominant data model
for data exchange between application servers and browsers. Using the same data model for
persistence greatly simplifies application development.

In the 2000’s, the graph concept, and with it graph data models, had a considerable revival
in the wake of three major trends. The first trend is the Semantic Web movement [Berners-Lee
et al., 2001]. The idea of the semantic web gave rise to the RDF data model. W3C published
the first RDF recommendation already in 1999 focusing on meta data description [W3C, 1999]
and reworked the standard twice in 2004 [W3C, 2004] and 2014 [W3C, 2014]. An RDF graph
structures data as a directed edge-labeled multi-graph, cf. Figure 2.7. An RDF dataset con-
sists of an unnamed default RDF graph and zero or more named RDF graphs. Since named
RDF graphs can appear as vertices in RDF graphs, they resemble hypervertices. Today, RDF
is widely adopted in the semantic web and linked open data [Heath and Bizer, 2011] commu-
nities. Thousands of open RDF datasets are published and maintained on the internet, most
famously DBpedia [Auer et al., 2007] and Wikidata [Vrandecic and Krétzsch, 2014]. RDF also
sparked research in every corner of the database community—ranging from works investigat-
ing the fundamental properties of query languages for labeled graphs to the design of storage
structures and query engines for RDF data. Hartig [2017] extends RDF with statement anno-
tation to RDF*, which lays the ground for edge properties. Effectively RDF* lifts RDF to the
expressiveness of a restricted form of HVPGM, where a hypervertex can denote only an empty
subgraph or a subgraph containing a single edge and its two adjacent (hyper)vertices. RDF*
allows for instance the RDF store Blazegraph® to support also PGM data [Blazegraph, 2013].

'The second trend is agility with respect to the management of data. New application do-
mains (e.g., [Franklin et al., 2005, Werner et al., 2011]) as well as novel development meth-
ods [Beck et al., 2001] increased the demand for data models that are less rigid and schema-

Shttps://uww. blazegraph.com

https://www.blazegraph.com

14 2. DATA MODELS

oriented but more ad-hoc and data-oriented. Graph data models typically excel in this regard
as new nodes and edges can be added anytime, regardless of their properties. This propelled the
proliferation of the PGM and corresponding graph DBMSs. Neo4j® and Apache TinkerPop
Blueprints’ implementations were among the first advocates of the PGM. By now the PGM
is widely used and implemented by many others, such as IBM Graph,® Oracle [van Rest et al.,
2016], SAP HANA [Bornhévd et al., 2012, Rudolf et al., 2013], and Sparksee’ [Martinez-
Bazan et al., 2007, 2011]. The Linked Data Benchmark Council (LDBC) proposes OPPGM
as the foundation for a core property graph query language [Angles et al., 2018a, Gutierrez et al.,
2018].

'The third trend is big data analytics [Hey et al., 2009]. One major method in this discipline
is network analysis, which puts the focal point of interest on the connectivity of entities. The tool-
box of network analysis offers a rich set of algorithms and measures and targets a wide range of
use cases, including network impact analysis, route finding, collaborative filtering, supply chain
management and logistics, fraud detection, digital asset management, biomolecular engineer-
ing, scientific computing, and many more. Algorithms and systems as discussed in the research
literature are typically based on a weighted graph or a data graph, cf. Figure 2.7. In practical
systems for graph analytics, however, PGM gains ground. Frameworks such as GraphX [Gon-
zalez et al., 2014] on Apache Spark!® and Gelly [Flink, 2015] on Apache Flink!! also allow
processing PGM data. Junghanns et al. [2016] argue that OSPGM forms the best ground for

analytical questions in domains such as social networks, business intelligence, and life science.

Shttp://neo4j.com/
"http://tinkerpop.apache.org/
$https://ibm-graph-docs.ng.bluemix.net/
Yhttp://wuw.sparsity-technologies.com/
Ohttp://spark.apache.org/
Uhttp://flink.apache. org/

http://neo4j.com/
http://tinkerpop.apache.org/
https://ibm-graph-docs.ng.bluemix.net/
http://www.sparsity-technologies.com/
http://spark.apache.org/
http://flink.apache.org/

15

CHAPTER 3

Query Languages

In this chapter we give a presentation of property graph query languages. We begin with the
core language functionalities of graph navigation queries and (unions of) conjunctions of nav-
igational queries. Our approach is then to give a presentation of major graph query language
functionalities as restrictions or extensions of the recently proposed Regular Queries, a compu-
tationally well-behaved yet expressive fragment of Datalog for querying graphs [Reutter et al.,
2017]. Our main contributions in this chapter are (1) giving a novel extension of the Regular
Queries to the property graph model, (2) introducing a new algebra for this extended language,
and (3) highlighting the realization of these features in practical languages. These contributions
are important not only for the study of capabilities and limitations of practical graph query lan-
guages but also for the study of graph query processing methods and engineering of practical
graph database engines.

3.1 BASICFUNCTIONALITY

We begin by introducing in this section the basic capabilities which form the core of contem-

porary graph query languages.

3.1.1 REGULAR PATH QUERIES

A basic feature of graph querying was highlighted in the queries posed in the opening paragraph
of Chapter 1: finding direct and indirect connections in social and biological networks. Such path
navigation is a core ingredient of graph querying.

The regular path queries (RPQ) allow us to express such reachability queries. More precisely,
an RPQ asks for all pairs of vertices that are connected by at least one path where the sequence
of edge labels along the path forms a word in the language of a given regular expression over the

graph’s edge labels.

Syntax
'The regular path queries are all and only those expressions recursively generated as follows.

* Ifa € L, then a € RPQ.
* If e € RPQ, then (e)~ € RPQ.

* Ife, f € RPQ, then (e)/(f) € RPQ.

16 3. QUERY LANGUAGES
» Ife, f € RPQ, thene + f € RPQ.

« If e € RPQ, then (e)™ € RPQ.

Note: In the sequel we will freely drop parentheses when doing so does not introduce ambiguity.

Semantics
As a query algebra, RPQ allows us to: select all edges (i.e., paths of length 1) sharing an edge
label, take the inverse of a set of paths, concatenate paths from two sets of paths, take the union
of two sets of paths, and to take the transitive closure of a set of paths. Alternatively, a pair of
vertices is a valid answer to an RPQ if and only if the respective vertices are connected in the
data graph by a path conforming to the RPQ. We formalize this as follows.

Let G = (V,E,n,A,v) be a property graph. The semantics of evaluating an expression
g € RPQ over G is the set of vertex pairs [g]¢ € V x V, recursively defined as follows.

*If g=aeLl, then [g]e =1{(s,t)]|3edge € E such that n(edge) = (s,t) and a €
Aedge)}.

* If g = (e)” € RPQ, then [g]¢ = {(t,5) | (s,1) € [e]c}-

* If g=ce¢/f € RPQ, then [g]e = {(s,1)|Ju € V such that (s,u) € [e] and (u,1) €
[fla}-

“Ifg = e+ f € RPQ, then [¢]o = [e]o U [f]o-

« If g = (e)* € RPQ, then [g]c = {(s,1) | (s,7) € TC([e])}, where TC(R) denotes the
transitive closure of binary relation R.!

Example 3.1 The query ¢ = :knows/:worksFor/:knows™ evaluated on G, of Figure 2.2 results
in [¢]g,. = {(10,11), (10, 12), (10, 13), (10, 16), (11, 16) , (12, 12)}.

Note that in the sequel, given a graph G, we will let L5 denote the set of all and only
those elements of £ appearing in an edge or node label of G. To distinguish elements of Lg, we
will prefix them with “” as we have in the preceding example.

3.1.2 CONJUNCTIVE GRAPH QUERIES

A second basic feature of graph querying highlighted by the example queries of Chapter 1 is
the ability to identify substructures in a graph, e.g., pairs of people in a social network who have
shared connections to both a professional society and the city where they live. The conjunctive
graph queries (CQ) allow querying such subgraph patterns. Informally, a CQ asks for all subgraphs
that match a given graph pattern. Hence, they are also known as “subgraph pattern matching
queries.

YThat is, TC(R) is the smallest binary relation on 71 (R) U 72 (R) that contains R and is transitive.

3.1. BASICFUNCTIONALITY 17
Syntax
A query pattern is given as a set of edge predicates. Each edge predicate consists of a pair of
vertex variables and an edge label. The set of edge predicates forms a subgraph pattern.
Formally, let V be a set of vertex variables. The conjunctive graph queries are all and only
those expressions of the form

(z1o--vzm) < ar(x1, y1)s ... an(Xn, yn)
where
*m>0,n>0,
® X1, V1s-verXn, Vn €V,
*ai,...,a, € L,and
* foreach 0 < i < m, it holds that z; € {x1, y1...., Xn, Yn}.

We call m the arity of the expression.

Semantics
The semantics of CQ queries is given by bindings of variables to nodes in a graph. A set of
variable bindings is a valid answer iff all predicates hold on the data graph.

Let G=(V,E,n,A,v) be a property graph and let r =(z1,....2,) <
ay(x1,y1),....an(xn, yn) be a CQ.

A mapping for r on G is a function p with domain V and range V such that, for each
1 <i < n, there exists an edge; € E where n(edge;) = (u(x;), u(y;)) and a; € A(edge;). The
semantics of evaluating r over G is the m-ary relation [r]¢ < Vx.-xV defined as follows:

m times

[rle = {(u(z1).....u(zm)) | p is a mapping for r on G}.

Example 3.2 'The query ¢1 = (a,b) < :knows(a, b) evaluated on G,y of Figure 2.2 results
in [q1]6.. = {(10,11), (10,14) . (11,12) , (12, 11) , (12, 13) , (15, 16)}. While the query ¢, =
(a1, es) < :knows(ay,as) , :worksFor(aq, e1) , :knows(eq, e3) , :worksFor(az, e3) evaluated on Gy
results in [[¢2]q,, = {(12,16)}.

A note on mapping semantics. A mapping is a function, i.e., every query variable is bound
to exactly one graph vertex. However, different variables can be bound to the same vertex, as
CQ’s find subgraphs to which the subgraph pattern is homomorphic. However, the definition of
mappings can easily be adapted to other matching semantics such as isomorphism, i.c., where
mappings must be injective. Hence, query classes—although typically defined in terms of sub-

graph homomorphism—can be considered as orthogonal to matching semantics.

18 3. QUERY LANGUAGES
3.1.3 CONJUNCTIVE REGULAR PATH QUERIES

Conjunctive regular path queries (CRPQ) combine subgraph pattern querying with path querying.

Syntax
A query pattern is given as a set of path predicates. Each path predicate consists of an RPQ and
a pair of vertex variables.

Formally, let V be a set of wertex variables. The conjunctive regular path queries are all and
only those expressions of the form

(z1,-- v zm) < oa(x1,¥1)s -, 0 (Xn, Yn)
where
*m>0,n>0,
® X1, V1s-es Xn, Y €V,

* y,...,0, € RPQ, and
* foreach 0 <i < m, it holds that z; € {X1, V1....,Xn. Yn}.

Again, we call m the arity of the expression.

Semantics
As we did for CQ queries, the semantics of CRPQ queries is given by bindings of variables to
nodes in a graph. A set of variable bindings is a valid answer iff all predicates hold on the data
graph.

Let G=(V,E,n,A,v) be a property graph and let r = (zy,...,zpn) <
a1(X1,¥1)s ..., 0 (xn, yu) be a CRPQ.

A mapping for r on G is a function p with domain V and range V such that, for each
1 <i <mn, it holds that (u(x;), #(yi)) € [i]c. The semantics of evaluating r over G is the
m-ary relation [r]lg €V x --- x V defined as follows:

m times

[rle = {(u(z1)....,u(zm)) | p is a mapping for r on G}.

Example3.3 The queryq = (a,b) < :knows/:worksFor/:knows™ (a, b) evaluated on G, of Fig-
ure 2.2 results in [¢]¢,, = {(10,11),(10,12),(10,13),(10,16), (11, 16),(12,12)}. This is the
same query as the example given for RPQs, illustrating that RPQs are a subset of CRPQs. CQs
are a subset of CRPQs as well, so that all examples given for CQs are also examples for CRPQs.
The query ¢’ = (n,e) < :knows™ (1, ay) , :worksFor(ay, e) , :knows(n, az) , :worksFor(as, e) evalu-
ated on G,y results in [¢'] g, = {(10, 15)}. This CRPQ is neither a RPQ nor a CQ.

3.1. BASIC FUNCTIONALITY 19
Alternative Visual Formalization
It is often handy to have an alternative visual formalization of CRPQ, which in the sequel we
will call graph patterns (GP).
Given a CRPQ r = (21,...,2Zm) < @1(X1, Y1), ..., ®u(Xn, Yn), the graph pattern for r is
the directed edge-labeled graph r|[zy, ..., z,,] having node set {x1, y1,..., X,, y»} and, for each
1 <i <n,an edge from x; to y; with edge label o; .2

Given a property graph G, the semantics [r[zi, ..., zm]]c of evaluating r[zy, ..., z,] on
G is based on mappings from the nodes of r[zy, ..., z,] to the nodes of G and is exactly the
same as the semantics of the underlying query r, i.e., [r[z1.....zm]]c = [r]ec-

Example 3.4 An example of a graph pattern for the graph of Figure 2.2 is
provided in Figure 3.1. 'This graph pattern corresponds to the query (n,e) <«
:knows ™ (1, a1) , :worksFor(ay,) , :knows (7, az) , :worksFor(ax, €) , :worksFor(e, e).

:knows™
:knows

Figure 3.1: A graph pattern r(n, e] defined on the graph of Figure 2.2.

:worksFor

3.1.4 UNIONS OF CONJUNCTIVE REGULAR PATH QUERIES
We next extend the expressive power of CRPQ by adding disjunction.

Syntax
A union of conjunctive regular path queries (UCRPQ) is a finite non-empty set R € CRPQ, each
element of which is of the same arity m. We also say that R is of arity m.

2Going in the other direction, consider a pair (G, [21, ..., Zm]), where G is a directed graph with edges labeled with RPQ’s
and nodes labeled with distinct variables from V, and [z1,...,2z] is a list of node variables occurring in G, possibly
with repetition, of length m > 0. Then it is easy to establish that (G, [21,...,2,]) corresponds to the unique CRPQ
(Z1,+52Zm) < Nax.pyec (X, ¥).

20 3. QUERY LANGUAGES
Semantics
For a given property graph G = (V, E,n,A,v) and R € UCRPQ of arity m, the semantics of
evaluating R over G is the m-ary relation [R]g € V x --- x V defined as follows:
MEAREAR

m times

[Rle = s

rerR

Example 3.5 'The following UCRPQ evaluates on the graph of Figure 2.2 to all people x who
know or work for someone in-between (not necessarily distinct from x) who works for a person
y (not necessarily distinct from x or the person in between):

(x) <« :knows/:worksFor(x, y)
(x) <« :worksFor/:worksFor(x, y) .

In the graph of Figure 2.2 such people x are {10, 11, 12, 14}.

To summarize our discussion so far, we make the following observations, which are
straightforward to establish:?

* RPQ C CRPQ C UCRPQ,
* CQ C CRPQ,

* CQ ¢ RPQ,* and

* RPQ ¢ CQ,

where £1 C £, denotes that every query of £; can be expressed by a query in £, but not vice
versa.

3.1.5 RELATION ALGEBRA

We conclude our survey of basic graph query functionality with a generalization of RPQ with
negation.

Syntax and Semantics

The relation algebra expressions are defined by the grammar of the RPQ’s extended with two
additional production rules:

* id € RA.

3For example, o € RPQ can be equivalently expressed in CRPQ as (x, y) < a(x,).
4This holds even if we restrict CQ to binary queries, i.e., all and only those CQ queries of arity 2.

3.2. REGULAR PROPERTY GRAPH QUERIES 21
* Ife, f € RA,thene — f € RA.

'The semantics of RA expressions on graph G is as expected.

* If g = id, then [g]¢ = {(s,5) | s € V}.

*Ifg=e— f,then[gg = {(s.1) | (s.1) € [e] and (s.1) & [/]G }-

Note that we can also now express intersection e N f (i.e., a limited form of conjunction), de-

finedase — (e — f).

Example3.6 The query g; = (:worksFor™ N :knows™) — :worksFor evaluated on our running ex-
ample retrieves all pairs of people (x, y) such that x knows y (either directly or indirectly) and
x indirectly works for y. As another example, the query g, = (:worksFor N id) /:knows finds all
pairs (x, y) where x is a person who works for themselves and y is someone x knows.

RA properly generalizes RPQ in the direction of UCRPQ’s with the ability to express con-
junctive patterns as in both queries ¢; and ¢, of Example 3.6. Furthermore, RA can express
queries which are inexpressible in all of the languages above, e.g., nonmonotonic queries® such
as our example ¢; above cannot be expressed in RPQ, CRPQ, CQ, or UCRPQ. However, it is
easy to exhibit conjunctive queries expressible in CRPQ, CQ, and UCRPQ which are in turn
inexpressible in RA.

3.2 REGULARPROPERTY GRAPH QUERIES

We next present the regular property graph queries (RPGQs), an extension of the regular
queries [Bourhis et al., 2014a,b, Reutter et al., 2017] to the property graph data model. The
regular queries were introduced as a well-behaved generalization of all the languages presented
in the previous section,® well-behaved in the sense that query containment is decidable [Reutter
et al., 2017]. However, these queries do not support reasoning over the features of the property
graph data model not found in earlier models, such as the property values associated with nodes
and edges in the property graph data model.

We present two formalisms for this new language: regular property graph logic and the
regular property graph algebra. We establish that these two formalisms are equivalent in expressive
power and demonstrate in the following sections of this chapter how the regular property graph
queries are well suited as a vehicle for the study of foundations and practical engineering of

property graph query languages.

5A query Q is monotonic if and only if, for every pair of database instances 1 and I’ it holds that if I € I, then [Q]; €

[olr-

6With the caveat that we restrict RA to its positive fragment, i.e., where we replace “—” with “N”.

22 3. QUERY LANGUAGES
3.2.1 REGULAR PROPERTY GRAPH LOGIC

Regular property graph logic (RPGLog) is a fragment of standard non-recursive Datalog [Green
etal., 2013] adapted to property graphs. Informally, RPGLog corresponds to unions of conjunc-
tive queries on graphs (i.e., all predicates are binary or unary, corresponding to edge labels and
node labels, respectively), augmented with edge variables and a transitive closure operation “x”.
In addition to being tailored to the features of the PGM, RPGLog queries can have nesting of
subqueries.

Syntax

Let & be a set of edge variables and V be a set of vertex variables, where £ NV = @. Edge and
vertex variables allow refer to edges and vertices in the head predicate or in other body predicates
of a rule, e.g., to filter on their properties. Furthermore, let C denote a set of context identifiers.
'The role of context identifiers is to distinguish or identify (i.e., unite) edges created by different
rules. An RPGLog rule has the form

head <« body,,...,body,,constrainty,...,constrainty,

for some n > 0 and m > 0, where
* each body predicate body; is of one of the following forms:
- p(x,y)ASe
= pr(x.y)
= p(),
where p € L is alabel, x, y € V are vertex variables, and e € £ is an edge variable;
* each body predicate constraint; is either of the form
x.p6yqg or x.p6val,

where x,y € VUE, both x and y appear in a non-constraint body predicate (not nec-
essarily the same predicate), p,q € K, val € N, and 0 € {=,#,<,>,<,>}, or, of the
form

X =),

where x, y € Vand both x and y appear in a non-constraint body predicate (not necessarily
the same predicate);

* the head predicate head is either of the form

p(x,y) INc,

3.2. REGULAR PROPERTY GRAPH QUERIES 23

where p € L is a label, ¢ € C is a context identifier, and x, y € V are vertex variables, and
both x and y appear in a body predicate (not necessarily the same predicate), or, of the

form

result(xy, ..., Xp),
where n > 0, result is a reserved predicate not in £, x1, ..., x, € V, and each x; appears in
a body predicate.

Note that for ease of presentation, in this syntax (and the corresponding semantics we give
below) each edge is assumed to have exactly one label. The generalization to finite sets of labels
is straightforward and omitted for the sake of clarity.

Given a set of rules R, the dependency graph of R is the directed graph having as node set
all (and only) those elements of £ appearing in a predicate of a rule of R and with an edge from
x to y iff x appears in the head of a rule r and y appears in the body of r. We say R is recursive
if the dependency graph of R has a cycle; otherwise, we say R is non-recursive.

An RPGLog query is a finite non-empty non-recursive set of rules such that at least one
rule has head predicate result and all result predicates have the same arity.

Example 3.7 Consider the following query ¢ which retrieves the set of all experts which are
known after the year 2000, have a salary below $5000, and are (directly or indirectly) related via
knowing or working relationships to someone having a lower salary:

:knows(x, y) AS k, :Expert(z) ,k.year > 2000,y = z.
knows(x, y) .

:worksFor(x, y) .

:knownExpert(x, x) , :related™ (x, y) ,

x.salary < 5000, y.salary < x.salary.

:knownExpert(y, y) IN a
related(x, y) IN b
related(x, y) IN b

result(x)

Tt

For clarity, we omitted “AS e” from a “p(x, y) AS e” in a rule body if e does not appear elsewhere
in that rule body. Also, note that the query could be simplified, e.g., by dropping the conjunct
“y = z” and replacing z by y in the body of the first rule; we include this here simply to illustrate
basic features of the language. The context identifier b appearing in the two rules with head
“related(x, y) IN b” explicitly demands that only one :related edge is derived for a particular
vertex pair x and y even if both rules with head “related(x, y)” apply to x and y. Instead, the
query demands the derivation of two distinct :related edges for x and y if both rules with head
“related(x, y)” declare a different context identifier.

Semantics
The semantics of RPGLog queries follows closely that of non-recursive Datalog [Green et al.,

2013].

24 3. QUERY LANGUAGES
Let G = (V, E, n, A, v) be a property graph and ¢ € RPGLog. Consider a rule r € ¢:

head < body,,...,body,, constrainty, ..., constraint,,.

A mapping is a function with domain V U € and range O, i.e., assigning object identifiers to
variables. We say mapping w satisfies r in G if p satisfies each body predicate b of r, where
satisfaction of a predicate in G is defined as follows.

* If b is of the form “p(x, y) AS e”:

— in the case where p € A(E), then it holds that there exists an edge € E such that
p(e) = edge, p € A(edge) and n(edge) = ((x), n(y)); and

— in the case where p &€ A(E) U A(V), then it holds that there exists an edge € [p]c
such that (u(x), u(y)) € edge and u(e) € edge.

¢ If b is of the form “p*(x, y)” where p & A(V), then it holds that (u(x), u(»)) € [p*]c-
 If b is of the form “p(x)” where p € A(V), then it holds that u(x) € V and p € A(u(x)).
 If b is of the form “x.p 0 y.q”, then it holds that v(u(x), p) 0 v(i(y),q).

» If b is of the form “x.p 6 val”, then it holds that v(u(x), p) 0 val.

» If b is of the form “x = y”, then it holds that u(x) = u(y).

In all other cases, b is not satisfiable.

We next give the semantics of transitive closure and rule evaluation. We assume we are
given a function to provide fresh object identifiers in O, i.e., IDs distinct from the object IDs
occurring in G and on which v is nowhere defined. We denote this function by wg, which has
domain O x O x C and is injective on codomain O \ (V U E).”

For p € A(E), let p C q be the (possibly empty) set of all rules with head predicate p.
Then [p]¢ = Ureﬁ[[r]](;, where

[rle = {(u&).n(»). 06 (u(x). w(y).c)} | wis a mapping satisfying r in G} .

Here, (x, y) and ¢ are the output variables and context identifier, respectively, appearing in the
head of rule r. As p is non-recursively defined and G is finite, [p]¢ is well-defined and finite.
In the case of a predicate p*(x, y), if p € A(E), then

,G
[P*lc = {(x.x)|xeV}Ul(x.y)|x.y€Vandx 2 yt,

7Essentially, wg is a skolem function which is parameterized by two node identifiers and a context identifier. For a recent
overview of object creation in query languages, see Bonifati et al. [2016b].

3.2. REGULAR PROPERTY GRAPH QUERIES 25

,G .
where x 2> y denotes that for some n > 0, there exists e1,...,¢, € E and vy,...,vy41 € V
such that, x = v1, y = vy41, and, for 1 <i <n, A(e;) = p and n(e;) = (v;, vi4+1). Otherwise,
if p € A(E), then

[P*le = {(x,x)|xeV}IUl(x,y)|x,ye€ Vandx%)y ,
where x % y denotes that for some n > 0, there exists 1, ..., e, € [p]e and v1,...,vp41 €

V such that, x = v1, y = vu41, and, for 1 <i <n, (v;,vi+1) € ¢;. In both cases, as p is non-
recursively defined and G is finite, [p*] ¢ is well-defined and finite.
Finally, let {ry,....rx} € g be the (non-empty) set of all rules with head predicate

result(x1, ..., x,). The semantics of evaluating ¢ on G is the set
l9le = U {(u(x1). ..., u(xn)) | p is a mapping satisfying r in G} .
re{ri,.., ric}

Note that if n = 2 we could define a standard scheme to construct a property graph from [¢]g
as output, if so desired. See Section 3.3.2 for further discussion of this point.

Example 3.8 The query given in Example 3.7 evaluated on the example graph of Figure 2.2
gives us

lale.. = {aD}.

3.2.2 REGULAR PROPERTY GRAPH ALGEBRA

We next give an algebraic presentation of the queries definable in RPGLog. We are motivated
in this by (1) the use of the algebra as a tool in the formal study of path query languages, and
(2) the use of the algebra in the study of engineering of graph queries (e.g., compilation and
execution strategies).

Syntax

'The regular property graph algebra (RPGA) consists of all and only those expressions constructed
over elements of £ using transitive closure, union, and graph join operations. We have the fol-
lowing grammar for the set of subguery expressions subRPGA:

e = L]e*|eUe |'><1§é§i,posj (e,...,e),

where

26 3. QUERY LANGUAGES
* Lel;

* (e....,e)isof length n > 0;

* ¢ € C is a context identifier;

* pos;,pos; € {srcy,trgy, . .., srcy, trg, }; and

* @ is a conjunction of a finite number of terms of the form:

— A(pos) = L for pos € {srcy,trgy, ..., srcy,trg,} and £ € L,

— pos;.p 0 Pos;.q or pos;.p 0 val, for pos;, pos; €
{srcy,trgy, ..., srcy, trg,, edge;, ..., edge,}, p.gq €K, vale N and 60 €{=,#
) <s >7 E’ Z}? or

— pos; = pos; for pos;, pos; € {srcy,trgy, ..., srcy,trg,}.

'Then, expressions e € RPGA are all and only those of the form

M’% (e1,....en),
where n > 0, each e; is a subRPGA expression (1 <i <n), ® is as above, and pos is a list of
length zero or more, containing elements of {srcy, trgy., ..., src,, trg, }.
Note that, as with our exposition of RPGLog above, for ease of presentation each edge is
assumed to have exactly one label. Again, the generalization to finite sets of labels is straight-
forward and omitted for the sake of clarity.

Example 3.9 'The query given in Example 3.7 can be expressed in RPGA as

p<? (<

srcq

D, x

gy g ((knows, (:knows U :worksFor)™)),

where @ is

edge;.year > 2000 A A(trg;) = :Expert A trgy .salary < 5000
A trgq.salary > trg,.salary A trg; = srcy

and x is an arbitrary context ID.

Semantics

LetG = (V, E,n, A, v) be a property graph and e € subRPGA. The semantics of evaluating e on
G, denoted as [e]g, is defined as follows:

* (casee =L € L). [e]¢ = {{n(edge), edge} | edge € E and A(edge) = L};

* (casee = fUg). [e]e = [f]e Ulgls;

3.2. REGULAR PROPERTY GRAPH QUERIES 27

* (case e=f*). [e]lec ={(x,x)|xeV}U{(x,y)|x,y €V andx e, y}, where

[fle .
x —> y denotes that for some n >0, there exists ej,...,e, € [f]¢ and
Ui,...,Un41 € V such that, x = vy, y =vy4+1, and, for 1 <i <n, (vi,vi4+1) € ¢;;
and
* (case e :Mfo’sci,pmj (e1.....en)). For 1<i<n, let (srci, trg; , edge;)

be the schema of [e;]g, where for each ¢={(x,y),z}€ [ei]lc, we
have t.src; =x, ttrg; =y, and r.edge; =z. ‘Then, we have [e]g =

{{(t.posi.t.pos;j), wg (t.posi.t.posj.c)} | t € oa([er]g % -+ x [en])}, where in
evaluating the filter ®

— “U(pos) = €7 is true if and only if A(z. pos) = ¢,

— “pos;.p 8 pos;.q” is true if and only if v(z.pos;, p) 6 v(t.pos;,q),
— “pos;.p 0 val” is true if and only if v(z.pos;, p) 0 val, and

— “pos; = pos;” is true if and only if t.pos; = t.pos;.

Here, o is the standard relational algebra selection operator [Ullman, 1988].

Finally, the semantics of evaluating >3 = (e,e,) € RPGA on G is the set
@
[><os,....posy, €1,---ven)]c = {(t.posy,....1.posy,) |l coo(fer]e x -+ x [en])} -

As with RPGLog queries, if m = 2 we can construct a property graph from [e]¢ if so
desired. Again, see Section 3.3.2 for further discussion of this point.

A Selection Operator

For predicates W built over terms only of the form A (pos) = £ or pos. p 8 val, we could introduce
a value selection operator oy (e) to subRPGA, as a macro for <y - (e). This would facilitate
the standard query optimization heuristic of “pushing down selections” [Ullman, 1989]. Given

such an operator, our running example query Q; can be rewritten as

[
[><]src1 (l><]

Y, ,x

g, g, (O, (:knows), (:knows U :worksFor)™)),

where W, is “trg;.salary > trg,.salary A trg; = srco” and Wy, is “edge;.year > 2000 A A(trg;) =
:Expert A trg; .salary < 5000.”
Note that o is only applicable to a single (binary) subquery e.

3.2.3 EQUIVALENCE AND COMPLEXITY OF RPGLog AND RPGA
RPGLog and RPGA are two syntaxes for the same query language, in the following sense.

28 3. QUERY LANGUAGES
Theorem 3.10

* Let q € RPGLog. There exists e € RPGA such that for any property graph G, it holds that
[9]c = [e]e-

* Let e € RPGA. There exists q € RPGLog such that for any property graph G, it holds that
[ele = lale-

'The proof of Theorem 3.10 follows by a straightforward induction on the structure of queries/-
expressions. Henceforth, we will refer to the family of queries expressible in these languages as
the RPGQ.

It is easy to demonstrate that the complexity of RPGQ evaluation is the same as that of
the Regular Queries which they generalize, namely, NP-complete in combined complexity and
NLogcspace-complete in data complexity.

3.3 RPGQIN CONTEXT

We have introduced RPGQ as a vehicle for further study of the design and engineering of core
graph query language functionalities. Toward this, we conclude our presentation of graph query
languages by putting RPGQ in context with its well-known fragments, practical extensions, and
relationships to practical graph query languages.

3.3.1 IMPORTANT FRAGMENTS OF RPGQO

It can be shown that UCRPQ (and hence also each of RPQ, CQ, and CRPQ) is a (strict) subset of
RPGQ. Likewise, a straightforward structural induction establishes that every expression in the
positive RA (i.e., the RA fragment obtained by replacing the “—” operator with the “N” operator)
can be equivalently expressed in RPGQ.

A useful capability for path querying is to introduce a unary “path projection” operator

m(e):
[r)]ec = {(s,s)]|3r €V such that (s,7) € [e]s}.

Path projection (also known as “nesting”) allows us to perform an existential check, filtering out
those nodes in the graph which do not have an outgoing path selected by e.

Example 3.11 The query ¢ = 7 (:knows™ /:worksFor) evaluated on G of Figure 2.2 results in
l4]e.. = {(10,10),(11,11), (12, 12)}. These are the people who have someone in their :knows
network who works.

Extending RPQ with path projection is known to strictly increase the expressive power of
the language. However, since we can express m(e) in positive RA as id N (e/e™), it follows that
RPGQ contains UCRPQ extended with path projection.

3.3. RPGQIN CONTEXT 29
3.3.2 EXTENDING RPGQ FOR COMPOSABILITY

In our discussion of RPGLog and RPGA above, we noted that a standard scheme could be intro-
duced to convert the output of binary queries to the property graph data model. In general, if a
property graph is desired as output, it is important to consider ways in which RPGQ queries of
arbitrary arity can be extended with property graph creation functionality. Queries with a prop-
erty graph as output are composable, i.e., the output of a query can be used as input of another
query. Composability is an important feature in practice. It facilitates database views, which are
central for modular query writing, external schemas, fine-grained access control, advanced per-
formance tuning, etc. We discuss property graph creation in three steps based on the RPGLog
formalism: (1) creating vertices to abstract matched subgraphs into single entities; (2) creating
edges to connect new vertices to form new graph structures; and (3) creating property values to
populate new graph structures with data.

Creating Vertices

As defined above, RPGLog already allows creating edges, where a match of an arbitrary pattern
expressed in a rule’s body can be abstracted to a connection between two vertices that are part of
that match. However, it is not possible to abstract the whole match into a new entity, i.e., into
a new vertex. To support this, we extend RPGLog with the possibility to create new vertices out
of matches. We call the resulting language RPGLog-V, defined as follows.

Syntax. We additionally allow the head predicate head to be of the form

p() INc,

where p € £, ¢ € C, and p does not appear in query ¢ in any head predicate of the form
“p(x,y) INc.”

Semantics. 'The semantics of this new head predicate is defined analogously to what we have
in Section 3.2.1. For p ¢ A(V), let p C ¢ be the (possibly empty) set of all rules of with a head
predicate of the form “p IN . Then [p]¢ = U,c;[r]c, where

rep
[rle = {wc(r.c)| pisamapping satisfying r in G} .

Here, ¢ is the context identifier in the head of rule r. As above, we require that p is non-
recursively defined and G is finite, so that [p]g is well-defined and finite. Additionally, we
extend the satisfaction of a body predicate b in G by: If b is of the form “p(x)” where p ¢
A(V), then it holds that u(x) € [p]g. We generalized the object identifier function wg to be
parameterized by a pair of mapping p and context identifier c.

Example 3.12 The following rule r; creates a new vertex labeled :TrainingTandem for each pair
of apprentice and expert, where the apprentice works for the expert.

ri: TrainingTandem() IN ¢ <« :Apprentice(x), :worksFor(x, y), :Expert(y).

30 3. QUERY LANGUAGES

Let us assume the query contains another rule r, that creates training tandems for apprentices
working for scholars:

rp : TrainingTandem() IN ¢ <« :Apprentice(x), :worksFor(x, y), :Scholar(y).

If the underlying graph contains an apprentice working for someone who is both an expert and
a scholar, these pairs of apprentices and expert/scholar matches in r; as well as r,. Since both
rule heads have the same context identifier ¢, only a single training tandem vertex is created for
a single pair of apprentices and expert/scholar (instead of two). In contrast, a similar looking
rule r3 creates a new :TrainingTandem vertex for each pair of apprentice and expert, where both
know each other:

r3 . TrainingTandem() INd <« :Apprentice(x), :knows(x, y), :knows(y, x), :Expert(y).

Here, a pair of apprentice and expert that match in r; as well as r3 results in two new
‘TrainingTandem vertices because the rules have different context identifiers ¢ and d, respectively.

Creating Edges

The creation of isolated vertices is seldom useful. Useful queries typically need to connect new
vertices back to (parts of) the match they have been created from. Creating an edge between a
new vertex and its original match requires to have the new vertex wg (i, ¢) and the mapping
side by side. Since rules do not share variables, we need to generalize edge-creating rules and
vertex-creating rules of RPGLog-V to rules capable of creating multiple graph elements at once,
as laid out in the following. We call the resulting language RPGLog-G.

Syntax. We change the head predicate head to be one of the form Hy,Hg or
result(xy, ..., X,), where:

* Hy is a possibly empty set of simple head predicates / of the form
p(O) INc AS v,

where p € £, ¢ € C, v € V, and v neither appears in any body predicate nor in any other
simple head predicate of the same rule;

* HE is a possibly empty set of simple head predicates / of the form

p(x,y) INc,

where p € £,c € C,x,y € V,and both x and y appear in a body predicate (not necessarily
the same predicate); and

* result(x1, ..., Xp) is defined as before.

Although not strictly necessary, it is practical to enforce that Hy U Hg # @ to avoid rules with-
out any output.

3.3. RPGQ IN CONTEXT 31

Semantics. For rule r with a head predicate Hy, Hg, we define
Mro = {,u | p is a mapping satisfying r in G}

to be the set of mappings satisfying the body of the rule, and

M) = (><pen, M,),) < M?

r D.r

to be the set of mappings satisfying the body of the rule and additionally including the new
vertices produced by that rule r.

For p ¢ A(V) UA(E), let p C g be the (possibly empty) set of all rules with a head pred-
icate Hy, Hg such that p € Hy U Hg. Then [p]c = U,¢;[p:rlc, where

° ifp € Hy
[pirle = {oc(u.c) |pe M} and M), = {pU{(ocu,c)} | peM};
and

° ifp € Hg
[p:r]e = {wg(.c) [e M}

Here, ¢ and v are the context identifier and the variable in the simple head predicate p of rule
r, respectively. We still require that p is non-recursively defined and G is finite, so that [p]¢ is
well defined and finite.

Example 3.13 'The following query considers teams of two collaborating experts each with a
coworker. The two experts of a team are the heads of the team; the coworkers are simple team
members. Now, the query looks for a person p who is a member of two different teams that
share at least one head:

:Team() IN c AS t,:head(z, e), :head(t, f), :member(z, x1), :member(z, x7)
< :Expert(e), :Expert(), :collaboratesWith(e, f),
:worksFor(x1,), :worksFor(x2, f).

result(p)
< :member(p, t1), :member(p, t2), :head(t1, e), :head(2,), t1 # t>.

As this Example 3.13 shows, vertex and edge creation allows the transient introduction
of higher-level concepts, such as the team, in the graph and express further query steps with the
help of these concepts. The person could be also found without explicitly introducing teams as
new vertices, but then the query would list all possible constellations of the two teams to find the
wanted person. Instead, the creation functionality allows us to modularize and simplify query
writing by making explicit higher-level concepts.

32 3. QUERY LANGUAGES

Creating Property Values
Another desirable feature is the possibility to assign property values to newly created vertices
and edges. Therefore, we extend RPGLog-G to RPGLog-GP as described in the following.

Syntax. First, we extend the language with value variables; hence, let X’ be a set of value vari-
ables.
Second, we additionally allow a body predicate to be of the form

0.q AS x,

where 0 € VU £, x € X, 0 appears in one other body predicate, x appears in no other body
predicate, and ¢ € K.
'Third, we extend the head predicate of the form Hy, Hg to Hy, Hg, A, where

* Hy is defined as before;
* Hg is a possibility empty set of simple head predicates of the form
p(x,y) INc ASe,

where p € £,c € C,x,y € V,both x and y appear in a body predicate (not necessarily the
same predicate), and e € £ neither appears in any body predicate nor in any other simple
head predicate of the same rule; and

* A is a possibly empty set of assignments of the form
0.q = exp,

where 0 € V U & appears after the AS keyword in one of simple head predicates in Hy and
Hp in the same rule, ¢ € K, and exp is a function N > N with m being the number of
value variables appearing in the body of the same rule.

Semantics. To accommodate the new body predicate in the semantics of the language, we
additionally allow a body predicate b to be satisfied in G as follows.

* If b is of the form “0.q AS x”, then it holds that m(x) = v(m(0), p).

'The semantics of the head predicate Hy, Hg, A in RPGLog-GP extends the semantics of
Hy, Hg in RPGLog-G. Additionally to what we have in that semantics, we define

MrE = (MPGHV Mpl::r) > MrV

to be the set of mappings satisfying the body of the rule and additionally including the new
vertices and new edges produced by that rule r.

For p ¢ A(V) UA(E), let p C ¢ be the (possibly empty) set of all rules with a head pred-
icate Hy, Hg, A such that p € Hy U Hg. Then [p]¢ = Ureﬁ[[p; r] ¢, where the definition of
[p:r]c is extended by

3.3. RPGQIN CONTEXT 33
cifped
[p:7le = {((11(0).q) > exp(u(X)) | € MF}.

Here, 0, ¢, and exp are the variable, the property key, and the function appearing in the simple
head predicate p of rule r, respectively, while A} is the set of value variables appearing in the
body of rule r.

Example 3.14 'The following query considers teams of two persons collaborating with each
other. Precisely, the query asks for teams with an average age greater than 30:

:Team() IN ¢ AS ¢, :member(z, x1), :member(z, x,), t.averageAge = (a1 + az)/2
<« :collaboratesWith(x1, X3), :collaboratesWith(x5, x1),
x1.age AS ap, x,.age AS a5.
result(z, a)
<« :Team(?), t.averageAge AS a,a > 30.

3.3.3 RPGQAND PRACTICAL GRAPH QUERY LANGUAGES

We next illustrate how RPGQ captures the core of the contemporary graph query language G-
CORE [Angles et al., 2018a]. G-CORE is a practical language developed by an international
industry-academia consortium to identify a natural syntax for expressing the most important
graph query language features arising in practice. The RPGQ query presented in RPGLog syntax
in Example 3.7 can be written in G-Core as:

PATH related = (x)-/<:knows+:worksFor>/->(y)

SELECT x

MATCH (z)-[k:knows]->(x:Expert)-/<:related*>/->(y)

WHERE k.year > 2000 AND x.salary < 5000 AND y.salary < x.salary

G-CORE also includes graph creation functionality. As in the Example 3.13, G-CORE al-
lows introducing high-level concepts and queries over those by means of graph creation and
composability. Example 3.13 can be written in G-Core as:

SELECT id(m)
MATCH (m)-[:member]->(t1:Team)-[:head]->(h),
(m)-[:member]->(t2:Team)-[:head]->(h) ON (
CONSTRUCT (ml1)<-[:member]-(t:Team)-[:member]->(m2),
(h1)<-[:head]-(t:Team)-[:head]->(h2),
MATCH (h1)-[:teamsUpWith]->(h2),
(m1)-[:worksFor]->(hl),
(m2) -[:worksFor]->(h2)
)
WHERE t1!=t2

34 3. QUERY LANGUAGES

'The property creation query of Example 3.14 can be also be expressed in G-Core:

SELECT id(t), t.averageAge

MATCH (t:Team) ON (

CONSTRUCT (x1)<-[:member]-(t:Team)-[:member]->(x2)
SET t.averageAge := (xl.age+x2.age)/2
MATCH (x1)-[:teamsUpWith]->(x2)-[:teamsUpWith]->(x1)

)

WHERE a.averageAge > 30
Beyond RPGQ, G-Core allows querying multiple graphs in a single query and foresees extensions
for tabular data input and output to facilitate interoperability with traditional SQL systems.

Other practical query languages do not (yet) support the full power of RPGQ. The arguably
most prominent property graph query language Cypher, in its current version Cypher 9 [Francis
etal., 2018], lacks graph creation, does not allow transitive closure over derived edges, and is not
closed and composable over property graphs. Rather, Cypher 9 is comparable to UCRPQ but
not exactly equivalent. Differences are the matching semantics, which can be described as edge
isomorphism, and the path finding semantics, which queries all paths (bag semantics) instead of
reachable vertex pairs (set semantics). Furthermore, the language does not support the full power
of RPQ. Beyond UCRPQ, Cypher 9 is composable over tables and provides relational function-
ality such as selection, projection, grouping and aggregation, and ordering. Note, however, that
Cypher is evolving in an open process® and Cypher 10 is expected to fill many of the mentioned
gaps. Furthermore, a recently started standardization effort” around Oracle’s PGQL [van Rest
etal., 2016], G-Core, and Cypher gives rise to the hope that practical graph query languages in
the near future will support the full power of RPGQ.

Gremlin,'” the second prominent query language for property graphs, sets the focus on
navigational queries. It can also express UCRPQ, however, with bag semantics for paths and
a look and feel that is more reminiscent of a programming language interface rather than a
declarative query language.

SPARQL [W3C, 2013], the standardized query language for RDF graphs, is comparable
to UCRPQ. It offers graph creating functionality with a CONSTRUCT clause, hence, it can be
considered as closed for RDF graphs. However, the language is not composable, since it does
not allow to use the output of a query as input data of another query without persisting the query
result; cf. Angles and Gutierrez [2011].

VerDiLog [Bonifati et al., 2018] is a graph query and view maintenance engine for regular
queries over dynamic graphs. The underlying query language is based on Regular Datalog, which
captures the transitive closure of UCRPQ and corresponds to the RPGQ-equivalent graph query
language for plain RDF-style graph instances. Additionally, the correctness of the engine’s out-
put is formally guaranteed by its mechanical certification using the Coq proof assistant [Team,

2018].

8http://www.opencypher.org/
‘https://gql.today/ and http://gqlstandards.org/.
Ohttp://tinkerpop.apache. org/

http://www.opencypher.org/
https://gql.today/
http://gqlstandards.org/
http://tinkerpop.apache.org/

3.4. BIBLIOGRAPHIC AND HISTORICAL NOTES 35
3.4 BIBLIOGRAPHICAND HISTORICAL NOTES

The study of graph query languages goes back to at least the 1940’s, with the introduction of
RA by Tarski [1941]. Our presentation of RA follows Surinx et al. [2015]. It is well known that
RA without the transitive closure operation is equivalent in expressive power to the fragment
of first-order logic consisting of all and only those expressions in which at most three distinct
variables are used [Fletcher et al., 2015b, Tarski and Givant, 1987].

In the database research community, graph query languages have been a central topic in the
investigation of various data models, such as in object-oriented, semi-structured, and XIML data
management [Abiteboul et al., 1999, Hidders, 2001]. The introduction of UCRPQ by Consens,
Cruz, Mendelzon, and Wood in the late 1980’s and subsequent study of the language has played
a fundamental role in these investigations [Consens and Mendelzon, 1990, Cruz et al., 1987,
1988].

Reutter et al. [2017] established the complexity of query evaluation and query contain-
ment for the regular queries, and shown that the language contains UCRPQ. Barcel6 et al.
[2012b] demonstrated that RPQ with path projection is strictly more expressive than RPQ. RPQ
and UCRPQ extended with path projection have been introduced and studied in several set-
tings [Barcel6 et al., 2012b, Bienvenu et al., 2014, Bourhis et al., 2014b, Pérez et al., 2010].

Graph query languages with extended abilities to reason about property values (i.e., data)
and comparison of paths have also been proposed and studied; recent work here includes [Barceld
and Mufioz, 2017, Barcel6 et al., 2012a, 2015, Hellings et al., 2013, Libkin et al., 2016, Santini,
2012]. The study of RPGQ with respect to these capabilities is an interesting open topic for
investigation.

Other extensions to graph query capabilities worth mentioning are inclusion of objecti-
fied path [Angles et al., 2018a], objectified subgraph [Junghanns et al., 2016], and RDF*-type
hypervertices [Hartig, 2017]. Graph construction for query languages that are composable over
graphs has been consider already very early [Cruz et al., 1987] in form of edge construction and
has been recently picked up again in the context of property graphs and enriched with aggrega-
tion capabilities [Angles et al., 2018a, Voigt, 2017].

An in-depth study of contemporary practical query language syntaxes has been conducted
by Angles et al. [2017]. For further details on the rich literature and history of graph query
languages, we also recommend several excellent surveys on various aspects of this topic [Angles

et al., 2017, 2018b, Arenas et al., 2018, Wood, 2012, Wu and Khan, 2018].

37

CHAPTER 4

Constraints

Graph-shaped data differs from structured data mainly because of the lack of an underlying
schema and metadata. Graph datasets typically blend values with metadata information without
a clear distinction among them. An important class of metadata is given by integrity constraints
and dependencies, whose goal is to impose the adherence to a specified structure. Constraints
and dependencies may serve the need of imposing a limited schema, solving inconsistencies
among different parts of the graphs in order to fulfill data cleaning tasks or, in the case of inter-
source constraints, aiding the process of exchanging data among different graph data sources.
Graphs arising in many applications exhibit inconsistencies and conflicts that are inherent to
the processes of graph generation, graph reasoning, and graph data integration and fusion. In-
deed, graphs are often obtained by direct translation from other formats and sets of graphs are
integrated into a target graph without paying attention to possible conflicts that may arise in the
process at hand. Due to these reasons, the data quality of graph datasets needs to be defined in
a principled manner in order to be able to detect conflicts and possibly repair them. Graph-to-
graph dependencies are also used to guide the process of translating a graph data source into a
target data source. These dependencies rely on graph queries to extract data from a source graph
and cast it into the format given by a target graph.

In this chapter, we first focus on graph functional dependencies (GFDs), which extend
relational functional dependencies and conditional functional dependencies by specifying graph
patterns and graph property dependencies (Section 4.2). We then present entity graph depen-
dencies (GEDs), which allow to define keys, (conditional) functional dependencies and even
more complex dependencies on graphs (Sections 4.3). Extending relational dependency theory,
we recall the static analysis on such dependencies, including satisfiability, implication, and val-
idation of GFDs and GEDs. We then switch to more expressive dependencies for graphs, such
as graph denial constraints (GDCs), and outline applications and open challenges for the above
families of constraints. We also briefly discuss graph neighborhood constraints along with graph
schema mappings as examples of graph-to-graph dependencies as opposed to the intra-graph
dependencies illustrated before (Section 4.4).

4.1 PRELIMINARIES

We recall the definition of a graph pattern. A graph pattern as defined in Chapter 3 is a verzex-
selecting graph pattern. We report in the following the definition of an edge-selecting graph pattern
as drawn from the property graph data model. Let V be the set of vertex and edge variables.

38 4. CONSTRAINTS
An edge-selecting graph pattern is a directed graph Q[x] = (Vo. Eg. A, i) where

* Vp is a finite set of pattern vertices;
* Ey is a finite set of pattern edges;
* A: Vo UEg — Lisa partial function assigning a label to each vertex and edge;

* X is a list of variables such that either X C V with |x| = |VQ| orx C V with |x| = |EQ};
and

* i:X — Vp is a bijective function assigning distinct variables in X to vertices Vp; or u :
X — E is a bijective function assigning distinct variables in X to edges in Eg.

Notice that the binding variables X can be defined upon vertices or edges in the graph and
this makes the difference between a vertex-selecting graph pattern and an edge-selecting one.

We will rely on this extended definition of graph pattern to define graph constraints in a
convenient fashion. For ease of exposition, we call a vertex-selecting (or, edge-selecting) graph
pattern simply a graph pattern, as its nature will be clear from the list of binding variables.

4.2 GRAPH FUNCTIONAL DEPENDENCIES

We first present GFDs [Fan et al., 2016], a class of dependencies for property graphs that sub-
sume Functional Dependencies (FDs) and Conditional Functional Dependencies (CFDs). Their
expressive power allows to capture inconsistencies on properties of the same vertex (edge, resp.)
or across different vertices (edges, resp.). As opposed to relational FDs, that only involve depen-
dencies among properties, GFDs for property graphs allows the specification of two constraints:
(1) a topological constraint in terms of a graph pattern Q to identify the graph vertices (or the
graph edges, resp.) on which the dependency is defined; and (2) a dependency involving the
properties of the vertices (or the properties of the edges, resp.) in each subgraph identified by

0.
4.2.1 SYNTAX
A GFD ¢ is a pair (Q[X], X — Y), where

* Q[x] is a graph pattern, called the pattern of ¢ and

* X and Y are two (possibly empty) sets of literals of X.

A literal of X has the form of either x.A = ¢ or x.A = y.B, where x,y € X, A,B € K
denote property keys (not specified in Q), and ¢ € NV is a constant. We refer to x.A = ¢ as a
constant literal, and x.A = y.B as a variable literal. Intuitively, GFD ¢ specifies two constraints:

* a topological constraint imposed by the pattern Q_and

4.2. GRAPH FUNCTIONAL DEPENDENCIES 39
* a property dependency specified by X — Y.
We can readily notice the difference between GFDs and relational FDs in terms of their
respective scope. While the scope of an FD spans the entire relation R on which it has been

defined , a GFD is defined on each subgraph matching the graph pattern Q. Precisely, the
dependency X — Y is imposed on the properties of the vertices (edges, resp.) of such subgraphs.

Example 4.1 Figure 4.1 illustrates three graph patterns Q1, Q», and Q3 on which we define
GFDs as follows. Their encoding as CQs is as follows:

01 = (x,y) <« :Expert(x),:Product(y),:creates(x, y)
0, = (x,y) <« :worksFor(x,y)
03 = (x,y) <« :Expert(a),:Product(b),:creates(a,b) AS x,:monitors(a, b) AS y.

Then, we have

¢ = (Ql(x, y),Xx.class = 1 — y.type = 'patent')
¢ = (Qa2(x,y).0 — x.team = y.team)
¢3 = (Q3(x.y),d — x.date = y.since).

GFD ¢, states that experts of class 1 create products that are patents. GFD ¢, states that peo-
ple who work together must belong to the same team. GFD ¢3 states that a product must be
monitored since its creation date.

Notice that Q and Q» are defined on variables x, y bound to graph vertices whereas Q3
is defined on variables x, y bound to graph edges.

Qs
@1 Q2 :Expert :Product
:Expert :Product b@
:creates z
C ‘creates @ C :worksFor @ :monitors y

Figure 4.1: The graph patterns Q1, Q2, and Q3 of GFDs ¢1, ¢, and ¢3, respectively.

4.2.2 SEMANTICS

To define the semantics of GFDs, there exists a match /(X) of Q in a graph G for a literal
x.A = c if there exists a property A at the vertex v = h(x) and v.4 = c¢; similarly for literal
x.A = y.B.We denote by h(x) = X if h(x) satisfies all the literals in X similarly for 2(X) = Y.
We assume an isomorphic matching function p from free variables in Q(X) to an input graph
G, as discussed in Section 3.1.2. We write 4(11(x)) as h(x) whenever it is clear from the context.

40 4. CONSTRAINTS

A graph G satisfies a GFD ¢, denoted by G = ¢, if for all matches i(x) of Q in G, if
h(x) = X then h(x) E Y. We write h(x) E X — Y if h(x) E Y whenever h(x) E X.

We have to take into account the following cases.

* For a literal x.A = ¢ in X, if the vertex v = h(x) does not have a property A such that
v.A = ¢, then h(X) | X — Y, and we say that the GFD is trivially satisfied.

* Foraliteral x.A = cin Y, and h(X) |= Y, then the vertex v = /h(x) must have a property
A such that v.4 = ¢ by the above definition of the satisfaction of a GFD; similarly for a
literal x.A = y.B.

* When X =0, h(X) = X for any match h(X) of Q in G; similarly for ¥ = @.

'The above semantics apply to vertex-selecting graph patterns and the semantics for edge-
selecting graph patterns can be similarly drawn by replacing vertices with edges in the above
exposition. Notice that the implied definition of subgraph isomorphism readily extends to sub-
graph edge isomorphism and is more restrictive than the usual subgraph homomorphism se-
mantics of CQs as presented in Chapter 3.

Example 4.2 Let G, be the graph reported in Figure 2.2 in Chapter 2. Since experts do not
have a property class, the GFD ¢ is trivially satisfied. By contrast, neither G |= ¢, nor G; = ¢3
since both ¢, and ¢3 have an empty left-hand side and none of their right-hand side properties
is present in graph Gj.

Special Cases
GFDs can express relational FDs and CFDs. In such cases, the graph pattern is replaced by a

relation containing tuples corresponding to vertices and edges in a graph.

Example 4.3 Consider for example a GFD ¢4 = (Q4(x), x.company = "Twitter' — x.class
= 1) on a new graph pattern Q4 consisting of only the vertex :Expert with variable x. GFD
¢4 can be easily seen as a CFD if we consider the vertex :Expert in the graph pattern Q4 as a re-
lation E(co, ¢l) and express the CFD as E ([co = "Twitter'| — [cl = 1]) enforcing the fact that
in a given company all experts are promoted to class 1.

A GFD (Q[x], X — Y) is called a constant GFD if X and Y consist of constant literals
only. It is called a variable GFD if X and Y consist of variable literals only. As an example, the
aforementioned GFDs ¢y and ¢4 are constant GFDs, whereas the GFDs ¢, and ¢35 are variable
GFDs. Constant GFDs subsume relational CFDs and variable GFDs subsume relational FDs.
Transposing vertices or edges in a graph to corresponding relations does not lead to express
constraints like the ones in the example above (¢2, ¢3, and ¢4) since they span multiple vertices
and edges in the graph. As a consequence, GFDs are more expressive than CFDs and FDs, the
latter being defined on a single relation. At the end of this chapter, we will provide a recapitulative

classification of relational and graph dependencies.

4.2. GRAPH FUNCTIONAL DEPENDENCIES 41
4.2.3 SATISFIABILITY
We illustrate the satisfiability problem for GFDs. These problems are common to all kinds of

dependencies.

Definition 4.4 A set of GFDs X is satisfiable if there exists a model G such that (1) G = X
and (2) for each GFD (Q[x], X — Y) in the set X, there exists a match /4(X) of Q in G.

Intuitively, satisfiability is needed to check whether there exists a graph G on which all
GFDs in X are satisfiable. In other words, satisfiability is to check whether the GFDs in X are
not conflicting with each other.

Example 4.5 Consider the GFD ¢, presented above. Consider now another GFD ¢5 as fol-
lows:
¢s = (Q1(x,y),x.class = 1 — y.type = 'software release').

The set of GFDs X = {¢1, ¢s} is not satisfiable as there exists no graph G that includes
a vertex :Expert leading via the predicate :creates to a vertex :Product having a property type with
distinct values 'patent’ and 'software release'.

Theorem 4.6 7he satisfiability problem for GFDs is coNP-complete.

Crux. 'The lower bound is proved by reduction from subgraph isomorphism to the complement
of GFD satisfiability. For the upper bound, one can give an algorithm that returns “yes” if X is
not satisfiable, corresponding to the complement of GFD satisfiability. (1) Guess aset ' C X,
a pattern Q such that Q carries labels of ¥ and | Q| is at most the size of the largest pattern in X,
and a mapping from the pattern of each GFD in ¥’ to Q. (2) Check whether the mappings are
isomorphic to subgraphs of Q. (3) If so, derive the set £ of GFDs embedded in Q from ¥’ and
the guessed mappings. (4) Check whether X is conflicting; if so, return “yes.” The algorithm
is in NP as the steps (2), (3), and (4) are in PTIME. Thus, GFD satisfiability is in NP. O

The correctness of the previous algorithm is due to the following Lemma.
Lemma4.7 A set X of GFDs is satisfiable if and only if ¥ is not conflicting.
In order to prove this lemma, we need auxiliary definitions as follows.
Definition 4.8 Embeddable Graph Pattern. A graph pattern Q' = (Vé, EG. A, M’) is em-

beddable in a graph pattern Q = (V. Eg, A, u) if there exists an isomorphic mapping / from
the graph (Vé, E ,Q) to a subgraph of (Vg, Eg), which preserves vertex and edge labels.

42 4. CONSTRAINTS

Definition 4.9 Embedded GFD. Let Q' be an embeddable graph pattern in Q via f. Then
forany GFD ¢’ = (Q'[%'], X' = Y'), ¢ = (Q[x], f(X') — f(Y’)) is an embedded GFD of ¢’
in Q, where f(X’) and f(Y’) are the application of f to each x’ € X" and y’ € Y’, respectively.

Definition 4.10 Embedded and Derived GFD. For a pattern Q and a set ¥ of GFDs, a set
Yo of GFDs is said to be embedded in Q and derived from X if for each ¢ € X, the pattern
of ¢ is Q, and there exists ¢ € X, such that ¢ is an embedded GFD of v in Q.

Definition 4.11 Literals Enforced by GFDs. 'The set of literals enforced by GFDs, denoted

enforced(Xp), from X is computed inductively as follows:

* it (Q[x].0 — Y)isin Xp, then Y C enforced(Xp), i.e., all literals of ¥ are included in
enforced(Xp); and

* if (Q[x]. X — Y)isin X and if all literals of X can be derived from enforced(Xg) via
the transitivity of equality atoms, then ¥ C enforced(Xyp).

Example 4.12 By considering again the GFDs ¥ = {¢1, ¢5}, the set of GFDs enforced(X)
is given by (y.type, 'patent’) and (y.type, 'software release').

Definition 4.13 Conflicting GFDs. X is conflicting if there exist (x.A4, a) and (x.4,b) in
enforced(Xp) such thata # b.

Example 4.14 As previously observed, the GFDs ¢, ¢s are conflicting.

Definition 4.15 Set of Conflicting GFDs. A set X of GFDs is conflicting if there exist a
pattern Q and a set ¥ o of GFDs that are embedded in Q and derived from X, such that X is
conflicting.

The set of conflicting GFDs is used in Lemma 4.7, which is used in the crux of Theo-
rem 4.6.

4.2. GRAPH FUNCTIONAL DEPENDENCIES 43
4.2.4 IMPLICATION

Apart from satisfiability of a set of GFDs, one needs to check the implication of GFDs in order
to discover redundant GFDs. Since GFDs for which we check implication need to be satisfiable,
we assume that this is the case for all GFDs involved in the implication analysis.

Definition4.16 A set of GFDs X impliesa GFD ¢ = (Q[X], X — V), where X is a satisfiable
set of literals, if for all graphs G such that G |= X it holds that G = ¢.

Intuitively, implication is needed to check whether ¢ is a logical consequence of X.

Theorem 4.17 The implication problem for GFDs is NP-complete.

Crux. 'The lower bound is proved by reduction from subgraph isomorphism to GFD implica-
tion. For the upper bound, one can give an algorithm that returns “yes” if £ |= ¢. (1) Guess a
set &’ € ¥ and a mapping from the pattern of each GFD in ¥’ to Q. (2) Check whether the
mappings are isomorphic to subgraphs of Q. (3) If so, derive the set o of GFDs embedded
in Q from ¥’ and the guessed mappings. (4) Check whether ¥ € closure(Zg, X); if so, re-
turn “yes.” The algorithm is in NP as the steps (2), (3), and (4) are in PTIME. Thus, GFD
implication is in NP. O

The correctness of the previous algorithm is due to the following Lemma.

Lemma 4.18 A set of satisfiable GFDs % implies a GFD ¢ = (Q[X], X — Y), where X is a
satisfiable set of literals, if and only if Y is deducible from ¥ and X .

In order to prove this lemma, we need the following auxiliary definitions.

Definition4.19 GFD in normal form. A GFD ¢ = (Q[X]. X — Y) is in normal form when
Y consists of a single constant or variable literal, which is not a tautology (i.e., of the form
x.A = x.A).

Definition 4.20 Closure of GFDs. For a set £p of GFDs embedded in Q, a set
closure(X g, X) of literals is computed inductively as follows:

* X C closure(Xp, X); and

* if (Q[X],X — Y) isin o and if all literals of X can be derived from closure(Xg, X)
via the transitivity of equality atoms, then ¥ C closure(Xg, X).

44 4. CONSTRAINTS

Similarly to closure for relational functional dependencies (cf. Abiteboul et al. [1995]),
closure(X g, X) can be computed in linear time.

We report in the following an algorithm to compute the closure(X g, X), which uses a
GFD at a time and accomplishes the computation in linear time. It suffices to keep track for each
unused (Q[x], X — Y) in X, the count of the properties in X notyetin closure(Xgp, X). The
algorithm is similar to its relational counterpart and as such quite straightforward.

Algorithm 4.1: Compute the closure of GFDs.
Input: A set Xp of GFDs and a set X of properties
Output: closure(Xg, X)
1 for (Q[X], X - Y) € Zp do
count[(Q[x],X = Y) € Zg] := |W|
for A € W do
| list[A]:=1ist[A]U(Q[X]. X - Y) € Tg

A W N

5 closure := X, update := X

6 while update # ¢ do

7 Choose A € update

8 update := update \ {A}

9 for (Q[x]. X - Y) € Xgp € list[A] do

10 count[(Q[x]. X = Y) € Zg] :=count[(Q[x], X - Y) e Zp]—1
1 if count[(Q[x],X — Y) € o] = 0 then

12 update :=update U (Z \ closure)

13 L closure :=closure U Z

14 return closure

Definition 4.21 Deducible Literal. A literal Y is deducible from X if there exists a set X ¢
of GFDs that are embedded in Q and derived from X (cf. Definition 4.10) such that ¥ C
closure(Xg, X).

4.2.5 VALIDATION

As discussed above, satisfiability allows one to check whether a set & of GFDs is ill defined and
thus not suitable to detect conflicts in the underlying graph. On the other hand, implication lets
one verify that there are no redundant GFDs in X. Once the set X of GFDs has been checked
in terms of satisfiability and implication, it still remains to be seen whether a graph G is valid
with respect to X, that is it does not contain any violation of the GFDs in X. Notice that in

4.3. GRAPH ENTITY DEPENDENCIES 45

order to check validation we need the graph G as input to the decision problem, whereas this
was not the case in the previous section.

Definition 4.22 Given a set X of GFDs and a graph G, the validation problem is to decide
whether G = X, i.e., whether for each GFD ¢ € X such that ¢ = (Q[X], X — Y), no violation
h(X) of Q in G exists such that G, £ X with G, being the subgraph induced by i(X) of Q in
G.

Proposition 4.23 The combined complexity of the validation problem for GFDs is coNP-complete.

Crux. 'The lower bound consists of showing that it is NP-hard to check, given G and X, whether
G [%, by reduction from subgraph isomorphism. For the upper bound, we give an algorithm
that returns “yes” if G = X: (1) Guess a GFD (Q[x], X — Y) from ¥ and a mapping / from
Q to a subgraph of G. (2) Check whether / is isomorphic. (3) If so, check whether h(¥) = X
but i (X) £ Y if so, return “yes.” This is in NP. O

We can take advantage of the results obtained in the literature about subgraph isomor-
phism when Q has at most size k, for a predefined bound k (data complexity). Checking whether

Q is a subgraph of G can be done in polynomial time.
Proposition 4.24 "Ihe data complexity of the validation problem for GFDs is in PTIME.

Crux. 'The proof follows from the results on subgraph isomorphism to check whether a fixed
pattern H of order k is a subgraph of G. In our case, given G and X, we take each GFD
(Q[x],X — Y) from X where Q has constant size and we look for a mapping / from Q to
a subgraph of G. This is in PTIME when Q is fixed. a

A similar result applies to the problems of satisfiability and implication of a set of GFDs
¥ for each GFD in ¥ having a graph pattern Q at most size k. The complexity of satisfiability
and implication of a set of GFDs X is in PTIME for graph patterns of size at most k.

4.3 GRAPHENTITY DEPENDENCIES

GFDs, as presented in the previous section, do not cover many practical classes of database
constraints. As an example, they cannot express key constraints on graphs, imposing that two
identical vertices cannot exist and should be merged into one. Graph Entity Dependencies is a
class of dependencies that extend GFDs by adding equalities of vertex identities [Fan and Lu,
2017].

46 4. CONSTRAINTS

4.3.1 DEFINITION AND SPECIAL CASES
A GED ¢ is a pair (Q[x]. X — Y), where

* Q[X] is a graph pattern, called the pattern of ¢ and

* X and Y are two (possibly empty) sets of literals of x.

A literal of X has the form of either x.A = ¢ or x.A = y.B, where x,y € X, A,B € K
denote property keys (not specified in Q), and ¢ € N is a constant. A literal can also be of the
form id(x) = id(y), where x, y € ¥ and id(-) denotes the vertex or edge identities. We refer to
x.A = ¢ as a constant literal, x.A = y.B as a variable literal and id(x) = id(y) as an id literal.
Intuitively, GED ¢ specifies two constraints:

* a topological constraint imposed by the pattern Q, and

* an FD X — Y to be applied to Q.

An id literal states that x and y denote the same vertex (entity), respectively, the same edge
(predicate). In this case, x and y will have the same properties and incident edges, respectively,
vertices.

Example 4.25 Figure 4.2 shows the graph pattern Q;. The GED ¢, =
(Q1(x,y,2),0 — id(y) = id(z)) states that if an apprentice x works for two experts y
and z, then y and z must be the same person (i.e., y and z are actually the same vertex).

@1
:Apprentice :Expert

®

:worksFor

:worksFor

©

:Expert

Figure 4.2: The graph pattern Q; of a Graph Entity Dependency ¢ .

4.3. GRAPH ENTITY DEPENDENCIES 47
4.3.2 PRELIMINARIES

A homomorphism (also called a match) between a pattern Q and a graph G is a map-
ping h from Vo U Eg in Q to V U E in G such that: (i) h(u) = u for every vertex u € Vo
such that Lo(u) = L(h(u)); (ii) for every edge e = (u, p,u’) in Q, there exists an edge
e’ = (h(u), p'.h(u')) in G such that p = p’. An isomorphism between a pattern Q and a graph
G is an injective homomorphism / from Q to G such that 4~! is an injective homomorphism
from G to Q. The reader may notice in the remainder that for GEDs graph homomorphism
is needed to find embeddings of the pattern Q into the graph G, contrarily to what has been
presented above for GFDs, where graph isomorphism would suffice. Since GEDs may contain
equalities between vertex identities, and equalities between vertex identities may be used in the
premises of GEDs, graph homomorphism is indeed needed to map vertices in Q to possibly the
same vertex in G.

4.3.3 CHASING GRAPH ENTITY DEPENDENCIES

We start by defining the chase of G by X, a set of GEDs.

We briefly describe below a chase step for a GED ¢ = (Q[x]. X — Y). Let h(x) be a
match of pattern Q on graph G such that /(X) |= X and / is a literal in Y.

* Constant literals. If / is x.4 = ¢ and the value of property 4 in G is not equal to ¢, then
(a) add property 4 to vertices in G bound by & to variable x if /(x).A does not exist; (b) add
¢ as value of property A.

* Variable literals. If / is x.A = y.B and h(x).A does not match with A(y).B, then (a) add
property A to vertices in G bound to variable A (x) if h(x).A does not exist; (b) add h(y).B as
value of property A.

* Idliterals. If / is id(x) = id(y) and A (x) does not coincide with /(y), then equate A (x) with
h(y).

Note that the first two chase steps above lead to create a new property /(x).4 in Y if such

property does not already exist, as required by 4(X) |= Y, otherwise the result of the chase will

notlead to a graph such that G |= ¢. This is a substantial departure from chase steps for relational

Equality Generating Dependencies (EGDs) in which neither a new property of a relation nor

its value is created since existing values are equated.

A chase sequence of G by X, denoted as chase(Gx, X), is a sequence of chase steps such
that each chase step is triggered by a GED ¢ = (Q[X], X — Y) in X. A valid terminating chase
sequence is a chase sequence that either ends when no GEDs in X can be triggered and leaves
the graph G in a consistent state (i.e., all dependencies are satisfied); or, it is an undefined chase
sequence with result L if any of the chase steps leaves the graph in an inconsistent state (at least
one dependency is not satisfied).

48 4. CONSTRAINTS
4.3.4 SATISFIABILITY, IMPLICATION, AND VALIDATION
We now turn our attention to satisfiability of GEDs.

Definition 4.26 A set of GEDs X is satisfiable if there exists a model G such that (1) G = X
and (2) for each GED (Q[x], X — Y) in the set X, there exists a match 4(X) of Q in G.

Intuitively, satisfiability is needed to check whether there exists a graph G on which
all GEDs in X are satisfiable, which leads to check whether the chase of the GEDs in ¥

(chase(Gyx, X)) is a valid terminating chase sequence.

Theorem 4.27 A set ¥ of GEDs is satisfiable if and only if chase(Gyx, X) is a valid terminating
chase sequence.

Example 4.28 Figure 4.3 shows graph patterns 0, and Q3. Consider two GEDs ¢, and ¢
as follows:

¢2 = (Q2(x,y,2), x.name = x.twitter — id(y) = id(z))
¢3 = (Q3(x1, y1,21, X2, V2, 22),d — X1.name = x1.twitter) .

Despite the fact that a homomorphism exists between Q1 and Q», and the fact that when taken
separately ¢, and ¢3 are satisfiable, the set of GFDs X = {¢,, ¢3} is not satisfiable as there exists
no graph G in which we can merge two vertices y and z with different labels.

Q2 Qs
-Novice :Apprentice :Apprentice -Novice :Apprentice
C) , (20
zZ9 >(T1 > Y1
:knows O :knows / :knows
:knows :knows :knows :knows
ki 'k
o nows @ nows @
:Expert :Expert :Novice :Expert

Figure 4.3: The graph patterns 0, and Q3 of GEDs ¢, and ¢3.

Theorem 4.29 7he satisfiability problem for GED:s is coNP-complete.

4.3. GRAPH ENTITY DEPENDENCIES 49

Crux. 'The lower bound is proved by reduction from 3-colorability to the complement of GED
satisfiability. The reduction is carried out for two subclasses of GEDs, namely the class of GFDs
and the class of GKeys [Fan et al., 2015]. The latter class leverages id literals only, whereas
the former class leverages constant and variable literals. For the upper bound, one can give an
algorithm that returns “yes” if ¥ is nor satisfiable, corresponding to the complement of GED
satisfiability. (1) Compute Gx. (2) Guess a chasing sequence chase(Gyx,) such that its number
of steps is bounded. (3) Check each chase step in chase(Gg, £) such that it leaves G in a
consistent state; if not, reject the guess; if yes, continue. (4) Check whether chase(Gy, X) is
invalid; if so, return “yes.” The algorithm is in NP as steps (2), (3), and (4) are in PTIME. 'Thus,
GED satisfiability is in NP. O

Similarly to what was discussed for GFDs, one can check the implication of a GED from
a set of GEDs.

Definition4.30 A set of GEDs X impliesa GED ¢ = (Q[x]. X — Y), where X is a satisfiable
set of literals, if for all graphs G such that G |= X it holds that G = ¢.

Intuitively, implication is needed to check whether ¢ is a logical consequence of X.

Theorem 4.31 The implication problem for GEDs is NP-complete.

Crux. 'The lower bound is proved by reduction from 3-colorability to GED implication. The
reduction is carried out for two subclasses of GEDs, namely the class of GED,s and the class
of GKeys. 'The latter class leverages id literals only, whereas the former class leverages vari-
able literals only. For the upper bound, one can give an algorithm that returns “yes” if ¥ |= ¢.
(1) Compute the canonical graph G along the same lines as Gx. (2) Guess a chasing sequence
chase(G o, X) such that its number of steps is bounded. (3) Check the validity of each chase step
in chase(Gy, X); if not, reject the guess; if yes, continue. (4) Check whether chase(Go, X) is
inconsistent; if so, return “yes;” otherwise, continue. (5) Check whether ¥ can be deduced from
chase(Gy, X). The algorithm is in NP as steps (1), (3), (4), and (5) are in PTIME. Thus, GED
implication is in NP. O

We now turn our attention to the validation problem for GEDs.
Definition 4.32 Given a set ¥ of GEDs and a graph G, the validation problem is to decide

whether G | X, i.e., whether for each GED ¢ € X such that ¢ = (Q[x], X — Y), no violation
h(x) of Q in G exists such that G, [~ X, with G}, being the graph induced by /(x) of Q in G.

Proposition 4.33 The combined complexity of the Validation problem for GEDs is coNP-complete.

50 4. CONSTRAINTS

Crux. 'The lower bound consists of showing that it is NP-hard to check, given G and X, whether
G = X, by reduction from 3-colorability to GED implication. The reduction is carried out for
two subclasses of GEDs, namely the class of GEDys and the class of GKeys. The latter class
leverages id literals only, whereas the former class leverages variable literals only. For the upper
bound, we give an algorithm that returns “yes” if G = Z. (1) Guess a GED (Q[x], X — Y)
from ¥ and a mapping & from Q to G. (2) Check whether / is an homomorphic match. (3) If
so, check whether A(X) = X but h(X) £ Y if so, return “yes.” This is in NP, O

Similarly to what shown for GFDs, one can readily verify that the satisfiability, implication
and validation problems for GEDs are in PTIME when graph patterns have a bounded size k.
Since these dependencies of bounded size k are of practical interest, we describe in the following
their impact in real-world applications.

4.3.5 EXTENSION TO GRAPH DENIAL CONSTRAINTS

Graph Denial Constraints is a class of dependencies that extend GEDs by adding built-in pred-
icates [Fan and Lu, 2017]. As an example, GFDs or GEDs cannot express constraints on graphs
in which two values must be different from each other.

Definition and Special Cases
A GDC ¢ is a pair (Q[x], X — Y), where

* Q[x] is a graph pattern, called the pattern of ¢, and

* X and Y are two (possibly empty) sets of 6-literals of X.

Empty sets of f-literals are denoted by L. A 6-literal of X has the form of either x.4 6 ¢
or x.A 0 y.B, where x,y € X, A, B € K denote property keys (not specified in Q), c € N is a
constant and 6 is a built-in predicate of the form =, #, >, <, <, >. A literal can also be of the
form id(x) = id(y), where x, y € X and id(-) denotes the vertex or edge identities. We refer to
x.A 6 ¢ as a constant literal, x.A4 6 y.B as a variable literal and id(x) = id(y) as an id literal.
Intuitively, GDC ¢ specifies two constraints:

* a topological constraint imposed by the pattern Q, and

* an FD X — Y to be applied to Q.

An id literal states that x and y denote the same vertex (entity) respectively the same edge
(predicate). In this case, x and y will have the same properties and incident edges (respectively,
vertices).

4.3. GRAPH ENTITY DEPENDENCIES 51

Notice that classical denial constraints can equivalently be expressed as rules of the form
X' — 1, where X’ in such a case corresponds to X U =Y, X and Y being the above sets of
literals.

Example 4.34 Recall the graph patterns Q1, 0, and Q3 in Figure 4.1. We can now rewrite
the above GFDs as GDC:s as follows.

The GDC ¢; = (Q1(x,), x.class = 1 A y.type # 'patent’ — L) states that experts of
class equal to 1 and type different from 'patent’ cannot co-exist in the graph instance. The GDC
¢2 = (Q2(x,y), x.team # y.team — _L) states that people who work together must belong to the
same team.

The GDC ¢3 = (Q3(x, y), x.date # y.since — L) states that a product must be moni-
tored since its creation date.

4.3.6 APPLICATIONS AND PRACTICAL IMPACT OF GRAPH
DEPENDENCIES

Figure 4.4 offers a recapitulative view of the inclusion relations between the various classes of
constraints handled in this chapter spanning from GFDs to GDCs and contrasting them with
their relational counterparts. Graph Entity Dependencies (GEDs) represent a more expressive
class than GFDs and Graph Keys (GKeys). As Figure 4.4 shows, they encompass relational
key constraints (RelKeys) along with relational functional dependencies (Rel-FDs) and rela-
tional conditional functional dependencies (Rel-CFDs) and also relational equality-generating
dependencies (Rel-EGDs). The utility of GFDs relies on the fact that they enable consistency
checking on graph databases. GFDs are, however, not yet used in practice and popular com-
mercial graph databases such as Neo4j that has only simple constraints, such as unique node
property constraints and node keys.! On the other hand, neither GEDs nor GDCs as presented
so far in the literature make use of RPQs (also known as property paths in SPARQL) as their
underlying graph patterns rely on simple labels on the edges rather than on complex regular
expressions. GEDs can also express equalities among vertex identifiers and are also more pow-
erful than Rel-Keys due to the fact that vertex and edge identities can depend on each other and
engender a recursive chain of dependencies. The subset of GEDs using id literals corresponds
to GKeys and serve the need of deduplicating a graph dataset by purging identical vertices (or,
edges). Both GKeys and GFDs can help sanitize real-life knowledge bases, social networks, and
scientific databases in the form of graphs.

GEDs (or GFDs) involving constant literals at least in their left-hand sides correspond
to the relational counterparts of conditional functional dependencies with a fundamental de-
parture from those in that constant and variable literals in the right-hand sides lead to create
properties of vertices or edges whenever these do not exist (as explained in Section 4.3.3). Such

1Unique constraints in Neo4] guarantee uniqueness of a certain property on nodes with a specific label, while node keys allow
to create graph nodes with a mandatory list of properties.

52 4. CONSTRAINTS

GDCs graph-to-graph inclusion
~ 3} —
relational-to-graph inclusion
GEDS(*) >

Rel—D:Cs| ‘Rel—léeys‘ ‘Rel—'FDs‘ \Réi-CFDs\ | GKeys | \Réi-EGDs|

Figure 4.4: Diagram showing the relationships among classes of relational dependencies (DCs,
Keys, FDs, CFDs, EGDs) and graph dependencies (GKeys, GFDs, GEDs, GDCs). The classes
annotated with (¥) are those discussed in depth in this chapter.

dependencies are highly useful in error detection and data cleaning in a similar fashion to their
relational counterparts. In particular, their usage for cleaning the graph database, would im-
ply revisiting the chase in order to replace conflicting values with one of those as suggested by
external information (i.e., the ground truth) or some special symbol.

As for what concerns the occurrence in practice of graph patterns of bounded size k, we
conclude by discussing the graph patterns frequently occurring in real-world SPARQL query
logs. Overall, 56.45% of the SELECT and ASK queries in a large corpus [Bonifati et al., 2017]
use at most one triple pattern, 90.76% uses at most 6 triple patterns, and 99.32% at most 12 triple
patterns. The average number of triple patterns per query for datasets, including DBPedia (across

various years from 2009-2016), LGD, BioPortal, and British Museum, range from 1.16-5.47.

4.4 OTHER CONSTRAINTS FOR GRAPH DATA
MANAGEMENT

We next briefly discuss two additional classes of constraints arising in graph data management.

4.4.1 GRAPHNEIGHBORHOOD CONSTRAINTS

As indicated in the introduction to this chapter, a major application of dependencies is in data
cleaning. Dirty data commonly arises during the creation and the transformation of data sets,
e.g., through incorrect data input or errors in data collection. Having explicit constraints speci-
fying classes of allowable graph instances enables us to identify and repair dirty data.

A recent example of graph constraints for graph data cleaning is the neighborhood con-
straints, introduced and studied by Song et al. [2017]. Here, a constraint is specified as an undi-
rected vertex labeled graph C. We then say a graph G satisfies C if, for each edge (u,v) of G,

4.4. OTHER CONSTRAINTS FOR GRAPH DATA MANAGEMENT 53

either (1) u and v have the same label or (2) there is an edge (u’,v’) of C such that u and u’
have the same label and v and v’ have the same label. The intuition is that only certain types
of vertices are semantically meaningful as neighbors, and the edges of C specify the allowed
neighborhoods of each vertex type (i.e., all vertices bearing a particular label).

Example 4.35 Consider a protein interaction network which has been obtained by an in-
ternational team of researchers, where vertex labels are drawn from Gene Ontology [Song
et al., 2017].> While collaborating, the scientists have introduced erroneous labels on some
vertices of the network. Indeed, the ontology, viewed as a neighborhood constraint C, spec-
ifies that :PlasmaMembrane vertices can only have as neighbor vertices with the labels :Cytoplasm,
:Cytoskeleton, or :CellularComponent. In the network itself, however, we find that there are many
:PlasmaMembrane vertices having edges to vertices labeled :Nucleus.

Satisfaction of a neighborhood constraint is clearly solvable in polynomial time. Finding
high-quality repairs of dirty graphs, however, is significantly more expensive. Song et al. [2017]
introduce two natural repair models for achieving a satisfactory graph, namely, by a bounded
number of (1) vertex label modifications and (2) edge modifications.

Example 4.36 'The violations of the neighborhood constraint in our protein interaction net-
work can be repaired by relabeling the vertices of the graph to satisfy the constraint. Note, how-
ever, that this is not as simple as relabeling the :PlasmaMembrane vertices or the :Nucleus vertices,
as any changes in vertex labels may lead to violations of other neighborhood constraints, cas-
cading through the network. Alternatively, the network can be repaired by removing all edges
between :PlasmaMembrane and :Nucleus vertices. Either approach may lead to an unacceptably
high number of modifications to the network.

Under either the label-modification or edge-modification models, the cost-bounded re-
pair problem is shown to be NP-complete. Consequently, Song et al. [2017] introduced sev-
eral high-quality methods for the approximate repair of dirty graphs under neighborhood con-
straints.

4.4.2 GRAPH-TO-GRAPH CONSTRAINTS

Constraints are also central in the study of data integration and exchange [Arenas et al., 2010].
Although graph data integration and exchange topics are beyond the scope of this book, it is
informative to make a connection to the work in this area.

A graph schema is a finite subset of the alphabet of labels £. We say a graph G has schema
S if every label occurring in G is an element of S. Similarly, we say a query ¢ is defined on graphs
of schema S if every label occurring in ¢ is an element of S.

2http://www.geneontology.org/

http://www.geneontology.org/

54 4. CONSTRAINTS

In graph data exchange, we are interested in mapping a graph under a source schema S to
a graph under a target schema T [Barcel6 et al., 2013, Boneva et al., 2015, Bonifati and Ileana,
2018, Calvanese et al., 2000, 2002, 2013, Francis et al., 2015]. In general, a schema mapping
M is a set of pairs of queries (¢,q’), where ¢ is a query over (graphs of schema) S and ¢’ is a
query over 7', and both queries are of the same arity. M is essentially a constraint between an
instance of S and possible instances of 7'. The instance of S is given as an input to the graph data
exchange problem, along with the schemas S and 7" and the schema mapping M. The possible
instances of schema T are instead to be computed by the data exchange problem. In particular,
given a graph G with schema S, we say graph G’ with schema T is a solution for G under M if

l9le < [q']c’ for every (q.q") € M.

Example 4.37 Returning to our gene interaction network of Examples 4.35 and 4.36, sup-
pose our research team has been invited to contribute author collaboration information to a
bibliographical graph database.

In the team’s graph, author information on scientific publications is captured using the
Contributor Role Ontology® predicates :WritingOriginalDraft (:WritingD) and :WritingReviewAndEditing
(:WritingRE). The Contributor Role Ontology is part of the Open Biological and Biomedical On-
tology” to which the Gene Ontology also belongs. In the bibliographical graph, author collabo-
ration information is captured via the predicate :InNetwork, which links authors who have directly
or indirectly authored a paper together.

A schema mapping for exchanging authorship information from the gene graph to the
bibliographical graph is given by {(q. ¢’)} where ¢ and ¢ are RPQs with

g = ((:WritingD + :WritingRE) ~ / (:WritingD + :WritingRE)) "

g’ = :InNetwork.

Query ¢ identifies all pairs of people (x, y) in the gene graph such that x and y have directly
or indirectly written a paper together. Query ¢’ indicates that for each such pair (x, y), there
should be an edge labeled :InNetwork from x to y in the bibliographical graph.

Graph data exchange under schema mappings has been studied for mappings defined by
RPQs (as in our example above) and many of the generalizations of RPQ discussed in Chapter 3.
Furthermore, the impact of enforcing additional constraints on the target instance has also been
explored. We refer the reader to recent work in the area [Francis and Libkin, 2017] for further
details.

4.5 BIBLIOGRAPHICAND HISTORICAL NOTES

'The theory of dependencies [Fagin and Vardi, 1984] is one of the oldest and most studied the-
ories in relational databases [Abiteboul et al., 1995]. Relational dependencies include (among

3http://obofoundry.org/ontology/cro.html
“http://obofoundry.org/

http://obofoundry.org/ontology/cro.html
http://obofoundry.org/

4.5. BIBLIOGRAPHIC AND HISTORICALNOTES 55

others) primary keys (PKs), foreign keys (FKs), and more expressive FDs as examples of intra-
relation constraints. A generalization of these constraints is represented by EGDs. Relational
inclusion dependencies represent a well-studied class of inter-relation constraints that gener-
alize FKs and whose upper class is given by Tuple-Generating Dependencies (TGDs), which
are a class of dependencies more general than Inclusion Dependencies. Extensions of relational
FDs with conditions (CFDs) have been considered by Fan et al. [2008] in order to capture
inconsistencies in relational data.

Recent influential papers have considered the counterparts of relational dependencies for
graphs and RDF data. The pioneering paper was on the definition of graph keys [Fan et al.,
2015] that have been studied for the problem of entity matching, i.e., the problem of unifying
different entities in graph databases. The problem of scalable parallel algorithms has also been
tackled. Keys for graphs exploit vertex and value identities and can be recursively defined. Graph
keys have been extended to cover more general graph functional dependencies [Fan et al., 2016]
and their static analysis properties (satisfiability, implication, and validation) have been investi-
gated. An axiomatization system similar to its relational counterpart [Armstrong, 1974, Beeri
etal., 1977] has been derived. The problem of evaluating such constraints in parallel on multiple
processors has also been considered and corroborated by experimental analysis [Fan et al., 2016].
Implication and axiomatization of functional dependencies for RDF graphs have been studied by
considering RDF triples as the basic components [Hellings et al., 2016]. The most recent find-
ings about the more expressive classes of GEDs and their extensions to graph denial constraints
and GEDs with disjunction have led to study the complexity of the problems of satisfiability,
implication, validation and parallel scalability [Fan and Lu, 2017]. A new wave of research is
also considering human intervention to guide the repairing process for consistency-detecting
dependencies (CDDs), corresponding to graph denial constraints with only equalities [Arioua
and Bonifati, 2018]. Finally, graph data exchange has been addressed in many recent influential
papers [Barcel6 et al., 2013, Boneva et al., 2015, Calvanese et al., 2000, 2002, 2013, Francis
etal.,, 2015], in which the problems of existence of solutions, query answering and query rewrit-
ing under graph schema mappings are tackled. Their complexity is also studied for different
fragments of graph queries.

57

CHAPTER 5

Query Specification

We describe in this chapter graph query specification techniques to help users formulate path
queries from examples provided as input or via graph exploration. This problem amounts to
learning queries from examples and reverse-engineering queries starting from examples that
users want or do not want. The complexity of these problems has been studied in-depth and
practical implementations have appeared already to witness an increasing interest of the com-
munity toward these approaches.

We focus on interactive graph query specification, which is a novel paradigm for formulat-
ing graph queries that guides the user through the various steps of a workflow, in which he/she
is invited to make choices about focusing on a subset of the initial graph (represented or not as a
summary of the original graph) and to single out a fragment in which labeling helps specifying
what is expected in the query result and what is not, until coming up with a goal query that is
sufficiently close to what the user has in mind. Such a workflow is key to the graph query specifi-
cation process, and involves different problems, such as graph summarization and visualization,
that go beyond a data management perspective.

We also describe the exemplar query paradigm devoted to find isomorphic structures in
the graphs respecting the original specified exemplar query. We will contrast it with the Graph-
Query-By-Example (GQBE) paradigm for graph queries and highlight their differences and
similarities.

We conclude by presenting graph exploration techniques that are driven by an input query
and take user intentions into account.

5.1 PATH QUERY SPECIFICATION

Query specification is a daunting task for non-expert users who are unfamiliar with the query
languages. The problem of query specification is exacerbated for graph databases, that are harder
to query than relational tables [Bonifati et al., 2015]. Indeed, knowledge graphs, examples of
which are DBPedia [Auer et al., 2007, Bizer et al., 2009],' Yago [Suchanek et al., 2007],% Free-
base [Bollacker et al., 2008],*> Microsoft Concept Graph,* typically contain millions of entities
and their relationships. Ordinary users need to inspect these voluminous graphs in order to
http://wiki.dbpedia.org/datasets

2https://github.com/yago-naga/yago3

3https://developers.google.com/freebase/

“http://concept.research.microsoft.com/ and https://www.microsoft.com/en-us/research/project/prob
ase/.

http://wiki.dbpedia.org/datasets
https://github.com/yago-naga/yago3
https://developers.google.com/freebase/
http://concept.research.microsoft.com/
https://www.microsoft.com/en-us/research/project/probase/
https://www.microsoft.com/en-us/research/project/probase/

58 5. QUERY SPECIFICATION

formulate their queries and they may end up writing queries that do not correspond to their in-
tentions. Graph query specification has led to identify novel methods to aid users formulate their
queries. Such methods enable users to specify the expected query results instead of directly tap-
ping into knowledge graphs and searching the nodes and edges to formulate the query. They also
entail a substantial breakthrough with respect to conventional query specification methods, such
as writing query statements or using query-by-example interfaces. In particular, the problem of
reverse-engineering queries from examples has received a great deal of attention recently, and
has been carried out successfully for regular languages, regular path queries, relational database
queries and XML queries. The common ground of these approaches lies in the definability prob-
lem for first-order logic [Arenas and Diaz, 2016], that is to find, given a (relational) database
instance / and a relation R, whether there exists a first-order relational query Q (or a relational
algebra expression Q) such that Q(7) = R (Q evaluated on the instance / gives R as an answer).
'The above informal definition holds for relational (algebraic) queries. In the following, we revisit
the definability problem and its complexity and we discuss its extensions to RPGQ (defined in
this book in Chapter 3) . We then present the mainstream approaches for reverse-engineering
graph queries that are directly tied to the definability problem. We postpone to the next sec-
tion the discussion of exemplar query and GQBE approaches relying on a difterent assumption,
that is asking the users to provide an example of what they want and finding similar entities to
enlarge the query result set.

5.1.1 THE DEFINABILITY PROBLEM FOR GRAPH QUERIES
The RPGQ definability problem is defined as RPGQ-DEF = {(G, res), where G is a graph in-

stance, res is a binary (or unary) relation as query result, and there is a RPGLog query Q such
that [Q]¢ = res} [Arenas and Diaz, 2016]. In the above, we assume that the query Q does not
mention any constants. We call RPGL0ogocons: the fragment of RPGLog that does not contain
literals of the form x.p 6 val. Let U be an infinite countable universe. A graph instance is a set
of vertex and edge relations, corresponding to the graph vertices and to the graph edges, respec-
tively, with each relation a finite subset of U. Given two graph instances G; and G, of a graph,
a function f : U — U is an isomorphism from Gy to G if and only if (i) f is a bijective func-
tion and (ii) for every edge relation (vertex relation,respectively) res in G such that arity(res)=2
(arity(res)=1, resp.), and for every edge p € U? (node e € U'), it is the case that p € res©! if
and only if f(p) € resG2, where f(p) is defined as (f(e1), f(e2)) if p = (e1, e2). Given a graph
instance G, a function f : U — U is an automorphism of G if f is an isomorphism from G to
G itself.

'The active domain of G, denoted by adom(G), is the set of elements of U that appear in
some relation of a graph instance G (analogously for adom(res)). Given a graph instance G and a

5.1. PATH QUERY SPECIFICATION 59

query result res, (G, res) € RPGLoG-DEF only if (a) adom(res) € adom(G) and (ii) AUT(G) <
AUT (res), whereas AUT is the set of all automorphisms on G or on res, respectively.

Example5.1 Let us make an example on the graph schema illustrated in Figure 2.2 in Chap-
ter 2. Let us take a graph instance G containing a unary relation Expert; and a binary rela-
tion :knows;. The pair (G, res) € RPGLoG-DEF, that is, we can find a RPGQ query with-
out constants Q such that [Q]g = res. Such a query is given in RPGLog by result(a, b) <
tknows(a, b) , tknows(b, a). In fact, in this case AUT(G) C AUT(res). Figure 5.1 illustrates the
definable graph query result res.

'Alice' 'Alice’ 'Matthew' 'Alice’ 'Matthew'
'Bob’ 'Matthew' 'Alice’ 'Matthew' 'Alice’
'Matthew' 'Bob' 'Alice’

Figure 5.1: A graph instance G based on relations Expert and :knows and definable graph query

result res.

5.1.2 COMPLEXITY OF DEFINABILITY FOR GRAPH QUERIES

'The complexity of definability has been studied for several classes of queries, including first-order
queries and conjunctive queries, up to considering more sophisticated graph queries. Table 5.1
summarizes the classes of graph queries considered in this book for which the computational
complexity of the definability problem is known. FO-definability is GI-complete [Arenas and
Diaz, 2016], where GI is the class of polynomially reducible to the graph isomorphism prob-
lem. Definability as defined above has been studied for the conjunctive queries (CQs) as well
and has been shown to be CONEXPTIME-complete [Willard, 2009]. RPQ definability re-
duces to definability by a finite language and is PSPACE-complete [Antonopoulos et al., 2013].
Definability for chain and linear CRPQs is PSPACE-complete, for acyclic CRPQs is PSPACE-
hard and in EXPTIME, and definability is in EXPSPACE for general CRPQs [Antonopoulos
et al., 2013]. Finally, definability for UCRPQs is CONP-complete [Antonopoulos et al., 2013],
while definability for single-occurrence regular expressions when only concatenation is admitted
(SORE("))’ is NP-complete [Antonopoulos et al., 2013]. The question about the exact complex-
ity of definability for RPGLog remains open.

5.1.3 FROM DEFINABILITY TO LEARNABILITY OF GRAPH QUERIES

'The problem of learning a graph query starting from a set of examples has been addressed in

the literature for the fragment of Regular Path Queries (RPQs) [Bonifati et al., 2015]. There

5Regular expressions using only concatenation and where every X-symbol can occur at most once.

60 5. QUERY SPECIFICATION
Table 5.1: Summary of complexity results for definability

Query Class ‘ Complexity ‘ Reference

FO GI-complete [Arenas and Diaz, 2016]
CcQ. CONEXPTIME-complete [Willard, 2009]

RPQ_ PSPACE-complete [Antonopoulos et al., 2013]
chain/linear CRPQ_ PSPACE-complete [Antonopoulos et al., 2013]
general CRPQ_ EXPSPACE [Antonopoulos et al., 2013]
UCRPQ_ CONP-complete [Antonopoulos et al., 2013]
SORE(") NP-complete [Antonopoulos et al., 2013]

is a fundamental difference between definability and learnability arising from the assumption
about the input examples. While definability requires the query to select nothing else than the
set of positive examples and considers all other nodes as implicitly negative, learnability allows
the query to select or not the nodes that are not explicitly labeled as positive examples and
thus to include them in the set of negative examples. Therefore, in some sense the positive and
negative examples must be stated as such at the very beginning of the learning process. Given a
set of explicit positive and negative examples starting from which a query needs to be inferred, a
problem that we must solve beforehand is the consistency checking problem, i.e., deciding whether
a query satisfying the aforementioned set exists in the first place.

In the sequel, we focus on node-selecting queries for ease of exposition. The treatment
of edge-selecting queries is equivalent and omitted for conciseness. Given a property graph
G = (V. E), a node-selecting example (abbreviated as example) is a pair (v, @), where v € V and
o € {4, —}. We say that an example of the form (v, +) is a positive example while an example of
the form (v, —) is a negative example. A sample S is a set of examples, i.e., a subset of V' x {4, —}.
Given a sample S, we denote the set of positive examples {v € V | (v, +) € S} by S4 and the
set of negative examples {v € V | (v,—) € S} by S_. A sample is consistent (with the class of
RPQ) if there exists a (RPQ) query that selects all positive examples and none of the negative
ones. Formally, given a graph G and a sample S, we say that S is consistent if there exists a query
g s.t. S+ € ¢q(G)and S— N ¢(G) = . In this case we say that q is consistent with S.

Example 5.2 Consider the graph Gy (cf. Figure 2.2) and the sample S s.t. Sy =
{v10,v11, V12, v13} and S_ = {vis}; S is consistent because there exist queries like
:knows /:worksFor/:knows ™ that are consistent with (S, G).

Let RPQg (v) be the language of all words that match a sequence of nodes from G originating
inv.

5.1. PATH QUERY SPECIFICATION 61

Lemma5.3 Given a graph G and a sample S, S is consistent with (S, G) iff for every v € Sy it
holds that RPQg (v) € RPQg(S-)

From this characterization [Bonifati et al., 2015], we can derive that the fundamental

problem of consistency checking is PSPACE-complete.

Lemma 5.4 Given a graph G and a sample S, deciding whether S is consistent with (S, G) is
PSPACE-complete.

Crux. 'The membership in PSPACE follows from Lemma 5.3 and the known result that decide
the inclusion of NFAs is PSPACE-complete [Stockmeyer and Meyer, 1973]. The PSPACE-

hardness follows by reduction from the universality of the union problem for DFAs, known as

being PSPACE-complete [Kozen, 1977]. O

In the classical framework of language identification in the limit [Gold, 1967, 1978],
one of the conditions that a learning algorithm must satisfy is that it should always answer in
polynomial time: either it returns a query consistent with the examples given by the user or it
outputs a special zu// value if no such query exists. Since consistency checking is intractable,
we cannot always find an algorithm able to always answer n#// in polynomial time when the
sample is inconsistent. As a consequence, the class of RPQs is not learnable in the classical
tramework. One way to circumvent this intractability is to look at restricted classes of queries.
However, as we show next, consistency checking remains intractable (NP-complete) even for
the aforementioned “SORE(:)” fragment. This implies that an algorithm able to always answer
null in polynomial time when the sample is inconsistent does not exist, hence our class of RPQ
queries is not learnable in the classical framework of language identification in the limit [Gold,

1967, 1978].

Lemma 5.5 Given a graph G and a sample S, deciding whether there exists a query of the form
ay - ...-ay (pairwise distinct symbols) consistent with (S, G) is NP-complete.

Crux. For the membership of the problem to NP, we point out that a non-deterministic Turing
machine guesses a query ¢ that is a concatenation of pairwise distinct symbols (hence of length
bounded by |X|) and then checks whether ¢ is consistent with S. The NP-hardness follows by
reduction from 3SAT, well known as being NP-complete. O

'The proofs of Lemma 5.4 and 5.5 rely on techniques inspired by the definability problem
for graph query languages [Antonopoulos et al., 2013].

Since consistency checking is intractable even for simpler subclasses of RPQs, a viable
solution is to use a relaxed notion of learnability by trading the soundness condition and relying
onlearning with abstain [Laurence et al., 2014]. The learning algorithm is then allowed to answer
a special value nu/l whenever it cannot efficiently construct a consistent query. In practice, the

62 5. QUERY SPECIFICATION

null value is interpreted as “not enough input examples have been provided.” However, the
learning algorithm should always return in polynomial time either a consistent query or nu/l.
In other words, the algorithm should efficiently decide whether it can construct a consistent
query or not. As an additional clause, a learning algorithm must also be complete, i.e., when the
input sample contains a polynomially sized characteristic sample [Gold, 1978], the algorithm must
return the goal query. The above clauses are summarized in the following definition.

Definition5.6 A class of queries Q is learnable with abstain in polynomial time and data if there
exists a polynomial learning algorithm learner that is the following.

1. Sound with abstain. For every graph G and sample S over G, the algorithm learner(G, S)
returns either a query in Q that is consistent with S, or null if no such query exists or it
cannot be constructed efficiently.

2. Complete. For every query ¢ € Q, there exists a graph G and a polynomially sized char-
acteristic sample CS on G s.t. for every sample S extending CS consistently with ¢ (i.e.,
CS C S and ¢ is consistent with §) the algorithm learner(G, S) returns q.

A polynomial learning algorithm adhering to the above definition has been presented in Bonifati
et al. [2015], along with the construction of a polynomial characteristic sample to show the
learnability of RPQs. Learnability with abstain for the entire fragment of RPGQ queries, beyond
the simple class of RPQs, is a future direction of investigation.

5.1.4 INTERACTIVE GRAPH QUERY SPECIFICATION

Constructing a characteristic sample S as needed by a learning algorithm or a result set res re-
quired by an algorithm solving the definability problem is overwhelming for end users especially
since they do not have immediate feedback on the eftect of their input on the learning or defin-
ability process. In this section, we discuss an interactive approach to graph query specification
in which the process of building a sample is guided by a minimal number of user interactions.
Users can then refine their input based on the provided feedback on the informativeness of the
provided samples.

Let us assume a large graph instance G, named / in the subsequent steps of the workflow.
We assume that such an instance / is (not mandatorily) equipped with limited schema infor-
mation expressed for instance as graph constraints (for instance of the kind GKeys, GFDs, or
GED:s as presented in Chapter 4). We target non-expert users who are not acquainted with a
formal query language and unable to formulate a query on such a large graph instance /. We
expect that such users are willing to visualize and label fragments I’ of this large instance /
depending on whether or not they would like the fragments as part of the query result. These
labeled fragments can then be used as positive and negative examples in order to construct the

user’s goal query, which in particular satisfies the labels provided by the user. We assume that

5.1. PATH QUERY SPECIFICATION 63

the goal query that the user has in mind belongs to a class of queries Q that is adequate to the
model of the instance that she wants to query. In the remainder, we refer to the class of queries
Q that contains the user’s goal query as the goa/ query class. 'The goal query class Q can for in-
stance be either the baseline class of regular path queries RPQ or the more expressive class RPGQ
considered in this book.

Given the property graph data model, we assume a function that maps a graph instance
encoded in that model to the set of all its fragments. A fragment F is defined as a small part of the
instance that still satisfies the syntax of the property graph data model and that can be visualized
and labeled by the end user. For the property graph data model, a fragment boils down to a graph
node or a graph edge, or a small subgraph including the surroundings of the node or of the edge
in order to let the user inspect the paths and the nodes of interest originating in that node or
in that edge, respectively. The simplest possible labeling that the user can provide is a Boolean
labeling (positive or negative), to indicate whether a fragment should or should not be selected
by the query that she has in mind. However, more complex labeling can be accommodated such
as for instance a confidence degree associated with a fragment or to a portion of a fragment.

'The human feedback necessary to provide labeling should be kept minimal all along the
process, and should concern a small number of graph fragments.

'The steps of the entire interactive workflow are depicted in Figure 5.2.

The workflow bootstraps with a graph instance G and an empty sample S. According
to Definition 5.6, a query g is consistent with S if g selects all positive examples and none of
the negative ones contained in S. Initially, since we have an empty sample S, the set of all
queries in Q is also empty.® The following process is then iterated: starting from 7, choose a
fragment F, label F as positive or negative, and update the set of queries Q consistent with S.
'The iterations are halted when the goal user query is found in the set of queries Q consistent with
S. We assume that successive user labeling is sound,” meaning that if the user labels as positive
a fragment consistently with query ¢, then ¢ always belongs to the set of queries consistent
with the user sample. Of course, the choice of the fragment F is crucial in that it lets the user
eliminate a maximal number of candidate queries from the set of all queries Q consistent with S
(iflabeled as negative) or identifying the minimal set of queries Q to retain (if labeled as positive).
To that purpose, candidate fragments can be identified as uninformative or informative. Given
a sample S, we say that a fragment is uninformative if labeling it explicitly as a positive or a
negative example does not eliminate any query in the set Q consistent with S. Then, a fragment
is considered informative if neither it has been labeled by the user nor it is uninformative.

Pre-Processing and Exploration of the Input Graph

The workflow in Figure 5.2 takes as inpur a large graph instance /7, an empty sample S, and an
initially empty set of candidate queries Q consistent with the samples (step 1 in Figure 5.2).
®The latter is also provided as input to the graph query specification process.

7The assumption of soundness translates to considering the user as an oracle, whose provided labels are always consistent
from one iteration to the next.

64 5. QUERY SPECIFICATION

@ Input: a graph G, an empty sample S, an empty set of queries Q.
@ 1
|Preprocess I to a smaller I'/Summarize I to I'.
® !
—\Is the Aalt condition satisfied? |

® W 5™

Choose fragment F
W.I.L. a stralegy. | Output: final goal query ¢ € Q.

@ coploreliofindl
Ve

@ fragment

Get neighborhood for F. ‘

@ neighborhood of F

propagate label for F
learn the goal query q from all labels

—‘ Ask label for F. |

visualize neighborhood of P
label F with + or — and update S

Vs

Figure 5.2: Interactive workflow for graph query specification.

Since working on the entire instance would be unfeasible for the end user due to the fact that
relevant fragments would have to be exhaustively processed and considered in order to build
the set of queries consistent with it, it is desirable to identify subsets of the entire instance that
are representative of it. For instance, a simple criterion would be to consider the subgraph of
the initial large graph on which we can find the same paths as in the entire graph. This step
(corresponding to step 2 in Figure 5.2) has been instantiated with a generic procedure leading
to randomly choose a subgraph [Bonifati et al., 2015]. Carefully redesigning this step would

5.1. PATH QUERY SPECIFICATION 65

mean to rely on suitable data visualization techniques in order to let the users visually explore
the subgraphs of interest at an appropriate resolution. Classical data mining tasks such as graph
data summarization techniques [Koutra and Faloutsos, 2017, Liu et al., 2018] can be also applied
at this stage to let the user work with smaller graph structures and derive actionable insights
from them. Graph summarization is especially beneficial in order to facilitate the user’s graph
exploration and untangle the “hairball” visualization problem, which oftentimes occurs with
visualization overlays dedicated to networks.

'The number of redundant fragments according to graph isomorphism can be also iden-
tified and used to discard some of the candidate fragments. Alternatively, more sophisticated
techniques based on algebraic operators could permit to establish the equivalence of subgraphs
according to an algebraic visualization design [Kindlmann and Scheidegger, 2014]. To the best
of our knowledge, the interplay of visualization equivalences and graph query equivalences is
not explored so far in the literature.

Blending Fragmentation, Informativeness, and Visualization

'The interactions with the user continue until a halt condition is satisfied (step 3 in Figure 5.2). A
natural halt condition is to stop the interactions when there is exactly one consistent query with
the current sample. In practice, we can imagine weaker conditions e.g., the user may stop the
process earlier if she is satisfied by some candidate query ¢ in Q proposed at some intermediary
stage during the interactions. The fragments shown to the user are chosen according to a strategy,
i.e., a function that takes as input an instance /" and a sample S, and returns a fragment F from
I’ (step 4 in Figure 5.2). Since we want to minimize the number of examples needed to learn the
user’s goal query, an intelligent strategy should propose to the user only informative fragments.
We point out that while it is possible to design an optimal strategy (i.e., that is guaranteed to
propose to the user a minimal number of fragments), such a strategy would be based on the
minimax algorithm [Aho et al., 1983, Russell and Norvig, 2010], thus being exponential and
unfortunately infeasible in practice. Similar to preprocessing, visualization design may turn to be
invaluable to help present the examples to the user and navigate the space of all fragments. This
motivates us to investigate practical strategies (i.e., that efficiently compute the next fragment to
propose to the user) since the rationale is to reduce to the minimum the time between successive
interactions. This approach leads to defining the entropy of a fragment, which intuitively is a
measure of the quantity of information that labeling that fragment brings to the learning process.
The computation of the entropy of a fragment is related to the actual data model and to the
goal query class. Examples of such measures have already been defined for learning relational
joins [Bonifati et al., 2014b, 2016a] and for learning path queries on graphs [Bonifati et al.,
2015]. In any case, an intelligent strategy proposes to the user a fragment that maximizes the
entropy. A fragment by itself does not always carry enough information to allow the user to
understand whether the fragment is part of the query result or not. Therefore, it may happen
that we have to enhance the information of a fragment by zooming out on the neighborhood of

66 5. QUERY SPECIFICATION

such a fragment before actually showing it to the user. The step of constructing the environment
of a fragment may become cumbersome in the case of queries on graph databases. Hence, an
inherent challenge is to compute a small environment of a node that is easy to visualize by the
user and rich enough to permit labeling. Examples of neighborhoods are the surrounding regions
of a node or an edge, or, to a certain extent, the remote regions of the graph that are similar to
the local region of the node by using some similarity criteria. We will come back to this issue in
the next section when presenting the exemplar query and GQBE paradigms.

Label Propagation and Visualization of the Graph Neighborhood

The user visualizes the neighborhood of a given fragment F and labels F w.r.t. the goal query
that she has in mind (step 5 in Figure 5.2). The easiest possible fragment labeling that may
occur is to add positive “+” or negative “~” labels to the fragments that then become positive
and negative samples, respectively (step 6 in Figure 5.2). Then, the label given by the user for
F can be propagated to the rest of the instance in order to prune the fragments that become
uninformative. At this stage, a learning algorithm as described in the previous section (i.e., a
function that takes as input an instance and a sample, and outputs a query consistent with the
sample) can be invoked in order to propose the “best” query that is consistent with all labels
provided until this point. If a learning with abstain algorithm is chosen here, it will lead to
return the goal query or null if no query can be found that satisfies the input samples (step 7
in Figure 5.2 can then return null instead of the learned query ¢). In all the other cases, when
the halt condition is satisfied, the latest learned query ¢ is returned to the user. In particular, the
halt condition may take into account such an intermediary learned query ¢ e.g., when the user
is satisfied by the output of ¢ on the instance and wants to stop the interactions earlier.

5.2 GRAPH SEARCHING FOR QUERYING

In this section, we turn our attention to the problem highlighted in the step 5 of Figure 5.2, i.e.,
the problem of letting the user find relevant surroundings of an initial fragment under scrutiny
in the interactive query specification process. We call this process subgraph searching and un-
derline the fact that it can be guided by an initial user sample. Searching for relevant subgraphs is
also used in novel query paradigms, such as the exemplar query paradigm [Mottin et al., 2016].
Two steps are highlighted in the exemplar query specification workflow. The first step is devoted
to build the user sample, i.e., to identify in the graph instances the subgraphs that are involved
in the initial user sample. In some sense, the first step of the exemplar query paradigm could
be adopted as a means to process the entire graph instance and to reduce its scope (step 2 of
Figure 5.2). This step leverages existing literature on the topic of query answering and keyword-
based search on graphs (Steiner-tree approximations and r-cliques [Kargar and An, 2015, Kas-
neci et al., 2009]). Steneir-tree approximations of weighted graphs lead to define entities with
the closest relationship among each other according to a given cost function, while 7-cliques

are sets of content nodes that cover all the input keywords, and the distance between each pair

5.2. GRAPH SEARCHING FOR QUERYING 67

of nodes is less than or equal to 7. The second step, which is addressed in the exemplar query
paradigm [Mottin et al., 2016], is to be able to find starting from the initial user sample, similar
samples by leveraging congruence relations based on graph isomorphism and strong simulation.
'The exemplar queries is a novel paradigm of query answering in which a query is interchange-
ably treated as a sample of the desired query result set. The final selected query results of the user
are the k most relevant ones, which gives a bound to the problem of enumeration of fragments
in step 5 of Figure 5.2. The results of the evaluation of an exemplar query are called exemplar
answers.

Definition 5.7 Given an RPGQ query ¢ and a graph instance G, the set of exemplar answers
is defined as {res | res’ € [q] such that res ~ res'}.

'The congruence relation & is instantiated with (1) edge-preserving subgraph isomorphism
and (2) various notions of simulation [Henzinger et al., 1995]. The congruence relation can be
instantiated in its basic case with edge-preserving subgraph isomorphism between a query ¢
and an exemplar answer res. It must be interpreted as a bijection & from the nodes of ¢ to the
nodes res such that for every edge e = (u, p,u’) in ¢, there exists an edge e’ = (h(u), p’, h(u'))
in res such that p = p’. Besides subgraph isomorphism and simulation, other notions of sub-
graph matching relations could have been employed here, such as for instance 1-1 homomor-
phism [Fan et al., 2010], which corresponds to an extended notion of subgraph isomorphism,
where edges can be mapped to paths instead of single edges (as is the case in basic edge-
preserving subgraph isomorphism).

'The difference between the exemplar query paradigm (as illustrated in Figure 5.3) and the
interactive graph query specification workflow (as depicted in Figure 5.2) resides in the fact that
the former starts from an initial exemplar query (which can be a small subgraph in the graph
instance G in Figure 5.2), while the latter bootstraps directly with the entire graph instance,
that is then narrowed down to a smaller instance by pre-processing and/or graph summarization
techniques. Whereas we can observe that step 2 is significantly different for the two paradigms
in Figures 5.2 and 5.3, the search of similar exemplar answers as performed in the exemplar
query paradigm can be adopted in step 5 of the interactive graph query specification process
depicted in Figure 5.2.

Before concluding this section, we present a brief comparison of the exemplar query
paradigm with the Query-By-Example (QBE) [Zloof, 1975] paradigm. While in QBE the
user is expected to provide query keywords and query constants (possibly with wildcard) to be
used in predicates, in the exemplar query paradigm, the initial exemplar query represents the
user intentions toward finding similar results (according to the adopted congruence relation).
GQBE [Jayaram et al., 2015] is another paradigm for graph query specification, which is rem-
iniscent of QBE for relational queries and bootstraps with a set of graph entity tuples that are
used to compute the Maximal Query Graph (MQG). In a sense, the MQG has its counterpart
in the initial exemplar query needed as input for the exemplar query paradigm. In the GQBE

68 5. QUERY SPECIFICATION

paradigm, graph searching is performed in a way to find similar candidate subgraphs in the in-
stance graph by also allowing approximate matching. The query space is modeled as a lattice in
which the supremum of the lattice is the MQG and the leaves of the lattice are minimal query
trees, that cannot be simplified further. Strategies on the graph permit to compute the possible
candidate answer set whereas no strict congruence relation is applied as in the exemplar query
paradigm.

The exemplar query paradigm and the GQBE paradigm are exemplified in Figures 5.3
and 5.4, respectively. Notice that both methods mandate the user to provide complex input
(explicit query graph or graph entity tuples), whereas the goal of interactive graph query spec-
ification as in Figure 5.2 is to limit the user input to positive and negative labels on the nodes

and edges of the graph fragments.

@ ‘lnpuz‘: form an initial exemplar query g. ‘
@ '
‘Fiﬂd similar* queries ¢’ to q. ‘

@ q

‘ Output: return the top-k query answers ‘

/

Figure 5.3: Exemplar Query paradigm, with similar* being edge-isomorphic or simulation-
equivalent.

5.3 QUERY-DRIVEN GRAPH EXPLORATION

Throughout the aforementioned paradigms, exploring large graph-shaped data may turn out to
be overwhelming for the end user. In particular, both methods demand as input a set of en-
tities that must be singled out in the graph and that are to be labeled by the user as positive
(or, negative) results of the query to be inferred. The task of graph exploration can be facili-
tated for end users by providing them with appropriate graph summaries. Several criteria can
be adopted in order to steer a given graph summarization technique toward query specification
tasks. Grouping-based summarization techniques that leverage the graph semantic structure
and topology (by considering categorical or numerical attributes) as well as bit-wise compres-
sion techniques can be beneficial to the process of query specification [Liu et al., 2018]. The goal
of this section is to provide insights of how a few existing methods could be extended in order
to take into account the user intentions in the process of graph query inference. Even though

5.3. QUERY-DRIVEN GRAPH EXPLORATION 69

@ ‘[nput: provide example entity tuples ¢t = vy, -+, vp,. |
@ t

‘Fl’ﬂd the maximal query graph M, containing ¢. ‘

©) B

‘ Compute the approximate query answers ¢’

@ .

| Output: return the top-k approximate query answers ‘

Figure 5.4: Graph Query-By-Example (GQBE) paradigm.

user intentions have started to be taken into account in graph clustering and graph outlier detec-
tion [Perozzi et al., 2014], they have not been considered in graph summarization techniques.

While graph sampling could seem a valid option, it is less suited for graph query specifi-
cation in the pre-processing step of the interactive workflow of Figure 5.2, due to the fact that
sampling aims at obtaining a sparsified version of the original graph, where some property of the
original graph is enforced (such as diameter, in- and out-degree distribution, size distribution
of connected components, PageRank score, and so on) [Liu et al., 2018]. In contrast, the goal
of graph summarization is to build groups of nodes that preserve the same connectivity patterns
to the rest of the graph. As such, graph summarization allows to obtain a more compact graph
that is structurally closer to the initial graph than that obtained by graph sampling and that is
more suitable for the upcoming tasks of query specification.

We must also observe that, to the best of our knowledge, very few of the existing methods
for graph summarization take the user intentions as parameters. The only work in this direction
aims at guiding the users toward a small set of interesting summaries amongst the set of all
possible summaries [Zhang et al., 2010]. On the other hand, interestingness is not necessar-
ily guided by the query inference process. A graph summary is defined by adding nodes, called
groups, corresponding to partitions of nodes of the original graph, and adding edges, known as
group relationships, representing the connections among groups. A group relationship between
groups exists if there is at least one edge connecting nodes in the two groups. A group relation-
ship can be strong or weak depending on the number of edges forming the group relationship.
Figure 5.5 shows a possible graph summary that one can obtain from a professional network
in which several experts (exemplifying the running example in the book) collaborate with each

other. We assume that the groups of nodes of HP (high prolific) experts, P (prolific) experts, and

70 5. QUERY SPECIFICATION

LP (low prolific) experts have been created by looking at the number of products created by these
experts. Moreover, in the original graph the number of edges of type collaboration between HP
and P experts is much higher than the number of edges of type collaboration between HP and
LP experts, thus creating one strong group relationship in the former case and one weak group
relationship in the latter case.

RarelyCollaborate HighlyCollaborate
LP Experts P Experts

Figure 5.5: An illustration of a group-based graph summary (HP=High Prolific, LP=Low Pro-
lific, P=Prolific).

'The interestingness of a graph summary is thus measured by leveraging three distinct met-
rics: (i) diversity, corresponding to finding groups of nodes that have diverse semantic relation-
ships (encoded as labeled edges); (ii) coverage, corresponding to the number and sizes of groups
that participate to the graph summary; and (iii) conciseness, corresponding to the summaries
with fewer groups and more semantic relationships, in order to facilitate understandability and
visualization.

Interesting graph summaries are then defined as the summaries exhibiting more diversity
and coverage with respect to the original graph combined with conciseness, in order to meet
the user requirement of being able to display and inspect the graph summary. Given a graph
summary S, interestingness can be defined as follows [Zhang et al., 2010]:

. Diversity(S) x Coverage(S)
Interestingness(S) = Conciseness(S) . (5.1)

'The key intuition behind formula 5.1 is that large graph summaries are informative but less
usable for end users than small graph summaries. Moreover, the above measure does not take into
account the query that the user has in mind. For instance, the above definition of coverage can be
adjusted by taking into account the expected graph query answer sets instead of considering the
representativeness of the entire input graph. Similarly, the notions of diversity for the obtained
graph summary is not necessarily demanded by the user during the query specification process

5.4. BIBLIOGRAPHICNOTES 71

and can be omitted in the above formula leading to the following variation:

. CoverageWrt.DesiredQuery(S)
Interestingness(S) = Conciseness(S) . (5.2)

Deriving a more precise characterization of the notion of interestingness for a graph sum-
mary subject to user inspection in the graph query specification workflow is definitely a future
challenge in this area.

5.4 BIBLIOGRAPHICNOTES

The complexity of the definability problem for several prominent fragments of UCRPQs has
been studied in depth [Antonopoulos et al., 2013]. Due to the fact that the complexity is quite
high, we are not aware of systems implementing this concept. The complexity of satisfiability and
learning of SPJ queries has been tackled in the literature, when the query is, or is not, of bounded
size. We leave the discussion of this complexity explicitly out of this chapter and refer the reader
to previous work [Weiss and Cohen, 2017]. A comprehensive framework for RPQ specification
focusing on the problem of learning from positive and negative examples has been proposed
in Ciucanu [2015]. A preliminary version of the interactive graph specification workflow pre-
sented here appeared in Bonifati et al. [2014a]. In this chapter, we revisit this workflow under
the lens of a deeper understanding of the necessary user interactions, and with observations of
the necessary techniques (graph instance and graph query visualization, graph summarization)
in order to make it feasible in practice. We also contrast it with related graph query paradigms
for non-expert users, such as GQBE [Jayaram et al., 2015] and exemplar queries [Mottin et al.,
2016]. We observe that these two paradigms require different types of input and lead to obtain
different outputs for graph query inference.

Since this chapter focuses on graph query specification, which is the problem of inferring
aquery from a set of positively or negatively labeled query results or from a set of query keywords
(disconnected in the case of QBE and connected in the case of the exemplar query paradigm),
we do not cover other problems, such as graph query reformulation [Mottin et al., 2015] and
graph query relaxation [Poulovassilis and Wood, 2010]. In the latter problems, a query must be
provided as input even though it may occur that is underspecified and/or needs to be generalized
(as in query relaxation) since it gives an empty result (as in the empty-answer [Vasilyeva et al.,
2015] or too-few or too-many problem [Vasilyeva et al., 2016]). The latter problem has been
studied for graph pattern matching queries leveraging the property graph data model, by provid-
ing suitable explanations for the cases of why-empty, why-too-few, and why-so-many queries
and addressing their modifications [Vasilyeva, 2017]. Non-intrusive user intervention while de-
riving the preferred query rewritings is expected, which builds on user preference models based
on past user choices.

A comprehensive survey of graph summarization techniques spanning static and dynamic
graphs has recently appeared [Liu et al., 2018]. Among the techniques for heterogeneous graphs,

72 5. QUERY SPECIFICATION

grouping-based, bit compression-based, and influence-based techniques are worth mention-
ing. The latter two are less query-oriented than the first and are disregarded in our analysis.
Grouping-based summarization for large graphs have focused mainly on the problem of provid-
ing graph summaries that stay small and intuitive for the end-users, while permitting classical
OLAP operations [Zhang et al., 2010]. None of the available techniques takes into account
either the user intentions for subsequent querying of the graph (otherwise known as query spec-
ification needs) or possible classes of queries to be executed on the graph. Work on applying
compression to graph instances by targeting specific queries (reachability and pattern match-
ing queries, respectively) does not take user intentions for query specification into account [Fan

et al., 2012, Fletcher et al., 2015a, Picalausa et al., 2012].

73

CHAPTER 6

Data Structures and Indexes

A property graph is a complex structure requiring some care to be represented in the linear mem-
ory model® of computers. A memory representation for property graphs should be: (1) concise,
i.e., represent a given graph with a small memory footprint; and (2) access-efficient, i.e., allow
queries reading and writing as little data as possible to process a given query as quickly as possi-
ble on the given hardware architecture. Due to complexity of the PGM, there is no single data
structure that can represent a property graph out of the box. Neither is there a representation that
became a de facto standard for PGM. Usually, PGM representations combine multiple ideas
and techniques to represent the various parts of a property graph. Some PGM representations
differ drastically while other PGM representations differ only in a few aspects. To avoid re-
dundancy and repetition, we structure the discussion of PGM representation into the following
main aspects.

1. Conceptual schemas for PGM representation define how the complex PGM structure
is split up into a set of conceptual relations that model the structure of PGM storage.
Most common conceptual schemas for PGM consist of ternary relations, as we show in
Section 6.1.

2. Ternary relations can be represented in various ways using different data structures and en-
codings. We distinguish two principled approaches. The direct representation is discussed
in Section 6.2, while the pivoted representation is discussed in Section 6.3.

3. Adjacency indexing concerns techniques specifically tailored for representing the adjacency
of a graph or more generally a binary relation. We present these in Section 6.4.

4. Reachability indexing concerns indexing techniques specifically tailored for operation on
the transitive closure of a binary relation. We present these in Section 6.5.

5. Structural indexing concerns indexing techniques specifically tailored for the expressive
power of a given query language. We present these in Section 6.6.

Specific implementations and approaches do not always separate these aspects so explicitly
and clearly. We use the separation here primarily to structure the discussion. It allows presenting
individual techniques in a more generalized way, show orthogonalities, and illustrate the vast
space of possible PGM representation formats.

Where not explicitly mentioned otherwise, we do not distinguish between volatile memory and persistent storage but instead
use the term “memory” indifferently for both.

74 6. DATA STRUCTURES AND INDEXES

The discussed data structures and representation techniques have not necessarily been
proposed in the context of the PGIM. Many techniques proposed, e.g., in the context of RDEF, are
also relevant for PGM. Likewise, PGM representations often make use of relational or general
purpose data structures. We focus the discussion on concepts and techniques that are applicable
to PGM representation and have been proposed for or used in graph data management or graph
processing systems.

6.1 CONCEPTUAL SCHEMAS OF PGM REPRESENTATION

Out of the five components of a property graph V, E, n, A, and v, representing V and E is trivial.
Both are merely sets of identities, which can be easily covered implicitly with the representations
of 1, A, and v. Hence, we focus the discussion on 7, A, and v.

Basic schema. The most straightforward conceptual schema for representing property graphs
mirrors the formal definition of the PGM. The three functions, 7, A, and v, are represented
directly as conceptual relations Adjacency, Label, and Property, respectively.

Labels as property. A common approach is to treat labels as properties in the storage sys-
tem. This allows omitting relation Label. Instead labels are represented with a system-reserved
property A in the Property relation.

Edge labels in adjacency. Edge labels are often the primary filter predicate on the adja-
cency. To account for that, edge labels can be stored in a four-column Adjacency relation
(E,Vs,Vi,P(LE)). If the Adjacency relation is meant primarily for forward lookups, i.e., finding
an edge and a target vertex for a given source vertex and edge label, then edges and corresponding
target vertices can be stored as pairs in a single column, so that Adjacency remains ternary.

Partitioned by object type. A fourth common conceptual schema is to store adjacency and
labels as properties and horizontally partition the Property relation by object type into a Vertex
and an Edge relation. The Vertex relation stores all properties and labels of the vertices, while
the Edge relation represents all properties and labels as well as the adjacency of the edges. Here,
the adjacency is represented as system-reserved properties s and ¢ for the source and the target
vertex, respectively.

Universal. 'The universal conceptual schema stores adjacency, labels, and properties of all ob-
jects, i.e., vertices as well as edges, in a single relation. Obviously, this conceptual schema is more
general than the PGM. For instance, it allows vertices to have a source and a target, which is
not provided by the PGM. A system using the universal schema has to enforce the full PGM
semantics at a higher level of its architecture. The advantage of this schema is its simplicity. The
query engine only has to deal with a single base relation.

6.1. CONCEPTUAL SCHEMAS OF PGM REPRESENTATION 75

Table 6.1 shows an overview of these five basic conceptual schemas for the representation
of property graphs. For each relation the underlined columns indicate the primary key. The list
is not meant to be complete, but to show the most common conceptual approaches.

Table 6.1: Conceptual representation schemas for PGM

Adjacency Label Property
Basic Sch = v v | olr) 0 KN
asic dSchema M m w
Adjacency Property
Labels as P
abels as Property @ 0 KU ‘NUP(E) |
Adjacency Property

Edge Labels in Adjacency

V. P(Lp) |ExV, | |0 KU} NUP(Ly)

Vertex Edge

V KA} WUP(Ly)| B KUfdst} NUP(LR)UV
Object

Partitioned

Universal

O KU sty NUP(L)UV |

Group elements. As variations of the conceptual schemas, elements of a domain that are (part
of) the primary key can be grouped into sets according to other domains. The other domains in
the relation form the primary key of the grouped relation. For instance, in an Adjacency relation
(E, Vs, V), E is the primary key. By grouping all E into a set per Vs and V;, the Adjacency relation
becomes (Vy, V;, P(E)) with Vi, V; as its primary key. The cardinality of a grouped relation is
usually lower; the arity remains the same.

Ungroup elements. The opposite of grouping is possible, too. We can ungroup (or unwind)
element sets. In fact, it is a common variation of the aforementioned schemas to ungroup the
label set. For that to be possible, the considered element set, e.g., P(L), must not be part of the
relation’s primary key. For instance, in the basic schema, the Label relation can be ungrouped to
(O, L), with O, L as its primary key. The cardinality of an ungrouped relation is usually higher;

the arity remains the same.

It can be seen that the conceptual schema for PGM storage typically consists of binary
and ternary relations. Obviously, binary and ternary relations can be stored directly as two-
column and three-column tables, so that all generalized table storage structures commonly used
in relational database management systems are applicable. However, a fixed limitation to a small

76 6. DATA STRUCTURES AND INDEXES

number of columns allows for more specialized data structures and representation formats. Most
data structures for ternary relations can be simplified to represent binary relations. In the fol-
lowing sections, we concentrate our discussion on data structures for ternary relations.

A ternary relation R of the form (A4, B, C) is a set of triples (a,b,c) witha € A, b € B,
and ¢ € C. For instance, the ternary relation (E, V, V;) indicates which edge connects which
pair of vertices. Access primitives for ternary relations are /ookups. We denote a lookup on R as a
positive atom R(pq, pp, pc), where p = (pa, pp. pc) € (AU {R}) x (B U {R}) x (C U {R}) and
R(pa. pp.pe) ={t € R|tli] = pli] v pli] = R}, i € [1,3]. N serves as a wildcard here, indicat-
ing a lookup does not filter on the respective domain. We classify such lookups by naming the
domains for which the atom gives a value and not R. For instance, (4, B)-lookups are atoms
R(a,b,R)witha € Aand b € B.

6.2 DIRECT REPRESENTATION OF TERNARY
RELATIONS

Ternary relations can be stored as they are, i.e., as a list of all triples (a, b, c) € R, called a triple
table. The table can be stored row-wise, i.e., as |R| (a, b, ¢) tuples, or column-wise, i.e., as three
arrays 74(R), ng(R), and mc (R). Triple tables have linear space complexity in the size of R.
Without further means, lookups require scanning the whole table. If the table is sorted lexico-
graphically, binary search speeds up lookups that are prefixes of the sort order. A lexicograph-
ically sorted triple table can also be stored in tree structure, which maintains the sorting under
inserts and deletes, e.g., in a B*-tree [Comer, 1979]. Figure 6.1 shows a lexicographically sorted
triple table. It contains an excerpt of the graph shown in Figure 2.1 represented in the universal

conceptual schema with ungrouped label set. Vertex and edge ids are prefixed if “v” and “”,
respectively, to better visual distinction.

6.2.1 VALUE COMPRESSION

Triple tables involve a lot of redundancy; a single value is stored as often as it appears in the
relation. Depending on their domain, individual values may have long and variable-sized byte
representations. Hence, triples table quickly becomes very large and are not efficient to read,
particularly from the main memory. When sorted, however, triple tables can be compressed,
which increases their storage and read efficiency drastically. Feasible compression techniques
should improve the read performance not just the storage foot print. Therefore, they have to
allow for de- and encoding with only small CPU overhead as well as selectively reading only
small parts of a table. Such techniques are typically referred to as lightweight compression. A
plethora of lightweight compression techniques have been developed and studied, especially in
the context of column-wise table storage for main-memory database management systems. We
only outline quickly the most common state-of-the-art compression techniques.

6.2. DIRECT REPRESENTATION OF TERNARY RELATIONS 77

[A=0[B=KU{)s1}| C=NULUV

v10 A :Novice
v10 born 1995
v10 name 'Jason'
vii A :Expert
vii A :Father
vii born 1976
vid name '‘Michael'
e20 A :knows
e20 s vi0
e20 t vii
e20 since 2011

Figure 6.1: A lexicographically sorted triple table representing an excerpt of the graph shown in
Figure 2.1 in the universal conceptual schema with an ungrouped label set.

Dictionary compression. Dictionary compression uses a dictionary table to map each element
of a given domain to a dense domain of positive integer values. Figure 6.2 shows the triple
table from Figure 6.1 dictionary compressed. The dictionary table is typically a lexicographically
ordered list of the domain elements, where an element’s position in the list is its dense domain
encoding. Encoding of a single value takes logarithmic effort to find the element in the sorted
list. Decoding is a direct access to the respective list position. The resulting code values can be
represented with a fixed number of bytes per code and typically require less bytes than the original
elements. In a table, each column can have its own dictionary. If two columns are frequently
compared, e.g., in a join, they should share a dictionary to allow a comparison without de- and
encoding the values.

Delta encoding. 'When a table column is sorted and consists of dense domains, consecutive
values in the column have only small differences. Storing only the increment (delta) can allow
for even less bytes needed per element, as illustrated in Figure 6.3. Note that only positive in-
crements along the sort order are stored as deltas. If a value x; is smaller than its preceding value
Xi—1, then x; is stored instead of the delta x; — x;_;. Delta encoding requires reading all values
from the beginning. To facilitate selective reads, delta encoding is typically applied per block,
e.g., per memory page. All deltas in a block are encoded with the number of bytes needed to
represent the largest delta in the block. In a table, delta encoding works best in the first column
of the sort order. The later a column appears in the sort order, the higher the chance of large
differences between consecutive values in that column.

Variable byte encoding. Variable byte encoding improves delta encoding where a few deltas

are large and most are small. It allows encoding each delta with an individual number of bytes,

78 6. DATA STRUCTURES AND INDEXES

=
:Expert A
:Father s
:knows i
:Novice born
1976 name
1995 since
2011
‘Jason'
'Michael'
vi10
vii
e20

QOI\JG)-P—"O\I(HCOE

—_
o

9

9

9

10
10
10
10
11
11
11
11

mNAO#wOOAwOH

o

Figure 6.2: Triple table from Figure 6.1 dictionary compressed.

so that leading zero bytes can be omitted. One variant uses the high bit of a byte to mark the
last byte of a code word. Another variant stores the number of non-zero bytes a code word has.
'This works particularly well in triple tables since the length information of the three code words
of a triple fits in a single byte. This variant is shown in Figure 6.3.

Deltas Deltas as bytes Deltas variable length encoded
DE B

9 0 |3 00 00 10 01 00 00 00 00 00 00 00 11 2,0,1 10 01 11
Q|8 |8 00 00 00 00 00 00 00 11 00 00 01 01 0,1,2 11 01 01
o 1 7 00 00 00 00 00 00 00 01 00 00 01 11 0,1,2 01 01 11
1 0 O 00 00 00 01 00 00 00 00 00 00 00 00 1,0,0 o1

0 0 1 00 00 00 00 00 00 00 00 00 00 00 01 0,0,1 01

0 3 4 00 00 00 00 00 00 00 11 00 00 01 00 0,1,2 11 01 00
o 1 8 00 00 00 00 00 00 00 01 00 00 10 00 0,1,2 01 10 00
1 0 2 00 00 00 01 00 00 00 00 00 00 00 10 1,0,1 01 00 10
o 1 9 00 00 00 00 00 00 00 01 00 00 10 01 0,1,2 01 10 01
o 1 10 00 00 00 00 00 00 00 01 00 00 10 10 0,1,2 01 10 10
0 3 6 00 00 00 00 00 00 00 11 00 00 01 10 0,1,2 11 01 10

Figure 6.3: Dictionary compressed triple table from Figure 6.1 delta and variable byte encoded.
For illustration purposes, we assume a byte consists of just 2 bits.

6.2. DIRECT REPRESENTATION OF TERNARY RELATIONS 79
6.2.2 VALUE INDEXING

While lexicographically sorted triple tables allow efficient lookups on prefixes of the sort order,
other lookups still require scanning the whole table. Having additional access paths, i.e., indexes,
on the triple table mitigates that. Literature offers a cornucopia of indexing approaches for tab-
ular data. We focus on the principle approaches taken in the context of graph database systems.
We discuss three aspects any indexing approaches for triple tables has to decide on: (1) the basic
types of indexes that should be used; (2) the columns that should be indexed; and (3) the data

structures that are used to store the indexes.

Index Types
First, there are three fundamental index types that can be distinguished, regarding how the index
information relates to the data that is indexed.

Primary index. A lexicographically sorted triple table stored in a tree structure is already a
primary index. However, the triple can be stored in a similar fashion according to a different
sort order. For instance, if table shown in Figure 6.1 is stored in sort order C, B, A4, it would
allow efficiently looking up which object has a given property value under a specific key. With the
lexicographical sort order ABC sucha (C, B)-lookup is, what is described in the sentence before,
(looking up an object with a given key-value p) requires scanning the table. in the sentence
before, looking up an object with a given key-value p. To efficiently support lookups that require
different sort orders, the table can simply be stored redundantly in multiple primary indexes.

Secondary index. Secondary indexes do not contain the complete triples, but just lookup in-
formation and references to the respective triples. For instance, a secondary index for C, B-
lookups would store the reference instead of A values. A secondary index adds an access path,
while trying to avoid the absolute redundancy of another primary index. However, if compres-
sion is heavily used and the actual values can be stored with only very few bytes, the reference
may by even larger than the values. Hence, secondary indexes typically only make sense if they
index a single column or if the primary representation is uncompressed.

Index column. A special form of secondary indexing is an index column, which integrates
additional index information directly into the table. Therefore, an additional column—the index
column—is added to the triple table that stores a pointer with each triple. The pointer points
to the physical position of a next triple in the same subset of triples. All pointers in the same
triple subset form a circular list. This allows efficient navigation of certain triple subsets not
subsequently stored in the primary representation. For instance, column D could store for each
triple a pointer to the next triple with the same C and B values, so that from a given tuple all
other tuples with the same C and B values can be found easily, independent of the sort order of
the primary representation. When used in conjunction with a secondary index, the secondary

index needs to store the reference of a single triple only. The remaining triples can be found via

80 6. DATA STRUCTURES AND INDEXES

navigation. With multiple secondary indexes and multiple indexes columns, each combination
of them facilitates an access path.

Index Configuration

For any specific triple table that should be indexed, it needs to be decided which columns and
column combinations should be indexed, i.e., which index configuration is used. Triple tables
used for graph representation—unlike relations in relational databases—are not tangible to the
user of the graph database system, so that most systems deploy a fixed set of indexes on a triple
table. The following approaches are common for designing the index set.

Exhaustive indexing. Exhaustive indexing means that every lookup can be processed with
the help of an index, so that scanning the whole table is avoided completely. With only three
columns, triple tables have only six possible sort orders. A triple table (4, B, C) can be sorted
by ABC, ACB, BAC, BCA, CAB, and CBA. Having an index for each of the six sort orders
exhaustively indexes a triple table. Exhaustive indexing not only facilitates efficient lookups but
also allows the use of efficient merge join algorithms for joins on any of the columns of the
triple table. This is particularly appealing for a conceptual representation schema that represents
graphs in a single ternary relation like the universal schema (cf. Table 6.1). Generally, the gain in
reading efficiency justifies the six-fold redundancy, particularly when the triples are compressed.
If the query engine uses only a certain subset of lookups, even a fewer number of indexes is
sufficient to exhaustively index the table. For instance, a triple table (E, Vi, V;) (cf. basic schema,
Table 6.1) might be only accessed with (Vy)-, (Vs. E)-, (V;)-, and (V;, E)-lookups, i.e., forward
and backward traversal of edges. In this setting, the table is exhaustively indexed by just two
indexes, a forward index (Vj, E, V;) and a backward index (V;, E, Vj).

Projectionindexing. A projection index does not index all three columns but the projection of
a subset of columns, i.e., a partial sort order. A triple table (4, B, C) has nine partial sort orders
AB, AC, BA, BC, CA, CB, A, B, and C, hence nine possible projection indexes. Without any
turther payload, projection indexes can efficiently answer projected lookups where triple values
of one or two columns are not of interest. For instance, on a triple table (E, Vs, V;), a lookup
may just ask for all outgoing neighbors of a vertex or whether an edge exists between a given
vertex pair. A projection index on (Vj, V;) can efficiently serve these lookups and, very likely, is
considerably smaller than a full index on (Vj, V;, E), since vertex pairs with multiple edges will
have just a single index entry per pair. A typical payload of a projection index is: (1) the number
of triples matching the index entry; (2) a pointer to the first triple in the primary representation
matching the index entry; or (3) both. With pointers as (part of) the payload, a projection index
becomes a secondary index, that can be used in conjunction with index columns. With numbers
of triples as (part of) the payload, a projection index can provide useful statistical information
to the query planner.

6.3. PIVOTED REPRESENTATION OF TERNARY RELATIONS 81

Index Data Structures

Triple tables can be indexed with virtually any index structure for tables. The most common
tree-structure is the ubiquitous B -tree. Research literature offers a plethora of B'-tree variants,
optimized for cache efficiency or other aspects. The use of such proven data structures has also
been proposed in the context of graph database systems.

6.3 PIVOTED REPRESENTATION OF TERNARY
RELATIONS

Alternative to direct storage in a triple table, ternary relations can be stored in a pivoted
table. To do so, the primary key of the relation must consist of two domains. A relation
R (A, B, C) with a primary key (A, B) can be presented as a table P (A, Cpyve-ns Cbu;\)’ where
Cp = nc(op=pR). All triples o4—4 R are stored in P in a single record r € P, with r[A] = a
and r[Cy] = ¢ if (a,b,c¢) € R or r[Cp] = R otherwise. For instance, consider the Vertex relation
(V,KU{A} , N UP(Ly)) of the partitioned schema, cf. Table 6.1. If represented in a pivoted
table, each vertex with all its label set and all of its property values is stored in a single record.
An example is shown in Figure 6.4.

L ene bon Lo gadies masaria e

v10 {:Novice} 'Jason' 1995 J! '@jjo5'
vi1 {:Expert,:Father} 'Michael' 1976 R 1998 I N
vi2 {:Apprentice} = 'Matthew' 1989 2 N I N

Figure 6.4: A pivoted table representing the vertices of the graph shown in Figure 2.1 according
to the Vertex relation of the partitioned conceptual schema.

As mentioned, the pivoted table representation is only applicable to ternary relations with
a two primary key domains. Relations with three primary key domains can be grouped into
having only two primary key domains. Relations with only one primary key domain can be
represented in pivoted form, but it is not a very reasonable thing to do. If one of the non-
primary key domains is a power set, the relation can be ungrouped into having only two primary
key domains.

The main advantage of a pivoted table is that it drastically reduces the number of joins
needed to access all C that belong the same A compared to an unsorted triple table representation
of the same relation. In the example of Figure 6.4, vertex 10 can be accessed with all its labels and
properties by reading a single record, while in an unsorted triple table that would require four
join operations. When building on a relational storage engine, the pivoted table representation
allows utilizing the full ability of storing a table with an arbitrary number of columns.

'The main disadvantage of this approach is that property graphs are schema-flexible and
none of the domains are fixed. As a consequence, the record format of the pivoted table is not

82 6. DATA STRUCTURES AND INDEXES
stable. Further, the pivoted table typically includes many NULL values (R), as can be seen in

the example of Figure 6.4. As their main effect, an unstable record format and the presence of
N values increases the interpretation overhead when reading the table and reduces the efhiciency
of scans. A number of mitigating techniques are available that stabilize the schema of a pivoted
table. The techniques can be categorized as (1) emerging schemas and (2) schema hashing.

Emerging Schemas

'The emerging schemas approach builds on the observation that the data schema of most property
graphs is flexible but not arbitrary. Although PGM defines the schema elements (labels and
property keys) as merely descriptive, they are used rather strictly on the side of the applications
in many use cases. Typically, the schema elements stabilize after a certain time. This can be
exploited on the database side to have pivoted tables with a stable record format. Essentially, a
pivoted table is partitioned horizontally and vertically, so that some partitions contain only R
values. Obviously, these R partitions can be omitted. The remaining partitions have less columns
and fewer R values. Figure 6.5 illustrates this idea and its effect for the pivoted table shown in
Figure 6.4. The partitioning can be done in a number of ways, which we discuss next.

gracuatcd [l V| micdelita
vi10 {:Novice} ‘Jason' 1995 vi1 R 1998 v10 J.! '@jjo5'
vi1 {:Expert,:Father} 'Michael' 1976 vi2 2 N

vi2 {:Apprentice} 'Matthew’ 1989

Figure 6.5: A pivoted table from Figure 6.4 partitioned based on an emerging schema.

Horizontal partitioning by label sets. A very simple partitioning strategy is to horizontally
partition the pivoted table by the label set of each object. Columns not instantiated in a partition
are omitted in that partition. Obviously, this strategy is only applicable to tables with a label
set column. However, if labels are used by the data modeler to denote classes of objects, this
approach works well. Objects of the same class typically have the same properties.

Vertical partitioning by property sets. Another strategy is to vertically partition the pivoted
table by sets of properties that typically occur together. Objects that do not instantiate any prop-
erty in a partition are omitted in that partition. For this approach to work, good property sets
have to be identified. Given a pivoted table, good property sets can be found by clustering the
property keys. The distance of two property keys, a and b, is the Jaccard distance [Levandowsky
and Winter, 1971] between X, and Xj, where X, and X}, are the sets of all objects that have
the property a and b, respectively.

Horizontal partitioning by property sets. Good property sets can also be found by starting
with all distinct property sets of objects and merging infrequent property sets, which likely

6.3. PIVOTED REPRESENTATION OF TERNARY RELATIONS 83

belong to the same semantical class of objects. In each iteration, the most infrequent property
set is merged with the closest one according to the Jaccard distance of the sets. This results in
horizontal partitioning of the pivoted table. A refinement of this approach uses the TF/IDF
score of the properties among all property sets and computes the distance of two property sets
as the normalized scalar product of their TF/IDF score vectors. This way, the properties that
are distinctive for a property set, i.e., do not appear in many other property sets, have a higher
weight in the distance. The refinement can also be used to merge new property sets introduced
by inserts of new entities. In general, this approach assumes a rather static database and has to
be rerun if the database significantly changes. To deal with dynamic datasets, the system can fix
the maximum size for partitions. New entities are assigned to the closest partition. If a partition
is full, it is split into two, using the same distance measure.

Schema Hashing

Schema hashing utilizes hash functions to map a pivoted table to a stable record format. A
pivoted table P (A, Cpyveeos Cb\m) is mapped to a table P’ (A, XlB, XIC, e Xf, ch), where a
pair XB, XE is column group i. The resulting table P’ has stable record format consisting of
column A and n column groups. Values in columns Cp,, ..., Cp, are mapped to the column
groups with a hash function i : B — N. For each record r € P in the pivoted table, the value
r[Cp] is mapped to r'[X B, Xic] = (b, r[ij]) in P’, withi = h(b). Obviously, the hash function
can result in collisions so that two values of the same tuple r are mapped to the same column
group. In this case, one of the two colliding values is stored in 7’ and the other value is stored in
a second record ', called a spill record. Additionally, a list of hash functions can be used to be
able to fall back to the next hash function in case of collisions and, therefore, reduce the chance
of spill records.

Figure 6.6 shows the pivoted table from Figure 6.4 with schema hashing applied. Here,
the collision occurred between twitter and middlelnitial on vertex 10. Both are mapped by & to
column group 3, so that middlelnitial is stored in a spill record. In combination with dictionary
compression, schema hashing provides a stable, fixed-length record format for pivoted tables.

with h(X\) = 0, h(name) = 1, h(born) = 2,
h(class) = h(twitter) = h(graduated) = h(middlelnitial) = 3

120) T [e e

vi0 A {:Novice} name ‘'Jason' born 1995 twitter '@jjo5'

vi0 N N N N [I middlelnitial J!
vil X\ {:Expert,...} name 'Michael' born 1976 graduated 1998
vi2 X {:Apprentice} name ‘Matthew' born 1989 class 2

Figure 6.6: Schema hashing applied to pivoted table shown in Figure 6.4.

84 6. DATA STRUCTURES AND INDEXES
6.4 ADJACENCY INDEXING

In the following, we discuss data structures designed primarily to represent the adjacency of
directed graphs. Such data structures can be used to perform adjacency-centric operations, such
as breath-first search (BFS) and depth-first search (DFS) for query processing (cf. Chapter 7),
on a concise representation. Two main variants can be distinguished. (1) An existential adjacency
index stores the existence of an adjacency between a pair of vertices. Conceptually, an existential
adjacency index represents a binary relation R (A, B). (2) A referential adjacency index stores
additional information ¢, e.g., an edge id or an edge label, for each pair of vertices as typically
needed in PGM storage. Conceptually, a referential adjacency index represents a ternary relation
R (A, B, C) with A, B as primary key.

Any adjacency index should allow efficient neighborhood lookups for a given vertex, i.e.,
return all {b | (a,b) € R} for a given a (all {(b,c) | (a,b,c) € R} for a given a, respectively).
When deployed for edge-labeled graphs, an adjacency index is often partitioned by the edge
label, i.e., the system maintains one adjacency index per label or label set. For multi-graphs, i.e.,
when multiple edges can connect a given pair of vertices, referential adjacency indexes have to
use ¢ to reference a list of edges instead of a single one. For PGM, adjacency indexes are often
used as secondary projection indexes in combination with a pivoted representation of the edges.

In the following, we discuss data structures for existential adjacency indexes. Additionally,
we mention how each data structure can be extended for use as referential adjacency index.

6.4.1 UNCOMPRESSED ADJACENCY REPRESENTATION

An uncompressed adjacency representation is invariant of an isomorphism of the represented
graph in the sense that its space requirement only depends on graph invariants, such as number
of vertices, number of edges, degree, etc. It may utilize a given lexicographical order of the
vertices for binary search but does not exploit any particular permutation of the vertices.

Matrix. A matrix m of size |A| x | B| stores a 1-bit at m; ; for each pair (a;.b;) € R and a
0-bit otherwise. The matrix is linearized into a bit string with j + (i - |B|) being the string
position of m; ;. a; is the i-element in 4 according to its lexicographical order; the analog holds
for bj. Lookups have to determine the index of an element in the lexicographical order of its
domain. To avoid rows and columns containing only 0-bits, 4 and B have to be dense domains,
so that A = m4(R) and B = mp(R) hold, respectively, which can be achieved by dictionary
compression of R. Figure 6.7 shows a matrix representation. Here, the binary relation R(4, B)
contains all edges of the graph shown in Figure 2.2. As can be seen, for instance, the existence
of edge 22 is marked in the matrix with a 1-bit at my11,12. If R represents the edges of a graph
(as in the figure), the two columns of the binary relation typically share a dense domain V.
In consequence, the matrix contains 0-bit rows for vertices without an outgoing edge, such as
vertex 16, and 0-bit columns for vertices without an incoming edge, such as vertex 10. Also

visible in the figure is the matrix cannot directly represent multi-graphs. The fact that vertex 15

6.4. ADJACENCY INDEXING 85

and vertex 16 are connected by edge 29 and 30 in the same direction is lost in the single1-bit at
My1s,v16. However, many complex graph operations, e.g., the graph isomorphism test, as defined
in graph theory for simple graphs, are based on adjacency matrices and can be implemented
easily on top of a matrix representation with the help of libraries for linear algebra. The matrix
representation has quadratic space complexity of O(|A| - | B]) and is therefore only space efficient
for very dense binary relations. In the context of graphs, binary relations are typically sparse, i.e.,
|R| < |A|-|B|. When used as a referential adjacency index, the matrix stores ¢ instead of the
bit at mj ;.

| 4B |
edge 20 v10 vi1

edge 25 |vi10 vi4
edge 21 v11 vii vl0 wvll w12 913 wv14 wvl5 wl6

edge 22 \vid [vi2 Zi? o 0 0 1 0 0

edge 23 vi2 vii 12

edge 24 vi12 vi3 v13

edge 26 vi2 vis V14
v15

edge 27 |v13 vi16 v16

edge 28 vi4 vi5

edge 29 v15 vi6

edge 30 v15 vi16

OO O o oo
OO OO =
OO O oo
[N eBeBaol S =
OO O o oo
OO = OO
O = O = OO

Figure 6.7: Matrix representation for a binary relation R(A, B) containing the edges of the graph
shown in Figure 2.2.

Compressed sparse row (CSR). CSR is a concise and efficient lookup structure. To store a
binary relation R (A, B), it uses an array d of size |A| and an array T of size |R|. T stores the
value of b for each (a,b) € R in lexicographical order AB. Again, let a; be the i-element in A
according to its lexicographical order with i € [1, |A[]. The array a stores at a[i] the start index of
all tuples (a;, R), so that 4[1] = 1 and a[i + 1] —a[i] = |R (a;, R)|.? Figure 6.8 shows the edges
of the graph from Figure 2.2 encode in a CSR structure. As can be seen, all outgoing neighbors of
vertex 12 can be found by looking at @[3], which yields 5. Then, T'[5] contains the first outgoing
neighbors of vertex 12. The a[4] — a[3] = 3 consecutive fields starting with 7'[5] contain the
complete outgoing neighborhood of vertex 12. The pure CSR structure consists only of the arrays
a and T. The vertex array and the edge array are shown for better illustration. Nevertheless, if
a CSR structure is used to store a multi-graph, it is typically accompanied by an edge array (or
edge label array) as show in the figure. A CSR structure avoids redundancy by factoring out
all as and, in practice, requires less space than the matrix representation, particularly when the

2Assuming 1-based array indices.

86 6. DATA STRUCTURES AND INDEXES

graph is sparse. To keep @ minimal in size, A has to be a dense domain. Lookups with a given
a; need a single access to ali] to get the position of a’s neighborhood in 7. A binary search
over the neighborhood efficiently finds a given b. Lookups without a given a; require scanning
the complete structure. A more updated friendly variant of CSR stores a separate T, for each a
and the memory address of 7, in a[i]. Additionally, delta encoding and variable byte encoding
as described in Section 6.2.1 can be applied to each 7,. When used as a referential adjacency
index, T stores pairs (b, ¢).

Vertices A in lexicographical order | 10 [11 | 12 | 13 [14 | 15| 16

Neighborhood positiona| 1 | 3 | 5 [8 | 9 | 10| 12

Neighborhood (target vertices) 7 | 11 [14 | 11 | 12| 11 [13 [15| 16 | 15| 16 | 16

%

Figure 6.8: CSR structure for a binary relation R(A4, B) containing the edges of the graph shown
in Figure 2.2.

Density-adaptive CSR. Graphs often have very dense subgraphs as well as hubs—vertices
with very high out-degree. CSR, however, treats all vertices equally. Representing the neigh-
borhood set T, of vertex a as a list of integers (vertex ids) is suitable for sparse neighborhood
sets, i.e., neighborhood sets with low densizy. The density of a neighborhood set is the cardinality
of the set divided by the value range of the set. Dense neighborhood sets can be stored more
compactly as a bit sequence of length |B|, where the b’th bit is set to 1 if b is in the neighbor-
hood set. A system can easily choose the representation for each T, separately based on collected
statistics about the density and the cardinality of the neighborhood set. For neighborhood sets
with a non-uniform density, it is possible to divide a neighborhood set into blocks and choose
the representation per block. Blocks are either defined individually for each T, by identifying
dense subsets of neighborhood set or globally with fixed range partitioning of B.

Re-pairing. A CSR representation can be further compacted with an array compression tech-
nique called re-pairing. Re-pairing replaces frequent pairs in an array with single symbols. Ap-
plied to CSR, re-pairing scans over the array T and replaces the most frequent pair xy in 7'
with a new symbol s ¢ B. It records a rule s — xy in a dictionary. Only pairs T[j — 1]T[] are
considered such that i ¢ a, i.e., T[j — 1] and T'[j] belong to the adjacency list of the same a.
'The process is repeated as long as pairs appear more than once in 7. Refinements of this basic

6.4. ADJACENCY INDEXING 87

procedure allow performing the replacement efficiently with a fixed amount of additional space
on top of T.

6.42 COMPRESSED ADJACENCY REPRESENTATION

Many graphs exhibit /ocal similarity in their adjacency structures. Vertices that are adjacent or
in proximity share many neighbors. In social graphs, for instance, two persons that are friends
typically have a high number of shared friends. Local similarity can be exploited for a more
succinct representation of the adjacency. For that, the lexicographical order of vertices (or their
ids) has to reflect the locality, i.e., the difference of the order number of two vertices should be
small if the two vertices are proximal and share many neighbors. In web graphs, where vertices
represent web page URLs and edges represent links, the lexicographical order URLSs reflects the
locality out of the box. In other graphs, a BES or label propagation can be used to assign locality-
reflecting ids to vertices. With locality-reflecting vertex ids, the adjacency can be compressed in
various ways.

Delta encoded adjacency list. A very simple technique represents the adjacency as a list of
triples (a, d,, B,) sorted by a, where B, = {b | (a,b) € R} are the outgoing neighbors of @ and
d = |B,| is the out degree of a. By is also sorted lexicographically. In this representation, two
consecutive b in B, as well as two B, of consecutive a will have very small deltas because of
locality-reflecting vertex ids. The smaller the deltas, the more succinct the representation. Delta
encoding (and variable byte encoding), as described in Section 6.2.1, can be applied to each
B,. Compared to the use of delta encoding and variable byte encoding in CSR, the eftect is
considerably stronger on locality-reflecting vertex ids. Additionally, re-pairing can be applied
to delta encoded adjacency lists. Deltas of locality-reflecting vertex ids are mostly small which
increases the frequency of a pair of small deltas and by that also increases the compression effect
of re-pairing.

Reference compressed adjacency list. 'The representation of B, in an adjacency list can be
turther compressed by encoding it as the difference to B, where a’ is the direct predecessor of
a—a technique called reference compression. Therefore, a copy list encodes in a sequence of |By/|
bits which elements of B, are also in B, and a /ist of extras encodes B, \ B,. Storing the copy
list with a variant of run-length encoding makes it more succinct. The run-length encoding only
needs to store the length of blocks of consecutive 0 and 1 bits and the number of such blocks,
if it assumes the first block always contains 1 bits and may be of length 0. Likewise, the list of
extras can be compacted with a variant of delta encoding. Note that a’ itself may be encoded
similarly as a difference to some a”. A threshold r limits the length of such reference chains.

A generalization of a reference compression encodes the difference to some predecessor a’
of a such that the smallest representation of B, is achieved. The reference to a’ is stored asa — a’.
To limit the number of possible references, a —a’ < W has to hold for e’ where the compression

window size W is a parameter for the compression process. Hence, the decompression has to

88 6. DATA STRUCTURES AND INDEXES

read at most W - R entries for randomly accessing the adjacency of a single @ and has to keep a
window of W - R entries in memory when scanning the whole adjacency structure.

K2-trees. k2-ary tree structures provide a succinct representation of an adjacency matrix.
Specifically, they exploit the sparseness of the adjacency matrix and store the adjacency in a
compact Quadtree structure [Finkel and Bentley, 1974] of height [logy n]. Each node in this
tree has a single bit assigned indicating whether there is at least one 1-bit in the corresponding
sub matrix. A node assigned zero means that all elements in the sub matrix are zeros and the
node does not have any children. Formally, for an adjacency matrix m, a node at position i, j
inlevel / is assigned the \/, | my,, withi kl<x<@+1D-klandj -kl <y <(G+1)-k.
The tree leaves—nodes at level / = O—correspond to matrix elements. Physically, a k?-tree is
represented by two bit sets, one for the internal nodes (except leaves) and one for the leaves only.
Bits are assigned according to a level-wise traversal of the tree, i.e., first all bits of level one, then
all bits of level two, and so on. The compression effect stems from the fact that the tree omits
all direct and indirect children of nodes assigned zero and hence can represent large all-zero
sub matrices by a single bit. Obviously, this technique exploits locality and requires a locality-
reflecting vertex order. Empirical studies conducted particularly for the k?-tree show that BFS
ordering generally achieves good compression rates while being affordable. The parameter k al-
lows modifying the height of the tree at the cost of larger internal nodes with more child nodes.
Variants allow to set the k per tree level. The k?-ary tree representation is not designed for a
dynamic adjacency with frequent edge insertions/deletions as each of these operations might
trigger a rewriting of multiple internal nodes in the tree.

6.5 REACHABILITYINDEXING

In its most generalized form, reachability indexing concerns access operations on the transitive
closure of a binary relation. Transitive closure is an essential element of property graph query
languages, precisely (conjunctive) regular path queries (cf. Section 3.1) as well as regular property
graph queries (cf. Section 3.2), where transitive closure is one operator of the regular property
graph algebra. Given a finite binary relation R of graph vertices, the transitive closure opera-
tor yields TC(R), which is the transitive closure of R. Note that relation R is not limited to
edges of the graph, but can be any binary relation of vertices derived from the graph by means
of query operators. In the following, we will interchangeably use R to denote the relation as
well as the directed graph described by this relation. Further, let V(R) be the set of all vertices
mentioned in R, i.e., V(R) = {v | 3x : (v,x) € R or (x,v) € R}. Two fundamental operations
may be executed on the top of TC(R).

Reachability check. A reachability check R.reachCheck(u,v) tests whether a vertex v is
reachable from another vertex u of a binary relation R, i.e., test whether (u, v) is in the tran-
sitive closure of the R, so that R.reachCheck(u,v) = ((4,v) € TC(R)). Generalized to sets,

6.5. REACHABILITY INDEXING 89

we have R.reachCheck(P), which gives all pairs in (u,v) € P that are in TC(R), so that
R.reachCheck(P) = {(u,v) € P | R.reachCheck(u, v)}.

Reachability search. A reachability search R.reachSearch(u) finds all vertices v # u that are
reachable from vertex u of a binary relation R, i.e., finds all v such that (u, v) is in the transitive
closure of the R, so that R.reachSearch(u) = {v | (u,v) € TC(R)}. Generalized to sets, we
have R.reachSearch(U), which finds for all given vertices u € U all pairs in (u, v) that are in
TC(R), so that R.reachSearch(U) = {(u,v) | u € U and v € R.reachSearch(u)}.

6.5.1 GENERAL CONSIDERATIONS

In a graph database, it is reasonable to assume that set V(R) containing all vertices appearing in R
is known. Then, obviously, a reachability search can be answered by reachability checks and vice
versa. Precisely, R.reachSearch(U) = R.reachCheck(U x V(R)) and R.reachCheck(P) =
R.reachSearch({u | (u,-) € P}) N P. Which of the two operations is preferable depends on
the size of R, TC(R), V(R), U, and P as well as on the complexity of reachCheck(:) and
reachSearch(-), respectively.

'The main challenge for both kinds of reachability operations is that TC(R) can become
very large (at most | V(R)|?) if R is very dense on V(R) or a subset of V(R). Reachability indexing
aims at reducing the online processing cost of a reachability operation by investing storage space
and offline processing cost. Two extreme cases define the spectrum of this trade-off. Without
any indexing, no (O(1)) storage space and no (O(1)) offline processing cost are invested and
reachability operations have an online processing cost of O(|V(R)| + | R|). The most aggressive
indexing stores TC(R), which is a storage space investment of O(|V(R) |*) and an offline process-
ing cost investment of O(|V(R)| - | R]), cf. [Su et al., 2017]. The resulting online processing costs
differ for reachCheck(-) and reachSearch(-) and depend on the representation of TC(R). In the
best case, R.reachCheck(u, v) can be performed by a single lookup, so that the online process-
ing cost of R.reachCheck(P) is O(|P|). However, in the worst case query plan | P| = [V(R)|?.
Also in the best case, R.reachSearch(u) can be performed by a single lookup plus constant
delay enumeration of all resulting v, so that the online processing cost of R.reachSearch(U)
is O(JU| - |S|), where | S| is the average number of v returned by R.reachSearch(u) for each
u € U. Again, in the worst case |U| - |S| = IV(R)|?.

All reachability index structures offer trade-offs between those two extreme cases. The
general aim is to accomplish an online processing cost less than O(|V(R)| + |R|) (no indexing)
for a storage space and offline processing cost investment less than O(] V(R)|?) and O(|V(R)| -
|R|) (storing TC(R)), respectively. All so far proposed reachability index techniques have an
offline processing cost of O(|V(R)| + |R|) or more, i.e., require at least one BFS or DFS search
over R.

In a general graph database system: (1) R is usually an intermediate result of an individual
query and can only be considered constant in a very limited scope; and (2) the query processing
typically builds on set-oriented reachability search operations (R.reachSearch(U)), cf. Chap-

90 6. DATA STRUCTURES AND INDEXES

ter 7. In contrast, reachability indexing techniques proposed in the literature and discussed in
the following assume a static R (typically assuming it to be the set of edges of a given graph)
and concern single-pair reachability checks (R.reachCheck(u, v)) only. While these methods
achieve very good cost trade-offs and their usage appears worthwhile in the considered settings,
it is unclear to what extent they are applicable in general graph database systems.

6.5.2 TECHNIQUES

Alarge body of work concerns index structures supporting reachability checks. Most approaches
index R by computing a label (or a code) for each vertex. Do not confuse the reachability index
labels with the vertex labels allowed by the property graph model. The reachability index label
L(u) of a vertex u encodes the reachability to other vertices in R. Each labeling technique also
specifies a predicate P (u,v), which can be evaluated on L(u) and L(v) for a vertex pair u and
v. We can distinguish between exact and approximate labeling techniques.

Exact labeling. With an exact labeling technique, the evaluation of the predicate P(u, v) is
sufficient to answer a reachability check R.reachCheck(u, v), so that R.reachCheck(u,v) =
P(u,v) no matter if v is reachable from u or not.

Approximate labeling. By sacrificing exactness, approximate labeling techniques try to
achieve smaller index sizes. The first kind of approximation allows false negatives, i.e.,
R.reachCheck(u,v) = P(u,v) holds only if P(u,v) is true, but if P(u,v) is false we cannot
conclude that v is unreachable from u. The second kind of approximation allows false positives,
i.e., R.reachCheck(u,v) = P(u,v) holds only if P(u,v) is false, but if P(u, v) is true we can-
not conclude that v is reachable from u. In both cases, P(u, v) can answer R.reachCheck(u, v)
only for a subset of possible pairs of and v. The remaining pairs require post processing either
on R or on some additional information kept in the index next to the labels.

Three principle labeling approaches have received most consideration: (1) 2-hop labels,
(2) tree-based labels, and (3) approximate transitive closure labels. Next to these three, other ap-
proaches have been proposed for which we refer the interested reader to specialized surveys
mentioned in Section 6.7.

2-Hop Labeling

2-hop labeling is an indexing scheme directly applicable to arbitrary directed or undirected
graphs. Assuming directed graphs as in PGM, 2-hop labels store for each vertex lists of reach-
able vertices such that the reachability between any pair of vertices can be determined by
a single join of the lists of these two vertices. Therefore, each vertex v is assigned a label
L(v) = (Liy(v), Lo (v)) such that L;,(v) and L,,(v) are sets of vertices from which v can be
reached (inbound hop) and a set of vertices that are reachable from v (outbound hop), respec-

tively. The labels are chosen in such a way that each reachability is covered by two hops, i.e.,

6.5. REACHABILITY INDEXING 91

for any given pair of vertices u and v with u 7 v, the intersection of u’s outbound hops L (1)
and v’s inbound hops L;,(v) is not empty if and only if u reaches v. Any labeling fulfilling this
condition is called a 2-Agp cover. Note that 2-hop labeling does not cover trivial self-reachability
over paths of length zero. However, where this is of concern, self-reachability results can be
easily added by the surrounding query processing.

Figure 6.9 shows a reachability index based on 2-hop labeling. Edges in the graph may also
act as hops in the index. For better visibility, the figure shows in- and outbound hops that are not
original edges as dotted and dashed line in red and blue color, respectively. For such an index, we
can easily determine, e.g., that vertex 10 reaches vertex 20, since L, (10) N L;,(20) = {15} # @.
Similarly, vertex 16 does not reach vertex 13, since L,,(16) N L;,(13) = @.

10 0

{11,12,15}
11 0 {15}
12 {10,11,15,16} 0
13 11} {15}
14 {11} {15}
15 0 0
16 {17,15} {12,15,18}
17 {15} {18}
18 {15} {15}
Inbound hop: --» Outbound hop: - + 19 {15} 0
20 {15,17,18} 0

Figure 6.9: Example graph with 2-hop reachability index labels L;,(v) and L,(v).

For undirected graphs, 2-hop labeling scheme requires only a single vertex list. The ap-
proach can be generalized to distance queries by storing a distance d(x, v) and d(v, x) together
with every x in L;,(v) and L, (v), respectively, such that the minimum of d(u, x) + d(x, v)
among all x € L, (u) N L;,(v) is equal to (or sufficiently approximates) the distance between u
and v. To facilitate path retrieval, it is possible to store the actual shortest path from v to x and
from v to x with every x in L;,(v) and L, (v), respectively.

The main challenge is to efficiently compute the minimal 2-hop cover, i.e., a minimal set
of labels that form a 2-hop cover for a given graph. Finding a minimum 2-hop cover of a di-
rected graph is an NP-hard problem. However, the problem can be cast as an instance of the
set cover problem to obtain a 2-hop cover that is larger than the minimal cover at most a fac-
tor in O(log |V(R)|). The index size is in O(|V(R)|log |V (R)|) with each vertex getting at most
log |V(R)| hops assigned. Hops can be stored in lexicographically sorted order so that the inter-
section can be computed efficiently.

92 6. DATA STRUCTURES AND INDEXES

Tree-Based Labeling

Tree-based labels are derived by depth-first traversal of a spanning tree of R. In general, this
is done in four steps. (1) Transform R into a directed acyclic graph (DAG). (2) Ensuring the
DAG has a single root vertex. (3) Traverse the DAG of R depth-first to form a spanning tree
and compute the labels. (4) Compensate for edges in R not covered by the spanning tree.

DAG transformation. Let’s denote the DAG of R as dag(R). In case R is not already acyclic,
cycles in R constitute strongly connected components (SCCs). There exist efficient algorithms
that find the set of all SCCs scc(R) in R in O(|V(R)| + |R|) time [Slota et al., 2014, Tar-
jan, 1972]. We can construct dag(R) by collapsing every SCCs C; € scc(R) into a single
vertex, i.e., replacing it by a representative ¢; and maintain the connections from and to the
SCC. Letm : V(R) + V(dag(R)) be the mapping from vertices in R to their representatives in
dag(R), such that f(u) = ¢; if 3C; € scc(R) : u € V(C;) and else f(u) = u. Then, dag(R) =
{(m(u),m(v)) | (u,v) € R Am(u) # m(v)}. Obviously, |dag(R)| < |R|. Assume C C R is a
SCC in R, then by definition all vertices in C are pair-wise reachable, such that Vu,v € V(C) :
R.reachCheck(u,v). A reachability operation R.reachCheck(u,v) can be processed over
dag(R) and m by checking if u and v are in the same SCC or their respective SCCs are reachable
in dag(R), so that R.reachCheck(u, v) = (m(u) = m(v) v dag(R).reachCheck(m(u), m(v))).

Ensuring single root. If a DAG is partitioned or has multiple vertices without any incom-
ing edges, it cannot be covered by a single tree. A simple way around that is to introduce a
virtual root vertex p, that links to all vertices without an incoming edge. In case all vertices of
a partition have an incoming edge, the virtual root links to one arbitrary vertex in that par-
tition. Let’s denote a virtually rooted DAG of R as vrdag(R). Assuming dag(R) = (V, E)
and X = {v | Au, (u,v) € E}, then vrdag(R) = (V U {p}, E U {(p,v) |v e X})if | X| > 1 else
vrdag(R) = (V, E). In case the DAG is not partitioned and all vertices have an incoming edge,
an arbitrary vertex is marked as root.

Label computation. For the label computation, the DAG vrdag(R) is traversed depth-first
(DFS) starting from the root vertex. Multiple labeling schemes have been proposed in this set-
ting, but follow the same principle of numbering the vertices in the spanning tree formed by the
DFS. During the DFS a counter ¢ is used to assign the an interval [Vyin, Uma] as reachability
index label L(v) to each vertex v € V(vrdag(R)) with vy, and v, being positive numbers and
Umin < Upay. The DFS starts with ¢ = 0. Along the way, vy, is the postorder in the traversal, i.e.,
¢ is assigned to v and then increased after visiting all children of v and before backtracking to v’s
parent; v, is set to ¢ when the traversal visits v for the first time, i.e., it is the smallest postorder
of all children of v. Given such labels, a vertex v is reachable from a vertex u in the spanning
tree if and only if v,y is included in the label of u, such that P(u, v) = Vpax € [Umin, Umax]- Fig-
ure 6.10 shows an example of such labels. The number shown within the vertex denotes the
vertex id, while the number shown on top of each vertex indicates the postorder assigned by
the DFS used to calculate the labels. The virtual root vertex and its edges are drawn dashed.

6.5. REACHABILITY INDEXING 93

The red edges show the route the DFS took. As can be seen, in the spanning tree (only the
red edges) rooted at vertex 10, vertex 15 is reachable from vertex 11 but is not reachable from
vertex 12. Only considering the reachability labels yield the same: P(11,15) = 0 € [0, 5], while
P(12,15) = 0 ¢ [3, 4].

1
10

0, 6]

[
11 [0,5]
12 [3,4]
13 [2,2]
14 [0,1]
15 [0,0]
16 [7,10]
17 [3,3]
18 [7,8
19 [9,9]
20 [7,7]

Figure 6.10: A DAG with spanning trees formed by two DFS and the resulting reachability
index labels L(v).

Compensating non-tree edges with link table. There are multiple ways to take non-tree
edges into account. The simplest form is to maintain the transitive closure of all non-tree edges
in a table, the /ink table. Therefore a non-tree edge (u, v) is represented using the reachabil-
ity intervals as (Upin, [Umaxs Umar]). The transitive closure results from applying the reachabil-
ity predicate P(-,-). Given two non-tree edges (Umin, [Umax, Umax]) and (Wpins [Xmaxs Xmax]) with
P(v,w) = Wyar € [Umins Umax)> then (Umin, [Xmax, Xmar]) 1s also in the transitive closure. Obviously,
with 7 non-tree edges in the graph, the size of the link table is in O(¢?). Hence, the link table
approach is only feasible for sparse graphs where t <« V(vrdag(R)).

Compensating non-tree edges with tree cover. Another approach to reflect non-tree edges
in the labels is to let each vertex inherit the labels of its outgoing non-tree neighbors. Such
labels are also called a tree cover, since a spanning tree is used to cover the whole graph.
For a tree cover, a reachability index label for any vertex v is defined as a set of intervals
{[vmi,,l,vmaxl] , [vminz, vmaxZ] e } Every non-tree edge (u,v) implies that L(v) € L(u).
Such labels can be constructed easily while computing the tree labels as discussed before. Dur-
ing the DFS, each outgoing edge of a vertex u to an already visited neighbor v is a non-tree
edge (u,v). Since v has already been visited its label L(v) has already been computed and
can be added to the label of u, such that it is updated to L(u) U L(v). The label created this
way may contain overlapping or adjacent intervals. These can be merged to save space. Given

94 6. DATA STRUCTURES AND INDEXES

such labels, the reachability check is the same as for the tree-only labels. A vertex v is reach-
able from a vertex u in the graph if and only if v, is included in the label of u, such that
P(u,v) =V, (vmax € [umini , Mmax,-])- Note that outgoing non-tree edges of a vertex v do not
change V4. By the definition of non-tree edges, only intervals with an upper bound less than
Unmax are inherited. Figure 6.11 shows the same DAG as in Figure 6.10 with the reachability in-
dex labels resulting from the inclusion of non-tree edges. For instance, vertex 13 has a non-tree
edge to vertex 15 and hence inherits its label so that L(15) = {[0,0]} € L(13) = {[2,2], [0, 0]}.
'The merging of overlapping or adjacent intervals can be seen for vertex 12. Here the two ad-
jacent intervals [2,2] and [3, 4] are merged to [2,4]. In the example graph, vertex 16 reaches
vertex 15 but not vertex 14. The reachability index allows deducing the same, since P(16, 15) =
0 € {[7,10], [2,4]. [0, 0]} while P(16,14) = 1 ¢ {[7,10],[2. 4], [0, 0]}

N
10 {[0, 6]}

11 {[0,5]}
12 {[3,4],[2,2],[0,0]} = {[2,4],[0,0]}
13 {[2,2], 0,0}

14 {[0,1]}

15 {[0,01}

16 {[7,10],[2,4],[0,0]}

17 {[3,3], 0,0}

18 {[7,8], 0,0}

19 {09,91, 7,71}

20 {[7,7)}

Figure 6.11: The DAG from Figure 6.10 with reachability index labels L (v) and compensation

for non-tree edges.

Size of tree cover. As an obvious drawback of the tree-based labeling procedure, the necessary
compensation of non-tree edges can lead to a large number of intervals that need to be stored for a
single vertex, such that space complexity of a tree-based labeling index is in O(|V (vrdag(R)) 1%).
Not considering the possibility of interval merging, the total number of intervals needed in the
index depends on which tree cover the DFS selects. The optimal tree cover allows for the fewest
intervals to index the graph. However, the optimal tree cover can be found efficiently by con-
sidering all vertices in some topological order o and retaining for each vertex only the incoming
edge coming from the vertex with the largest number of predecessor vertices in the original
DAG according to the topological order o. The possibility to merge intervals depends on the
order in which the DFS traverses the children of a vertex in the tree cover. An efficient solution
to this combinatorial problem has not been proposed yet.

6.5. REACHABILITY INDEXING 95

Approximate Tree-Based Labeling

'The space requirements for tree-based labeling index can be reduced further by compressing the
index with approximate labels. A simple compression strategy is to merge non-adjacent/non-
overlapping intervals. As a consequence, this compression introduces false positives, i.e., pairs of
vertices u and v for which P(u,v) = T although u does not reach v and requires a procedure to
handle false positives and still return the correct result for each query. The most aggressive inter-
val compression is to merge all intervals of each label to a single interval. While this efficiently
reduces the number of intervals, it also introduces a large number of false positives.

Hence, the challenge is to reduce the space complexity from quadratic to a linear
O(k - |V(vrdag(R))|), while investing a constant factor k with k < |V(vrdag(R))| to signif-
icantly reduce the number of false positives. Comparing two random tree covers, single interval
compression typically introduces different sets of false positives with only a small overlap. One
approach is to utilize this observation by using k random tree covers with a single interval com-
pression to compute labels consisting of exactly k intervals. Another approach builds on the
optimal tree cover and directly merges intervals such that each vertex has at most k intervals
while minimizing the number of elements appearing in approximate intervals with a dynamic
programming procedure.

To deal with remaining false positives, it is important to mark the intervals that resulted
from merging as approximate. The remaining intervals that have not been merged are marked as
exact. If P(u,v) = T and the interval of u providing the positive answer is exact, we can safely
conclude that R.reachCheck(u,v) = T.If P(u,v) = T and u has only approximate intervals,
the query processing performs a guided search through the graph. The guided search exploits
the fact that to reach v from u, v has to be also reachable from at least one of outgoing neighbors
of u. Hence, the query processing performs a DFS starting from u. For each vertex u” with an
outgoing neighbor w, it recursively tests P(w, v) until either w confirms the reachability of v
with an exact interval or all outgoing neighbors u’ confirm that v is not reachable. Additionally,
the DFS can be pruned by exploiting the topological level 7 since vertex u cannot reach vertex
v if its topological level is less or equal than w, i.e., T(u) < t(v).

Figure 6.12 shows approximate labels for the DAG from Figure 6.10. Here, k = 1 so that
each label consists of exactly one interval. The approximate intervals are marked with *. What can
be seen is that the label of vertex 19 indicates that it can reach vertex 18, which is a false positive.
Query processing can detect that by looking recursively at the outgoing neighbors of vertex 19.
In this case, vertex 20 is the only outgoing neighbor and its label indicates that vertex 18 is not
reachable. Consider reachability of vertex 16 to vertex 11, checking all neighbors of vertex 16
can be avoided since 7(16) < 7(11) and hence 16 cannot reach 11.

Approximate Transitive Closure Labeling
As mentioned before, a trivial reachability index is to store the complete transitive closure. In

such an index, each vertex u would be assigned with a label L(u) = L, (1) where L, (1) C

96 6. DATA STRUCTURES AND INDEXES

10

5 {[o6]}
11 4 {05}
12 3 {4}
18 2 {02}
14 2 {0,1]}
15| 1 {[0,0]}
16 4 {[o,10]}*
17 2 {03}
18 2 {8}
19 2 {79
20 1 {7, 7}

Figure 6.12: The DAG from Figure 6.10 drawn in topological levels 7 (v) and with approximative
reachability index labels L(v) (approximative labels marked with *).

V(R) is the set of all vertices reached by u including u itself. A vertex u reach v if and only if
P(u,v) = v € Ly,(u). Naturally, such an index has quadratic space complexity. However, sim-
ilar to approximate tree-based labeling, it is possible to store a k-sized approximation of L, (u)
so that the space complexity reduces to linear O(k - |V (vrdag(R))|) with k being constant. We
call this approximate transitive closure labeling. Like tree-based labeling, the approximate transi-
tive closure labeling is assumed to operate on a DAG.

One approximation technique, called independent permutation labeling, utilizes a random
permutation 7 of the vertex set V(vrdag(R)) to store the top-k vertices v € L, (u). The top-
k vertices according to m have the k smallest position numbers 7 (v) € (1,|V(vrdag(R))|).
Another approximation technique, called Bloom filter labeling, for such an approximation uses
Bloom filters to store a k-bit long representation of L, (u).

Approximate transitive closure labels involve false positives. If the index finds a negative
result for P(u,v) = v € Ly,(u), it can quickly answer reachability checks in O(1) time. In case
of a positive result, a DFS guided by the reachability index is conducted to provide a correct
answer. In other words, approximate transitive closure labeling aims at early pruning of negative
results and avoiding expensive search for non-reachability. The Bloom filter labeling was shown
to have better pruning power than independent permutation labeling while using the same space.
Obviously, approximate transitive closure labeling works particularly well for graphs where most
vertex pairs are not reachable, i.e., [TC(R)| < |V (vrdag(R))|*. Both approximation techniques
have a bounded probability for false positives. This naturally depends on k. The more space one
is willing to invest, the higher the pruning power of the index, the better the query performance.

'The pruning power of approximate transitive closure labeling can be increased by storing
not only an approximation of L, (u) but also of L;,(u). Here, L;,(u) is the set of all vertices that

6.6. STRUCTURAL INDEXING 97

reach v including u itself. A vertex u can reach v only if P(u,v) = v € Lyu(u) Vu € Ly (v). If
either v ¢ L, (1) oru ¢ L;,(v) is false, u does not reach v. Additionally, varying approximation
for Lyu(-) and L;,(-) by using a different random permutation or a difterent hash function in the
Bloom filter increases the chances of pruning.

Figure 6.13 shows an example DAG with approximate transitive closure labeling. As ap-
proximation technique the example uses a trivial Bloom filter which hashes respective vertices
with A(v) = (v mod 7) and stores the set of resulting hashes. The same hash function is used
for L;,(v) and L,,;(v). The number next to a vertex shows the hash value of the vertex. The table
shows the resulting labels for each vertex. Consider for example vertex 12 and vertex 18. With
the index, we can quickly determine that vertex 12 does not reach vertex 18, since h(18) = 4
and 4 ¢ L,,,(12). For vertex 10 to vertex 18, however, h(18) = 4 € L,,;(10) indicates reacha-
bility. However, checking L;,(-), reveals truthfully that vertex 10 does not reach vertex 18 since
h(10) =3 and 3 ¢ L;,(18). When querying the reachability from vertex 11 to vertex 18, both
Loy (-) and L;, () indicate reachability. In such a case the guided DFS starts from vertex 11 and
recursively checks the reachability predicate. As can be seen, this allows pruning the DFS at ver-
tex 12 (h(18) ¢ Lo (12)), vertex 13 (h(18) ¢ L, (13)), and vertex 14 (h(18) ¢ L, (14)). With
no vertices left to explore, it can be correctly concluded that vertex 11 does not reach vertex 18.

10

{3} {0,1,3,4,5,6}
11 (3,4} {0,1,3,4,5,6}
12 {2,3,4,5} {1,3,5,6}
13 {3,4,5,6} {1,6}
14 {0,3,4} {0,1}
15 {0,1,2,3,4,5,6} {1}
16 {2} {1,2,3,4,5,6}
17 {2,3,4,5} {1,3}
18 {2,4} {1,4,6}
19 {2,5} {5,6}
20 {2,4,5} {6}

Figure 6.13: Example DAG with approximate transitive closure labeling using Bloom filter labels
L;,(v) and L,,(v) and h(v) = (v mod 7) as hash function.

6.6 STRUCTURAL INDEXING

Given a query language L and graph G, we can view L as inducing a partitioning of the “objects”
in G (depending on L, objects could be nodes, vertices, paths, or more complex graph structures).
We can say that objects 01 and 0, are L-equivalent (denoted 01 =1, 0,) if and only if for every

query in L either both 01 and 0, appear in the evaluation of the query on G or neither appears in

98 6. DATA STRUCTURES AND INDEXES

the query results. In other words, the two objects are indistinguishable as far as L is concerned,
and hence can be grouped together during processing queries of L on G. The = -partition of G
is in this sense the ideal basis for constructing data structures for accelerating evaluation of L.

There are two difficulties, however, which could potentially block our way to this ideal
situation. First, computing the =7 -partition of G might be impractical or even impossible, given
that typical query languages have an infinite number of expressions, and the number of possible
partitions of a finite set, while still finite, is exponential in the size of G. Second, even if we
could efficiently compute the partition, it might be too fine-grained to be of any significant
value, i.e., the partition blocks might be too small, to the point that little compression of the
graph is obtained by computing the partition. As an example, if we consider first-order logic (i.e.,
textbook relational algebra) as a query language on graphs, then language equivalence amounts
to isomorphism [Libkin, 2004], which is intractable to compute and, furthermore, grouping
together isomorphic structures can give us very little compression of graphs in many application
domains.

Fortunately, we can successfully overcome both of these difficulties for some expressive
graph query languages. To overcome the first hurdle, the general strategy is to identify a fragment
L’ of L which is rich enough to capture practical classes of queries, while still permitting an
efficient construction of =;/. This is typically achieved by identifying a tractable “structural”
characterization = of =/, purely in terms of the structure of the fixed instance G (i.e., = is
independent of L’ in the sense that the =-partition can be constructed based on the graph
structure of G alone). A query Q' € L’ can then be rewritten and evaluated in terms of (an
index data structure I on) the =-partition of G, perhaps with post-processing to materialize the
results of the query. Given a query Q in the full language L, the strategy is then to: (1) decompose
Q into subqueries Q1, ..., Op, cach in L’; (2) evaluate each Q; directly on the structural index
I; and (3) further process the results of the subqueries to obtain the final result of evaluating O
onG.

As an example, consider structural indexing for CQ. In general, CQ does not have a
tractable structural characterization [Rossman, 2008]. Fortunately, we can identify large frag-
ments of CQ which do, such as classes of acyclic CQ’s where language equivalence is characterized
precisely by variations of the structural notion of graph simulation which are computable in poly-
nomial time [Picalausa et al., 2014]. Given a cyclic CQ query Q, we can then decompose it into
acyclic subqueries Q1, ..., O, which we answer directly on the structural index, and then join
and post-process these intermediate results to obtain the full evaluation result of Q [Picalausa
et al., 2012].

Structural characterizations of language equivalence in terms of language-independent
notions of bisimulation and simulation equivalence have been identified for large practical frag-
ments of subgraph pattern matching queries and navigational path queries [Fletcher et al.,
2015a, Picalausa et al., 2014]. Furthermore, graph simulation and bisimulation partitioning
have been shown to be efficiently computable not only in main memory settings but also in

6.7. BIBLIOGRAPHIC AND HISTORICALNOTES 99

external memory and distributed environments [Hellings et al., 2012, Luo et al., 2013a,c, van
Heeswijk et al., 2016].

Concerning the second hurdle, it has been observed on data arising in practical applica-
tions that (bi)simulation-based structural indexing can lead to orders of magnitude size com-
pression of database instances [Agterdenbos et al., 2016, Luo et al., 2013b, Picalausa, 2013].

6.7 BIBLIOGRAPHICAND HISTORICAL NOTES

The representation of ternary relations is an obvious problem for RDE, since the RDF data
model defines RDF as ternary relations. Early RDF management systems, so-called triple stores,
used a triple table in conjunction with dictionary compression based on a relational database en-
gine. Examples are Jena [McBride, 2001], Jena2 [Wilkinson et al., 2003], Oracle [Chong et al.,
2005], and Virtuoso [Erling and Mikhailov, 2007]. Later this approach was refined with addi-
tional compression and exhaustive indexing. Seminal works in this respect are Hexastore [Weiss
et al., 2008] and RDF-3X [Neumann and Weikum, 2008, 2010a,b]. RDF-3X used a combi-
nation of exhaustive indexing with six primary indexes, projection indexes, delta and variable
byte encoding as shown in Figure 6.3, and still represents the state of the art for RDF repre-
sentation. The more recent system RDFox [Motik et al., 2014, Nenov et al., 2015] varied the
RDF-3X concept by using a combination of three index columns added to a triple table and
three secondary projection indexes.

Neo4j, the graph database system that made PGM popular, uses a set of fixed-length
record tables. Similar to dictionary compressed triple tables, Neo4;j leverages the fact that fixed-
length records are easily byte addressable. It maintains a set of vertex records, a set of edge
records, and property records. All three record types include index columns. Particularly, the
edge records make heavy use of index columns, pointing to the source and target vertex, double-
linking edges with the same source vertex, and double-linking edges with the same target vertex.

Pivoted tables are appealing because they allow to fully utilize the power of a relational
engine. First, pivoted tables have been discussed in the context of RDF including a consideration
of the different partitioning schemes based on emerging schemas to deal with schema flexibility
of a pivoted table [Abadi et al., 2007, Wilkinson, 2006]. Emerging schemas can be found auto-
matically, using (1) a standard clustering algorithm [Chu et al., 2007], (2) starting from every
distinct property set and merging infrequent ones [Pham et al., 2015], or (3) partitioning entities
on-the-fly based on their schema similarity [Herrmann et al., 2014a,b]. In combination with a
column store engine, pivoted tables are feasible without partitioning along emerging schemas,
since the column store vertically partitions the pivoted table by property [Abadi et al., 2007].
SAP HANA Graph follows this approach and represents a property graph with two pivoted
tables, one for vertices and one for edges [Paradies et al., 2015, Rudolf et al., 2013]. For efficient
traversals, SAP HANA Graph additionally exhaustively indexes the adjacency with CSR data
structures [Hauck et al., 2015]. Exhaustive adjacency indexing was also proposed for graph pro-

100 6. DATA STRUCTURES AND INDEXES

cessing systems [Shun and Blelloch, 2013]. Pivoted tables with schema hashing is a technique
developed and used by IBM for RDF [Bornea et al., 2013] as well as PGM [Sun et al., 2015].

Adjacency matrices [Cormen et al., 2009] and CSR [Gustavson, 1978] are well-
established concepts in computer science. They received new consideration with interest in
management and processing of graph data, which lead to refinements such as density-adaptive
CSR [Aberger et al., 2016] and re-pairing [Claude and Navarro, 2010a,b]. Also detailed ex-
perimental comparison of different adjacency representations have been conducted [Blandford
et al., 2004]. The development of adjacency compression techniques such as reference compres-
sion [Boldi and Vigna, 2004] and K2-trees [Brisaboa et al., 2009] has been mainly motivated
by the need to analyze Web graphs. However, Apostolico and Drovandi [2009] showed that
BEFS provides a reasonable method to generate locality-reflecting vertex ids for any graph so
that these compression techniques are applicable to any adjacency structure. Other approaches
on adjacency compression not discussed in this chapter but worth mentioning are Boldi et al.
[2011] and Grabowski and Bieniecki [2011]. There is even work that tries to build a complete
PGM storage solely on K2-trees [Alvarez-Garcia et al., 2010]. Adjacency compression can also
be used for simple reachability indexing by storing the transitive closure in a compressing data
structure. Particularly, for read-heavy workloads of regular path queries, which can be expensive
but do not necessarily have a large result set, this is a promising approach [Tetzel et al., 2017].

Reachability indexing is a well-studied topic, too. Tree-based labeling is the classic ap-
proach in this domain [Agrawal et al., 1989] but received new consideration in form of ap-
proximate tree-based labeling proposals such as GRAIL [Yildirim et al., 2012] and FER-
RARI [Seufert et al., 2013]. The appeal of the 2-hop-cover approach [Cohen et al., 2003]
stems from the fact that it can be also used for distance queries and was more influential in
that domain. Distance queries are important for route planning, which is typically done outside
of database system in specialized systems. Hence, we excluded them from the discussion in this
chapter. Recent surveys on distance indexing are provided by Sommer [2014] and Bast et al.
[2016]. The latest research on reachability indexing focused on approximate transitive closure
labeling approaches, such as independent permutation labeling [Wei et al., 2014] and Bloom
filter labeling [Su et al., 2017]. Surveys on reachability indexing are given by Yu and Cheng
[2010] and Su et al. [2017].

The methodology for structural index design and use discussed in this chapter was
first developed in the context of navigational pattern matching queries on semi-structured
data [Fletcher et al., 2009, 2016, Milo and Suciu, 1999]. An alternative strategy based on weak-
ening the query semantics (instead of considering weaker fragments of a given query language,
as we have done here) to obtain tractable structural characterizations of language equivalence
for graph compression and indexing has been studied by Fan et al. [2012]. A query language-
agnostic approach based on hashing has been presented by Zou et al. [2014]. Cebiri¢ et al.
[2015] studied lossy structural summaries for CQ queries.

6.7. BIBLIOGRAPHIC AND HISTORICALNOTES 101

A short overview of graph data representation can also be found in Paradies and Voigt

[2017, 2018].

103

CHAPTER 7

Query Processing

'The diversity of applications in which graphs are used as primary data models led to a prolif-
eration of a variety of graph processing tasks. For example, in social networks, one might be
interested in looking for simple patterns in relationships between people such as finding persons
with shared interests or discovering common friends. On the other hand, in the Web, one can
run a completely different graph algorithm such as PageRank to identify web pages of impor-
tance. Similarly, other application domains dictate their own requirements and graph processing
methods. Hence, a graph query might be as simple as finding person’s neighbors in a social net-
work, or as complex as tracking bugs in a evolving software codebase by utilizing sophisticated
graph exploration algorithms.

In this chapter, we provide an overview of processing of graph queries in the order of their
perceived complexity: starting from the simplest and concluding with the hardest. Specifically,
we structure our discussion as follows.

1. Query pipeline is the standard abstraction mechanism used in the processing of declarative
queries. In this chapter, we guide our discussion of the processing of different classes of
declarative graph queries in the context of a generic query pipeline which is described in
Section 7.1.

2. Section 7.2 presents the processing of subgraph matching queries (i.e., conjunctive graph
queries (CQs)).

3. 'The evaluation strategies of the core class of queries which deal with reachability in the
graph (i.e., regular path queries (RPQs)) are presented in Section 7.3.

4. Finally, in Section 7.4, we briefly discuss the evaluation of the broader class of unions of
conjunctive regular path queries (UCRPQs).

Note that, in this chapter, we specifically focus on processing of commonly used types of declara-
tive graph queries and omit the discussion of other types of graph-specific queries such as shorzest
path queries, path retrieving queries, and others. Further, we do not discuss processing of procedu-
ral queries or algorithmic APIs such as PageRank and other general graph algorithms. Finally,
we do not consider query processing in a distributed or parallel setting and in vertex-centric
environments.

104 7. QUERY PROCESSING
7.1 QUERY PIPELINE

In general, a declarative query can be executed in many different ways by a database engine. The
strategy that is used by a database during query execution is encoded in a guery plan. Often, the
costs of such plans can vary by orders of magnitude, which motivates the problem of choosing
the plan with the lowest possible execution cost. Query optimization is a large research area in
the database field which attempts to find answers to this problem.

At the heart of a standard query processing pipeline (as shown in Figure 7.1) lies a guery
planner, the module responsible for examining all possible execution plans for each query and
selecting a cheapest plan to be executed. Candidate plans are considered in a certain order as
provided by the enumerator module. Often, the space of candidate plans grows exponentially
with respect to the size of the given query, making it infeasible to consider every single plan.
Hence, it is the task of the enumerator to provide a sufficient number of candidate plans so that
a plan close to optimal can be found, while pruning those candidate plans which are unlikely to

have the lowest cost.
parsed access
statement plan

/ 7 query database J/ g
/ query /— parser
/ /

/NS 7

optimizer
y

engine

operators
algorithms

A

cost/
cardinality
estimator

database

Figure 7.1: Standard query processing pipeline.

'The plan space which is considered by the enumerator is determined by its /ogica/ and
physical components. Given the formula which is obtained by parsing the query, the logical
space contains all different execution orders of the formula’s operators which can be followed to
answer the query. This is called a /ogica/ plan. Given a logical plan, the concrete implementation
choices for each of the operators are determined by the physical space, to produce a collection
of physical plans.

A cost of a physical plan is estimated by a cosz model/ module. This module specifies the cost
formulas which are used to estimate the cost of execution strategies used to evaluate operators in
a physical plan. These cost formulas take into account the execution method used, the amount
of resources available (such as processor, memory buffer pool, and disk space), the catalog in-

7.2. SUBGRAPH MATCHING QUERIES 105

formation (such as available indexes and tuple sizes), and the statistical estimates gathered from
participating datasets.

'This query processing pipeline showcases a typical /ife of a declarative query in a database
engine. A variant of this pipeline is used across all types of database engines: relational, docu-
ment, graph, and others.

7.2 SUBGRAPH MATCHING QUERIES

Subgraph matching is the basic functionality found at the core of many graph query languages.
Given a graph G and a conjunctive query (CQ, cf. Section 3.1.2) r, the goal of a subgraph query
is to return all subgraphs of G that are isomorphic or homomorphic to r. Each such subgraph
is encoded by a mapping | of r on G. The algorithms for finding all mappings of r on G are
generally based on finding, extending, and combining corresponding partial mappings of r on
G. Note that r can also be a subquery of a more complex query such as an RPGQ.

Definition 7.1 Given a graph pattern r[zy, ..., 2], a graph G, and k > 0, a partial mapping
my of r on G is a sequence of pairs ((vi, u(v1)),..., (vk, u(vk))) such that (vy,...,vx) is a
sequence of distinct vertices of , and y is a mapping of r on G. We call k the length of the
partial mapping my.

In general, subgraph matching algorithms are based on two types of search in a graph: depth-
first search (DFS) and breadth-first search (BFS). We briefly discuss both from the perspective

of a generic query pipeline.

721 DFS-BASED ALGORITHMS
'The DFS-based algorithms for subgraph isomorphism are based on the backtracking principle.

Specifically, given a set of query vertices, the partial solutions are constructed one query vertex at-
a-time. Then, if a partial solution (computed for a subset of query vertices) cannot be extended,
it is discarded from the remainder of the search.

Recall that traditional implementations of depth-first search are recursive in their nature.
However, in high-performance query pipelines, recursion is not typically used since it compli-
cates the control flow and does not work well on large graphs if not used carefully. Hence, the
DF'S-style recursion is typically emulated by guided, stateful, and iterative graph search. An ex-
ample of a generic iterative DFS-based subgraph matching algorithm is shown in Algorithm 7.1.

'The organization of a szate of a graph search which is executed in a query pipeline serves
two purposes. First, the state stores the intermediate partial mappings (represented by zuples)
which are extended by performing operations during each iteration of a graph search. Second,
the state is organized in a way such that it defines the flow of the tuples between the operations
of the search. For example, in DFS-based search, the state is based on a stack data structure

106 7. QUERY PROCESSING

Algorithm 7.1: Generic iterative DFS-based subgraph matching.

Input: Graph G = (Vi, Eg) and query graph pattern r = (V;, E;)
Output: set of mappings M of r into G

1 M:=0

2 V2 :=order(V,) // ordering query vertices
3 for each v, € V,? do

4 L ler"” := refine(G, r, v,) // static refinement
5 5:=0 // initialize the search state
6 m.init() // initialize the candidate mapping
7 S.push(V,?.next(), m, 0)

8 while S is not empty do

9 vr, m, n = S.peek()

10 if 7 =0 then

1 t Ciygq := refine(G, vy, C', m) // dynamic refinement
12 Vg = Ci{:’n.get(n) // get candidate graph vertex
13 | if vg # @ then

14 me := m.copy()

15 mc.add(vy, vg)

16 if islsomorphic(m., G, r) then

17 vrext := V2 next() // get next query vertex
18 if v¢*" £ ¢ then

19 S.pop()

20 S.push(v,, m,n + 1) // update the search state for v,
21 S.push(v?e** m,, 0) // add next query vertex for DFS
2 else

23 L M .add(m.)

24 else

25 L S.pop() // done processing this query vertex

26 return set of mappings M

S provided either by recursive program execution or by the search algorithm itself in order to
emulate a recursion (as is done in Algorithm 7.1, cf. Line 5).

The search itself is guided by an evaluation p/an. The plan defines the order (cf. Line 2) in
which the query vertices are assigned to graph vertices during the search and which optimization
techniques are used to further refine the search. These refinements, in general, can be either szaric

7.2. SUBGRAPH MATCHING QUERIES 107

or dynamic. Static refinements are performed based on a graph and a corresponding subgraph
query, before the actual search starts. Dynamic refinements, on the other hand, depend on the
partial matching(s) obtained so far and are performed during the search.

The implementation of a generic DFS-based subgraph matching presented in Algo-
rithm 7.1 depends on many factors such as algorithms used for refinements and isomorphism
checks and data structures which are used to represent graphs and intermediate mappings. Here,
we give an example of a matrix-based DFS subgraph matching.

Matrix-based DFS subgraph matching. Consider a snippet of a Dutch and English DBPedia

graph shown in Figure 7.2 and a query Q1 over Gpgp as follows:

01 = (p1, p2, p3) < :isLocatedIn(py, p2) , :sameAs(p2, p3) .

isLocatedIn

Noord
Brabant Nederland
isLocatedIn

Brabantse

. g
Y g
Stedenrij &£ &
(27 (%]

SameAS

North isLocatedln

Brabant

Netherlands

Eindhoven isLocatedIn

Figure 7.2: Example of an interlinked English and Dutch DBPedia graph Gpgp.

Figure 7.3a shows query Q as directed labeled graph. Both data and query graphs can be repre-
sented as referential adjacency matrices Ag and A, respectively (as discussed in Section 6.4.1).
Example matrices for Gpgp and Q are shown in Figures 7.3b and 7.3c.

Given adjacency matrices Ag and A, the assignment of values from vertices in the data
graph to vertices in the query graph is encoded by a permutation matrix P of size |Vp| x |Vg]|.
A permutation matrix enforces the assignment of each query vertex to exactly one graph vertex
and vice versa.

'The following simple check can be used to verify whether permutation matrix P encodes

an isomorphic mapping of query Q in graph G:
Ag = PAgPT. (7.1)

For example, Figure 7.4 shows permutation matrices for three (out of five) mappings of Q; in

GDBP .

108 7. QUERY PROCESSING

Pr 0 iL O
P2 0 0 sA

P2 0 0 O
(b) (c)

v
>

isLocatedIn sameAs

b o]?3 0sAO0 i 00O I
@ 0O 0OsAOiL O OO
sA iLO O 0O
iL O 0O
p1 p2 Pp3 iL sA O

0

0

A

OO OO OO
OO0 oo o ©
OO oo o
OO Oo

OO OOo o
w

o o O
o

Figure 7.3: Graph and query adjacency matrices: (a) shows graph representation of Q1; (b) shows
query adjacency matrix Ap,; and graph adjacency matrix Ag,,, is shown in (c).

pp 0001 0O0O00O P 0OOO0CO0O1TO0O00O PO O0OOO0OOO0CT1TO

P20 00 01 0O0O P20000O01O00O0 P20 00 0O0O0O0 1

ps 000 00 01O p3 0 00O 00O OO 1 p3 000 00O 1O0O
P, P, Py

Figure 7.4: Permutation matrices which correspond to some mappings of Q1 in Gpgp.

In order to find all mappings of Q in G, one needs to find all corresponding permuta-
tion matrices P for which the isomorphism condition holds. Each mapping can be computed
progressively by finding permutation matrices P (i, |Vg|)! of size i x |Vg| which correspond to
partial mappings of the first i vertices of Q onto some vertices of G. For the partial mapping to
be valid, the graph isomorphism condition (7.1) for the partial permutation matrix must hold

Ag(i,i) = P(i,|VeAG PG, Vs) (7.2)

A naive recursive backtracking subgraph matching algorithm finds partial mappings by
gradually setting a candidate permutation matrix row by row. From the definition of permutation
matrix P, it follows that each row k in P contains exactly one singleton entry py ; = 1 while all
other entries py,; = 0 for j # i. The recursive procedure starts by setting the first element pj
of the first row of the candidate permutation P’ to 1 and all other elements to 0. If the partial
matching obtained by candidate permutation P(1,|Vg|) satisfies the subgraph isomorphism

1Here, A(k, 1) denotes a submatrix of A which contains the first k rows and first / columns of A.

7.2. SUBGRAPH MATCHING QUERIES 109

requirement (7.2) then the procedure is called recursively to set the next row of the candidate
permutation matrix. The procedure continues until |V | rows have been set (or all query vertices
have been matched to some graph vertices) and the mapping has been found or the subgraph
isomorphism requirement is not satisfied. In this case, the procedure backtracks to the previous
row and tries the next setting of the singleton entry in that row.

It is easy to see that this backtracking algorithm indeed produces all possible mappings of
Q in G. 'The subgraph isomorphism check is executed in a recursive procedure which is called
for each candidate singleton element in all rows of a candidate permutation matrix. The time
complexity of the isomorphism check (which is a simple matrix multiplication) is Q(|Vg|?).
Since there are | Vg | potential singletons in each of the |V | rows, the worst-case time complexity
of this naive algorithm is very high at O(|Vg|? - [Vs|'"2!) = 0(|Vg|Vel).

Refinements. 'The time complexity of the naive algorithm can be reduced significantly by
introducing a number of refinements which aim to cut down the number of recursive calls of the
algorithm. Recall that refinements can either be static or dynamic. Here, we give a few examples
of each type.

A simple static refinement is based on pruning of candidate singletons which can be per-
formed based on the neighborhood structure of both query and data graphs. The most shallow
neighborhood filter is based on the compatibility of degrees of matching query and graph ver-
tices. For example, consider a matching of query vertex ¢ to graph vertex v and we know that
degree of g is greater than the degree of g. Observe that this matching cannot be completed since
there are more vertices in a query (neighbors of ¢) than available vertices in a graph (neighbors
of v). Hence, all such candidate matchings (¢, v) can be discarded immediately before the con-
struction of any of the mappings.

A simple dynamic refinement in a matrix-based subgraph matching involves a validity
check which is employed to verify whether at each step of recursion the partial matrix P’ con-
structed so far is indeed a permutation matrix. Specifically, each candidate singleton p ; is
checked whether there already exists a singleton p] ; in one of the previous rows (i < k) which
were already setin P’. If such a singleton exists then setting p; ; to 1 violates the definition of the
permutation matrix and, therefore, the corresponding recursive call can then be safely skipped.
In more general terms, this check ensures that all query vertices in a mapping are matched to
distinct graph vertices and vice versa. This is a necessary (but not sufficient) requirement for the
mapping to be isomorphic.

More intricate dynamic refinements are based on neighborhood filters which can be em-
ployed to ensure that each partial mapping is locally consistent with potential future assignments.
Again, consider a matching of ¢ to v in a partial mapping of Q to G. We can easily verify if
any of the neighbors of ¢ have been already assigned to some vertices in G. If yes, then all such
neighbors of ¢ should be assigned to some neighbors of v. If a violation can be found, i.e., there
exists an assignment (¢’, v’) such that ¢’ is a neighbor of ¢, but v’ is not a neighbor of v then
the matching of ¢ to v is not locally consistent and cannot lead to an isomorphic mapping.

110 7. QUERY PROCESSING
7.2.2 BFS-BASED ALGORITHMS

Algorithm 7.2: Generic iterative BFS-based subgraph matching.

Input: Graph G = (Vi, Eg) and query graph pattern r = (V;, E;)
Output: set of mappings M of r into G

1 M:=0

2 V2 = order(V;) // ordering query vertices
3 for cachv, € V? do

4 L Cy1a := refine(G, r, vy) // static refinement
585:=0 // initialize the search state
6 m.init() // initialize the candidate mapping
7 S.enqueue(V,?.next(), m)

8 while S is not empty do

9 vr, m := S.dequeue()

10 Ciy,,rf1 := refine(G, vy, ', m) // dynamic refinement
1 | forv, € C7% do

12 me := m.copy()

13 mc.add(vy, vg)

14 if isIsomorphic(me, G, r) then

15 vrext = V2 next() // get next query vertex
16 if v!'e* # ¢ then

17 L S.enqueue(v!e*, m.) // add next query vertex for BFS
18 else

19 L M .add(m.)

20 return set of mappings M

Many subgraph matching algorithms follow a variation of a breadth-first search as their
underlying evaluation mechanism. An example of a generic iterative BFS-based subgraph
matching algorithm is shown in Algorithm 7.2. Like DFS-style matching algorithms, BFS
subgraph matching can be modeled as a guided stateful graph search. However, in contrast to
DFS, breadth-first search does not use recursion as it is purely iterative in its nature. Therefore,
the state in a generic BFS-based subgraph matching is less complex than in DFS and is based
on a queue data structure.

An important feature of BFS-based algorithms for subgraph isomorphism is the fact that
they can be optimized by utilizing the dynamic programming (DP) approach. Specifically, a given

7.2. SUBGRAPH MATCHING QUERIES 111

query can be broken down into smaller subqueries which can then be processed independently.
'Then, the memoized solutions to each of the smaller subqueries are eventually combined to pro-
duce the answer set of subgraph mappings. Relational evaluation of subgraph queries is the
classical example of dynamic programming in BFS-style subgraph matching.

Relational BFS subgraph matching. Assuming relational representation of a graph as a table
G of (s, p, 0) triples, every subgraph query

0:(1,..ovzm) < a1(x1,y1).....an(Xn, yn)

can be translated into a semantically equivalent relational SPJR (select-project-join-rename)
expression as follows:

Rusem < Tz esZm ([><]VQ (Ps—>x,-,o—>y,- (0p=af (G)))). (7-3)

where <y, denotes zero or more relational joins defined by the composition of vertex vari-
ables (Vo) in Q. Note that the relational algebra expression in (7.3) produces homomorphic
mappings, i.e., different query vertices are allowed to map to the same graph vertices. To ob-
tain mappings which are isomorphic, the additional filter needs to be added which explicitly
disallows that:

RisaM < ON., - ey ins 2i#2) (RusGm)- (7.4)

'The relational expression in (7.4) can then be evaluated by any relational database engine.
Ifjoins in >y, are processed pairwise with standard join algorithms and the engine utilizes pus-
based query processing this evaluation method is equivalent to a BES-style subgraph matching
with dynamic programming optimization.” An example of this approach for query Q1 on graph
Gpgp is shown in Figure 7.5.

7.2.3 DISCUSSION
DFS-based SGM advantages. Depth-first-search-based subgraph matching (SGM) algo-

rithms are attractive because of their low memory consumption, pipelined results, and efficient
refinements through advanced pruning of partial mappings.

DFS’s low memory consumption results from the limited number of partial mappings of
query-to-graph vertices which are cached in the state during the search. Specifically, the overall
memory consumption of a DFS-based search corresponds to storing partial mappings along
paths in a graph which are traversed depth-first. Since diameters of real graphs are often small,
the overall memory consumption of a DFS-based subgraph matching is also relatively low.

>This does not mean that relational processing of subgraph matching queries is limited to a BFS-style search. Depending
on the query execution model adopted by the corresponding relational engine, any graph search paradigm (BFS, DFS, and
others) can be used.

112 7. QUERY PROCESSING
O01.5#1.0A2.5#2.0A1.5#2.0

~
h G
N\

-_—— -

T1.5,2.5,2.0 3 S\ \;S 70 S P o
1s [1o]2s [20 215 | 7 1 1sA] 2
415 5][7 F~ 2 lsAl S
~ 5 6 8 iL 4
5668 s S |
N 7 8 6 4 iL 5
78|86 N :
T 18|86 N 11816 3 | sA| 1
X1.0=2.s 1 iL | 4
4 [iL | 5
5 sA 7
s o Ao~ -—— 5 iL | 6
1[4t N e Ss | o 6 | sA| 8
3 | 4 \ / 1] 2 8 |sA| 6
4 5 Op=isLocatedIn Op=sameAs 2 3 1 iL | 8
5 | 6 3 | 1 7 L] s
7 | 8 | S | 7 2 [iL | 5
1 8 6 8
2[5 G G 8 | 6

Figure 7.5: BFS-style subgraph matching using relational algebra operators in which both graph

and intermediate embeddings are represented as tables.

Further, since mappings are generated depth-first, the query answers can be pipelined to
the end-consumer. This behavior is desirable in exploratory and top-k query workloads.

Finally, the majority of advanced pruning strategies have been studied and implemented
in the context of DFS-based subgraph matching algorithms. While some of these refinements
are applicable in the BES setting as well, the effectiveness of these strategies for BEFS is yet to be
confirmed.

DFS-based SGM weaknesses. Main weaknesses of DFS-based matching result from its
complex tuple flow, suboptimal IO patterns, and ineffectiveness of some common refinement
strategies.

Complex tuple flow results from the recursive nature of a depth-first search. Recursion has
lower performance than an equivalent iterative program typically due to the overhead introduced
by function calls and stack maintenance. Even when converted to an iterative stateful graph
search, DFS-based matching still has more complex state than its BFS counterpart.

Tuple-by-tuple processing of partial mappings during depth-first search generates IO pat-
terns which are often suboptimal. On typical graph storage clustered by edge labels or proper-
ties, DF'S would not exploit the locality and would incur significant overhead due to buffer pool
misses. Further, tuple-based processing becomes expensive in main-memory setting (when disk
IOs are no longer the significant bottleneck) due to excessive function calls and heavy random
memory access.

7.3. REGULAR PATH QUERIES 113

Finally, since only a limited number of partial mappings are kept in the search state, some
common refinement strategies are not as effective as in BFS-style matching. For example, in
dense and/or cyclic graphs, the same vertex may be discovered by the search multiple times.
Clearly, following paths from such vertex is a wasted effort as these paths have already been
explored. Due to limited cache in the search state, DFS-based algorithms are not as efficient at
detecting such vertices and timely pruning them out from the remainder of the search.

BFS-based SGM advantages. BFS-based subgraph matching is attractive because of its un-
complicated and adaptable tuple flow, easy parallelization, and sequential IO patterns.

'The state in BFS subgraph matching can be simplified thanks to the fundamental itera-
tive nature of the breadth-first search. Furthermore, the lack of backtracking (as in DFS) allows
for much simpler tuple flow throughout the execution of a graph search. Adaptable tuple flow,
in turn, facilitates powerful optimizations based on dynamic programming which enable faster,
parallelized query evaluation which splits up the original query and evaluates each of the result-
ing subqueries concurrently.

Finally, breadth-first graph exploration produces IO patterns which exploit data locality
better than the DFS-based SGM. For example, standard graph indexes clustered on edge labels
are perfect for BFS-based SGM since mappings are produced label by label and, hence, result
in sequential reads of the storage device. The same configuration will result in more expensive
random accesses in a DFS-based setting.

BFS-based SGM weaknesses. 'The main disadvantage of breadth-first subgraph matching is
its excessive memory consumption. Unlike depth-first exploration, in the naive implementation
of BFS-based SGM, partial mappings for each query vertex are fully materialized in the search
state before attempting to match the next query vertex specified by the evaluation plan. The
space complexity (i.e., the maximum size of the search state during the search) of BFS-based
SGM is bounded by the average fan-out of the graph edges and is exponential in the diameter
of the matched subgraph.

7.3 REGULAR PATH QUERIES

Regular path queries (RPQs) extend subgraph matching queries with non-trivial navigation on
a graph. This navigation is performed by returning pairs of vertices in a graph such that paths
between the vertices in a pair match a given regular expression.

In the following subsections, we give an overview of different methods used in evaluation
of regular path queries. In the literature, we identify three main groups of approaches: relational
algebra-based, Datalog-based, and automata-based RPQ evaluation methods.

As a running example, consider the graph shown in Figure 7.2 and a query Qpgp as fol-
lows:

Opsp = (:sameAs"‘/:isLoceltedIn)Jr /:sameAs”™.

114 7. QUERY PROCESSING

Here, graph Gpgp contains information from both English and Dutch DBPedia datasets. Query
Opgp aims to find all places p in both Dutch and English datasets in which a city is located in.
This query demonstrates the usefulness of RPQs in navigation of unknown graphs, as it uses
succinct but non-trivial Kleene transitive expressions to concurrently resolve both equivalence
and geographical closures without prior knowledge of an underlying graph.

7.3.1 RELATIONAL ALGEBRA AND DATALOG-BASED APPROACHES

The simple relational algebra-based RPQ evaluation approach can be modeled by the relational
algebra extended by an additional operator o which computes the transitive closure of a given
binary relation. This algebra, called «-RA, can be then used to construct an «-RA expression tree
(e.g., see Figure 7.6b) based on the bottom-up traversal of a parse tree of the regular expression
(Figure 7.6a) in a given query.

s1(X,Y) :- sameAs(X,Y).

| | s1(X,Z2) :- s1(X,Y), sameAs(Y,Z).

D>, —
/ L — 0=* — o 52(X,Z) :- 51(X,Y), isLocatedIn(Y,Z).
/ \ al s2(X,Y) :- isLocatedIn(X,Y).
+ * Do
| | P 0= 53(X,Y) :- s2(X,Y).
, sameAs o \ Tp=sameds ((X.2) - 55(KY), s2(Y.2).
/ | X,Y) - s3(X,Y).
* Op=sameAs Op=isLocatedIn s(X,Y) - s (X.Y)
| | | 84(X,Z) - 83(X,Y), s1(Y,2Z).
sameAs isLocatedIn G G G 7 - 54(X,Y).
(a) (b) (©)

Figure 7.6: A parse tree for a regular expression in Qpgp (a), an @-RA tree (b), and a Datalog
program for Qpgp (¢).

Many GDBMSes implement RPQ evaluation by adapting the «-RA approach since it
models relational techniques well and, thus, can be easily and efficiently implemented in most
relational databases which support SQL-style recursion.

Native support of recursion makes Datalog a suitable language to express regular path
queries. For example, a simple strategy can be used to convert an «-RA tree into a Datalog
program (e.g., as shown in Figure 7.6). Then, this program can be submitted to any Datalog-
compliant engine (e.g., LogicBlox) in order to evaluate a given RPQ.

Note, however, that both @-RA tree and a corresponding Datalog program obtained by
the translation procedure are not necessarily the most eflicient as all the issues related to query
planning apply to the tree and its translation as well (e.g., translation methods, join orders, query
rewrites, sideways information passing, and many others).

7.3. REGULAR PATH QUERIES 115
7.3.2 FINITE AUTOMATA-BASED APPROACHES

Research on regular expressions, of course, well precedes the introduction of regular path queries.
Specifically, regular expressions have been introduced in formal languages theory as a notation
for patterns which generate words over a given alphabet. The dual problem to generation is recog-
nition—and finite state automata (FA) are the recognizers for regular expressions. Specifically,
given a regular expression r, there exists a number of methods to construct a corresponding
automaton which recognizes the language of r.

Note that there exist infinitely many FAs which can recognize r, and many approaches
exist which aim to construct an automaton deemed efficient for a particular scenario, e.g., finite
automata obtained by using minimization.

'The simplest method which uses an FA for evaluation of regular path queries on graphs
works as follows. First, an automaton AQpgp (e.g., see Figure 7.7a) which recognizes given regu-
lar expression r is constructed by using standard methods and then, optionally, minimized (Fig-
ure 7.7b). Then, a graph database Gpgp is converted into finite automaton AGpgp with graph
vertices becoming automaton states and graph edges becoming automaton transitions in AGpgp.
Given AQpgp and AGpgp, a product automaton Ppgp = AQpgp X AGpgp (Figure 7.7¢) is con-
structed. Finally, automaton Ppgp is then tested for non-emptiness by checking whether any
accepting state(s) can be reached from the starting state(s). Then, pairs of starting and corre-
sponding reachable accepting states in Ppgp form the answer pairs for Q pgp.

sameAs sameAs

sameAs sameAs

start

isLocatedIn

(b)

Figure 7.7: An e-NFA for Qpgp (a), a corresponding minimized NFA (b), and a snippet of a

product automaton with a starting state in Eindhoven (vertex 1) (c).

To avoid a construction of a full product automaton, evaluation of RPQs can be performed
by running a bidirectional breadth-first search (biBFS) in the graph. Specifically, given a reach-
ability query (i.e., an RPQ where variables are bound to constants on both ends), two FAs are

116 7. QUERY PROCESSING

constructed. The first automaton recognizes the regular language defined by the original ex-
pression, and the second automaton accepts the reversed language, which is also regular. The
algorithm uses the steps of the biBFS to expand the search frontiers and to connect paths. Be-
fore each vertex in a graph is placed on the search frontier for the next expansion, the check
is performed whether the partial path leading up to this vertex is not rejected by the appropri-
ate (direct or reverse) automaton. This guarantees that partial results which are not accepted by
either automaton are not included in the next iteration of a search.

As an optimization, an RPQ evaluation method which executes the search simultaneously
in the graph and the automaton can be employed. This is achieved by exploring the graph using
a BFS while marking the vertices in the graph with the corresponding states in the automaton.
Essentially, in this method, edges in the graph are traversed only if the corresponding transition
in the automaton allows it. This way, the construction of a full product automaton is avoided
and the automaton essentially acts as an evaluation plan for a given RPQ.

The idea of using an FA as an evaluation plan can be taken further. It can be shown
that effective plan spaces that result from FA-based and a-RA-based approaches are, in fact,
incomparable. Hence, to find the best plan, both implicit plan spaces have to be considered.
With this in mind, a cost-based optimizer for RPQs which subsumes and extends FA- and
a-RA-based approaches can be designed.

7.4 UNIONS OF CONJUNCTIVE REGULAR PATH QUERIES

Unions of conjunctive regular path queries combine the basic core features of graph query lan-
guages: subgraph matching (as discussed in Section 7.2) and reachability (as discussed in Sec-
tion 7.3).

A naive implementation of evaluation of UCRPQs is based on relational algebra extended
with o operator («-RA). As discussed in Section 7.3.1, «-RA is able to evaluate the full fragment
of RPQs, albeit possibly not efficiently. Similarly, as discussed in Section 7.2.2, SPJRU algebra is
also able to evaluate the full fragment of conjunctive queries. Hence, it can be shown that «-RA
is sufficient to evaluate the full fragment of UCRPQs which combines CQs and RPQs.

While o-RA can indeed be used to answer UCRPQs, as we have demonstrated in previous
sections, this type of evaluation misses many powerful optimization opportunities, e.g., elaborate
DFS-based refinement strategies or rich plan space offered by automata-based RPQ evaluation
methods. Few of the current graph processing systems are able to optimize across unions of con-
junctive regular path queries. This topic remains at the forefront of current research on efficient
graph query evaluation, planning, and optimization.

7.5 BIBLIOGRAPHIC AND HISTORICAL NOTES

Query optimization is an established research topic in the database community and has been
surveyed extensively [loannidis, 1996].

7.5. BIBLIOGRAPHIC AND HISTORICALNOTES 117

Subgraph pattern matching is a classic problem with an extensive and rich literature across
several research areas [Gallagher, 2006]. For a view on the current state of the art, see Bi et al.
[2016], Han et al. [2013], Kim et al. [2016, 2015], and Lee et al. [2012].

Losemann and Martens [2012] proposed an RPQ evaluation algorithm based on a dy-
namic programming paradigm. The «-RA algebra was proposed by Agrawal [1988]. Many
GDBMSes implement RPQ evaluation by adapting the «-RA approach since it models rela-
tional techniques well and, thus, can be easily and efficiently implemented in most relational
databases which support SQL-style recursion (e.g., PostgreSQL, Oracle, IBM DB2, and oth-
ers) and relational triple stores (e.g., Virtuoso [Erling and Mikhailov, 2007], IBM DB2 RDF
store [Briggs et al., 2012a,b], Oracle [Chong et al., 2005], and others [Sakr et al., 2012]). Evalu-
ation based on a-extended relational algebra is also considered [Dey et al., 2013, Yakovets et al.,
2013].

Consens et al. [1995] propose a simple strategy to convert an @-RA tree into a Datalog
program (e.g., as shown in Figure 7.6¢).

The idea of using FA in evaluation of RPQs is used in various works [Kochut and Janik,
2007, Koschmieder and Leser, 2012, Mendelzon and Wood, 1995, Pérez et al., 2010, Sarwat
et al., 2013, Yakovets et al., 2016, Zauner et al., 2010]. Implementation of a G+ query lan-
guage [Mendelzon and Wood, 1995] includes the first method which uses FA for evaluation
of regular path queries on graphs. Kochut and Janik [2007] propose to evaluate RPQs by run-
ning a bidirectional breadth-first search (biBFYS) in the graph. Koschmieder and Leser [2012]
present an RPQ evaluation method which executes the search simultaneously in the graph and
the automaton. The WaveGuide system [Yakovets et al., 2016] takes the idea of using an FA as
an evaluation plan further. Query plans in WaveGuide are based on the notion of wavefronts—
stratified automata extended with seeds, append, prepend, and view transitions.

Benchmarking tools are crucial in the experimental design and study of query process-
ing methods. For an overview of benchmarking and synthetic graph and workload generation
frameworks, we refer the reader to recent progress in the area [Bagan et al., 2017, Erling et al.,

2015, Zhang and Tay, 2016].

119

CHAPTER 8

Physical Operators

'This chapter discusses how graph-centric features used in the graph query languages of Chapter 3
introduce new challenges in physical query evaluation. We focus particularly on the design and
implementation of operators used in physical query plans for declarative graph queries.

* Evaluation strategies for computation of transitive closure are presented in Section 8.1.
* Section 8.2 discusses efficient algorithms for multi-way joins.
* Cardinality estimation of operator results is presented in Section 8.3.

* Finally, further physical optimizations such as efficient handling of large intermediate re-
sults and sideways information passing are discussed in Section 8.4.

8.1 TRANSITIVE CLOSURE

As described in Chapter 3, one of the core functionalities of modern practical graph query lan-
guages involves querying reachability. In Chapter 7, we have shown that parts of the query which
involve reachability constructs can be evaluated by computing a form of a fransitive closure over
corresponding subgraphs participating in the query.

Let G = (V,E,n,A,v) be a property graph and R € V x V be a binary relation which
contains pairs of vertices of G. We call R #ransitive on a set of graph vertices V' if for all graph
vertices s, v, and 7 in V if (s,v) € R and (v,t) € R then (s,) € R. Then, the transitive closure
R™ of relation R over set V is the smallest binary relation on V that contains R and is transitive.

We call relation B a base relation over which transitive closure B is computed. Depend-
ing on how B is defined over graph G, the transitive closure of B can be used to represent various
reachability patterns in a graph. For example, if relation B contains all pairs of vertices which
are connected by an edge in G, BT would contain all pairs of vertices (s,) such that vertex
can be reached by following one or more edges from vertex s. An example of this scenario for
graph Gpgp (shown in Figure 7.2) and the base relation formed by selection of edges with label
isLocatedIn is presented in Figure 8.1.

120 8. PHYSICAL OPERATORS

Brabant

Eindhoven isLocatedIn

Figure 8.1: Transitive closure (shown as red edges) over base relation defined by selection of
isLocatedIn edges in graph Gppp.

Algorithm 8.1: Naive TC. Algorithm 8.2: Semi-naive TC

1 Co:= B with cycle elimination.

2 Cy :=join(B,Cy) 1 Cop:=0

31:=0 2 A(If =B

4 while C;+1 \ C; # @ do 3i:=0

5 i=i+1 4 while AR £ 0 do

6 Cit1 := extend(C;, B) 5 C; 41 := cache(C;, AiR)

7 return BT = Cj 4, 6 Aj+1 = crank(B, AlR)
7 A1R+1 := reduce(A; 41, Cit+1)
8 =141

o

return BT = C;

Naive TC. Given a base relation, its transitive closure can be computed by performing an
iterative bottom-up fixpoint evaluation. A naive fixpoint strategy is presented in Algorithm 8.1.
This strategy is based on iterative breadth-first computation of the transitive closure. During
the computation, a partial closure is stored in a binary cache relation (denoted by C; at the ith
iteration). At each iteration, the current cache is extended by joining tuples in the cache with
tuples from the base relation. If both cache and base are stored in binary relations C(s,¢) and
B(s,t), respectively, then the extend operation can be represented by the following relational

8.1. TRANSITIVE CLOSURE 121

expression:
Ciy1 < Ci Umg, 5,8:(Ci <, 1=Bs B). (8.1)

Here, the partial transitive closure is incrementally extended breadth-first by tuples from the
base relation until no new tuples are produced, i.e., a fixpoint is reached.

While the naive fixpoint evaluation strategy is extremely simple, it suffers from several
serious shortcomings. First, since the partial closure is extended incrementally and assuming
the fixpoint is reached after n iterations, we can show monotonic inclusion C; € C;4; for any
iteration 0 < i < n. Therefore, a join in expression (8.1) for cache Cj 41 is redundant for all tuples
of C; included in C;4; which were already joined with B in the previous iteration. Second,
assuming default bag-based semantics of operations in the expression (8.1), the naive fixpoint
strategy does not explicitly deal with duplicate tuples at any point during the evaluation. Hence,
in addition to a potentially large amount of redundant work caused by processing of duplicate
vertex pairs, naive fixpoint evaluation will lead to potentially unbounded computation on cyclic

graphs.

Semi-naive TC. 'The semi-naive fixpoint evaluation strategy (its variant with additional opti-
mizations is presented in Algorithm 8.2) aims to address some of these shortcomings. The key
idea of the semi-naive strategy is to use a cache’s differential relation (denoted by A) instead
of the whole cache relation to compute the extension of the partial closure at each iteration.
Hence, the redundant computation caused by the monotonic inclusion of cache instances be-
tween iterations is avoided since the join is performed only for the “new” tuples contained in the
diﬁérential, ie., A; = C,'.H \ G;.

It is worth noting that to aid the cost analysis of the computation of transitive closure, the
extend operation can be broken down into three separate operations crank, reduce, and cache, as
shown in Algorithm 8.2. Here, crank performs the breadth-first extension of the current partial
transitive closure with tuples from the base relation and can be represented by the following
relational expression:

A1 < nAlR.s,B.t(AtR [><]A1R.Z=B.s B). (82)

Operation reduce removes duplicate pairs of tuples from the differential which are already there
(reduce against A) and/or in the current partial transitive closure (reduce against C) to produce
a reduced differential AR. Finally, cache integrates the newly discovered and reduced tuples AR
into the cached closure C;.

SMART TC. The SMART transitive closure algorithm aims to obtain the closure in sig-
nificantly fewer iterations than the semi-naive approach. In the semi-naive transitive closure
computation, crank joins the differential A; with the base relation B to produce the zew differ-
ential A; 4. The idea of the SMART approach is to join a part of a differential with the whole
partial closure produced up to this point.

122 8. PHYSICAL OPERATORS

To showcase this idea, consider the notion of a closure depth d; ; which is associated with
each pair of vertices in transitive closure B of a binary base relation B. Closure depth is defined
recursively as follows.

* For all pairs of vertices (s, 7) in the base relation B the depth dj; is 1.
* For all vertices s, v,z in V,if ds,, = k and dy,, = [, thend;; =k + 1.

Tuples in SMART’s cache are triples (s, ¢, d), where (s,) is the pair of vertices in the partial
closure and d is their corresponding closure depth. Then, the crank operation in the SMART
algorithm is defined as follows:

Ait1 < 70C;.5,0;.4(Ci DG 1=A; .5 Og—pi (A)). (8.3)

Intuitively, the SMART algorithm extends the partial closure by self-joining the entire partial
closure so far with a part of itself, specifically, with those pairs of nodes which have the highest
closure depth. For example, during the second iteration (i = 2) of the algorithm, the entire
closure C; (which by now contains pairs with d = 1,2, 3, and 4) is self-joined with its part
(04=4(C3)) to obtain the differential which contains pairs with closure depths 5, 6,7, and 8,
respectively.

Let n be the number of iterations it takes the semi-naive algorithm to reach a fixpoint.
From expression (8.2), it follows that each crank in a semi-naive iteration extends the closure
depth by 1. On the other hand, it follows from expression (8.3) that SMART essentially doubles
the closure depth of discovered vertex pairs with each iteration. Hence, it will take SMART
log, n iterations to compute the whole closure compared to 7 iterations of the semi-naive ap-
proach (example shown in Figure 8.2).

Algorithm 8.3: SMART TC. Algorithm 8.4: WAVEGUIDE TC.
1 AR :=init(B) 1 AR = seed(G)
2 C() = AO 21:=0
3i:=0 3 while AR £ 0 do
4 while AiR # ¢ do 4 Afﬂ = seed(AlR)
5 Aj41 = crank(AR, C;) 5 A= crank(AF, |, AR, G, G, Pg)
6 AIR_H := reduce(A; 11, C;) 6 AiR—l—l := reduce(A; 41, AR, G)
7 Ci41 = cache(C;, AK) 7 Ciy1 = cache(AlRH, C;)
8 i=i+1 8 i=i+1
9 return BT = C; 9 return extract(C;)

Semi-naive vs. SMART. It is not immediately clear whether SMART is more efficient than
the semi-naive approach in computing transitive closure of a given relation. Intuitively, SMART
makes significantly fewer iterations but each iteration joins larger relations. Further, the way

8.1. TRANSITIVE CLOSURE 123
dosure depth O—O—O—O0—0—0—0—0—0 B O—O0—0—0—0—0—0—0—0 dosure depth

Lo 0 0.0 .0 0000 A QO L Q0 0 0 0 0 0 1

7 O O O O O Ag

8 O0._.O0 O O O O O O O Ay

Figure 8.2: Evaluation of simple transitive closure with semi-naive fixpoint (left) vs. SMART
fixpoint (right).

vertex pairs of certain depths are obtained can dictate how many tuples were reduced at each
iteration. To illustrate this, consider computations of the transitive closure of two base relations
B and B; by the semi-naive and SMART algorithms shown in Figure 8.3. In this example,
B and B, exhibit /ensing, a property characterized by having the majority of vertices with low
in/out degrees along with a few /enses, vertices with high in/out degrees. The lensing example
allows us to easily construct a graph (B;) for which the semi-naive algorithm produces fewer
intermediate tuples (characterized by the sum of all A;’s) and shifting the focal points produces
a graph (B5) for which the SMART algorithm is better. This demonstrates that deciding which
approach is more efficient depends on the sructure of the base relation itself and, ultimately, this
decision needs to be cost-based.

WAVEGUIDETC. The semi-naive and SMART algorithms showcase the need for planning
of the evaluation of transitive closure. However, by themselves, these algorithms are too rigid
and do noz explore the full plan space possible for the computation of transitive closure. For
example, to compute vertex pairs with closure depth 6, the semi-naive algorithm would join
vertex pairs with depths 5 and 1. Similarly, the SMART algorithm would join depths 2 and 4.
However, there might be a dezzer plan which joins depths 3 and 3, and which neither of the two
algorithms considers.

Algorithm 8.4 shows transitive closure powered by a WAVEGUIDE RPQ optimizer which
subsumes and extends both semi-naive and SMART algorithms by introducing planning for
the evaluation of transitive closure. Specifically, if a base relation is defined as a query Q (e.g., an
RPQ), WAVEGUIDE chooses the optimal plan (P) according to a cost model which takes into

account the structure of the base relation and costs associated with physical implementations of

124 8. PHYSICAL OPERATORS

semi-naive SMART semi-naive SMART
i A AR i A AT i A AR A AT
0 16 16 0 16 16 0 16 16 0 16 16
1 36 33 1 36 33 1 24 18 1 24 18
2 20 8 2 20 8 2 20 8 2 20 8
3 16 16 3 64 16 3 4 1 3 1 1

88 78 1536 78 64 48 61 43

Figure 8.3: Analysis of cardinalities of differentials (A;) and reduced differentials (AX) for two
runs of the semi-naive and SMART algorithms on base relations By (left) and B, (right).

the algorithm’s operations. Example implementations and their corresponding costs are shown
in Table 8.1.

An important feature of a transitive closure algorithm is the ability to push down the pro-
cessing of constraints imposed on the results of the closure. The classes of possible constraints
range from simple selections on closure source(s) based on the conjuncts specified in the query to
more complex conditions such as aggregates on paths. For example, WAVEGUIDE TC handles
the conjunctive selections via a seeding construct (line 1 of Algorithm 8.4) used in its evaluation
plans and its search algorithm, which uses knowledge of the complete graph G. Further discus-
sion of efficient processing of constrained closures can be found in the bibliography section of
this chapter.

Table 8.1: Processing costs associated with typical implementations of operations involved in
the computation of transitive closure

Step ‘ Generalized Cost ‘ Example Implementation ‘ Complexity of f (per iter.)
Coank | 2o FLIAF|,|G,|Ci]) | Index-nested loop joins: O(JAF| - (log |G| +1og |Ci))
A? MPQ G and Af% MPQ C;.

Chaguee | >or—y F2(|Ad]) Sort A;, remove duplicates. O(]A;i] - log|AY)
Coace | 2or fa(JAl, 1C4)) Scan A;, probe C;’s index. O(|A;] - log|Ci))
Cache N A(NENTeh)) Scan AF, insertinto C;’'sindex. | O(]AF|-log|Ci|)

8.2 MULTI-WAY JOINS

Aswe have seen in Chapter 7, the cardinality of a query result often dominates the query running
time since any algorithm which evaluates the query has to, az the very least, enumerate through

8.2. MULTI-WAY JOINS 125

all of its result tuples. Hence, in order to obtain a worst-case running time for a given query, it
is useful to provide a good upper bound on its output size.

As a running example, consider a query Q,; which finds all triangles of entities connected
with sameAs edges in an encyclopedic network such as DBPedia:

Oui: (P1,p2.p3) < sameAs(p1, p2),sameAs(pa, p3),sameAs(ps, p1) .

A graph representation of the triangle pattern in Q,; is given in Figure 8.4. This query pattern
can be used to find clusters of equivalent entities in a given network.

Figure 8.4: A graph representation (left) and a fractional edge cover (right) of a triangle query
Qtri .

Given a relational representation of a graph as a table G of (s, p,0) triples, a first naive
attempt to establish an upper bound on the cardinality of the result of query Q,; is:

|Qtri| < |0p=sameAs(G)|3- (84)

This bound is based on the size of the Cartesian product of all relations participating in the
query. It is easy to see that this bound is not tight. A tighter bound is obtained by realizing that
the query is, in fact, a triangle in which two relations join and the third acts merely as a filter of
the results of the first join:

|Owil < |Up=sameAs(G)|2- (85)

An even tighter bound on the cardinality of query results can be obtained by using the AGM
bound, a bound based on a concept of a fractional edge cover of a conjunctive query. In essence,
a fractional edge cover is an assignment of a weight (u;) to each relation (R;, represented as
hyperedges) participating in the query such that each query variable is “covered” by a total weight
greater or equal to 1. Figure 8.4 shows an example of a cover for Q,; where Ry = R, = R3 =
Op=sameds(G). Given a fractional edge cover for a conjunctive query Q, the AGM theorem

provides a bound on the cardinality of Q:

ol < J]IRiIM. (8.6)

i=1

126 8. PHYSICAL OPERATORS

If we plug a minimal edge cover in (8.6), i.e., a fractional cover with the lowest total weight, we
would obtain a #ight bound on |Q|. For example, for Q,;, a minimal edge cover is obtained by
assigning equal 1 weights to all relations. From the AGM theorem, we obtain a bound on | Q|
which is tighter than (8.4) and (8.5):

3
|Qtri| < |0p=sameAs(G)|2- (87)

Observe that a typical evaluation of Q,; based on a relational SPJR expression processed with
pairwise joins would have at least quadratic complexity (as in bound (8.5)) which is not optimal
with respect to the bound (8.7). Intuitively, while a join of multiple relations can be selective,
with pairwise joins, we are forced to join at most two relations at once which might not be as
selective.

This observation motivated the study of a new class of join algorithms, the worst-case gp-
timal multi-way join algorithms which exploit the high selectivity of multi-way joins. Leapfrog
Triejoin (LTJ) is a simple example of such an algorithm. To evaluate a complex conjunctive
query, instead of constructing a tree expression of pairwise joins which can produce large inter-
mediate results, the L'T] algorithm joins all relations at once without producing azy intermediate
results.

A basic building block of the LI algorithm is a leapfrog join, a variant of a sort-merge
join which simultaneously processes k unary relations A1 (x), ..., Ax(x). Leapfrog join provides
a linear iterator for the intersection A7 (x) N ... N Ag(x).

Algorithm 8.5: If-init(). Algorithm 8.7: If-search().

1 if any iterator is atEnd() then 1 x’:= lter[(p — 1) mod k].key()

2 L atEnd := true 2 while #rue do

3 else 3 x := Iter[p].key()

4 atEnd := false 4 if x = x’ then

5 sort(lter[0...k — 1]) 5 key :=x

6 p:= 0 6 B return

7 1f-search() 7 else

8 lter[p].seek(x")

Algorithm 8.6: If-next(). 9 if iter[p].atEnd() then

1 tter[p].next() 10 atEnd = true

2 if Iter[p].atEnd() then 1 | return

3 L atEnd = true 12 else

+ else 13 x" = Iter[p].key()

5 Lp:=p+lmodk 14 | pi=p+1modk

1f-search() _

8.2. MULTI-WAYJOINS 127

Internally, the LTJ algorithm keeps an array lter[0. .. (k — 1)] of k iterators, one for each re-
lation participating in the join. During the search, the Iter[] array is kept sorted according to
the current keys at which iterators are positioned, where the first iterator in the array has the
smallest current key, and the last iterator has the largest current key (sort() method, line 5, Al-
gorithm 8.5). The smallest and largest keys at which the iterators are positioned are continu-
ously tracked by the algorithm. The iterator with the smallest current key is repeatedly repo-
sitioned to an upper bound of the largest key, thus leapfrogging the iterators of other relations
(seek() method, line 8, Algorithm 8.7). An example run of the leapfrog algorithm for unary re-
lations A = {0,1,3,4,5,6,7,8,9,11}, B =1{0,2,6,7,8,9}, and C = {2,4,5, 8,10} is shown in
Figure 8.5 (left).

seek(2) seek(8) seek(10) A(z,y,2) A
/\ /\ /\ {1,3,4)
A4 01 37456 78 9 11 (135
=) e =W (146)
/\ =
B 0 2 6 7 89 +00 (1,4,8)
seek(6) (1,4.9)
T next() (1,52)
C 2 4 5 8—10 (352)

output

Figure 8.5: An example run of the leapfrog algorithm evaluating the multi-way join of three
unary relations 4, B, and C (left) and an example traversal of a relation represented as a trie

(right).

Given the complexities of the internal methods as presented in Table 8.2, the overall com-
plexity of the leapfrog join is O (1 10g(max/ Nmin)), Where 1,y and n,,q, are the cardinalities
of the smallest and the largest relations participating in the join, respectively.

Table 8.2: Methods used in the leapfrog join (top) and leapfrog triejoin (bottom) and their
corresponding complexities which are possible with good bookkeeping and using standard data
structures such as B-trees

Method ‘ Description ‘ Complexity

int key() Returns the value of a key at current iterator position 0O(1)

next() Process the next key O(log n)

seek(int where) | Seek the iterator to a value key such that key = where, or O(log n)
move to +eo if no such value exists

bool atEnd() True if iterator is at end (+o0) 0O(1)

void open() Proceeds to the first key at the next depth of a trie O(log n)

void up() Returns to the parent key at the previous depth of a trie O(log n)

128 8. PHYSICAL OPERATORS

To handle relations of higher arity, the LE'T] algorithm uses #7ies to traverse the relations
efficiently. Each tuple in a relation corresponds to a unique path from the root to a leaf in a trie.
LFTJ’s trie iterators support three traversal operations on a given trie efficiently: open(), up(), and
next(). The descriptions and complexities of these operations are given in Table 8.2. Figure 8.5
(right) shows an example traversal of a trie of a relation.

'The LFT] algorithm assigns an instance of a leapfrog join for each variable, in turn. A
good wariable ordering chosen by the query optimizer is vital for the performance of the join.
Consider an example multi-way join defined by query Q,; presented in Figure 8.4. Suppose the
optimizer chooses [p1, p2., p3] as the optimal variable ordering for this join. Then, the topmost
leapfrog join LFJ; iterates over p; values in projections sameAs(pi,_) and sameAs(_, p1).
When L FJ; emits a binding for py, it is passed to the nextlevel join L F J, which seeks bindings
for p, for sameAsp, (p2) and sameAs(p,._). Once these bindings are found, the final LFJ3
joins on p3 in sameAsy,, (p3), sameAsp,(p3). When bindings are exhausted at any level, the
join is backtracked to a previous level to seek another binding for a previous variable.

Given the complexities of the LE'T]’s basic operations as presented in Table 8.2, it can be
shown that the running time of the LF'T] is bounded by the fractional edge cover bound ¢(n),
up to a log factor: O(q(n)logn). Hence, the runtime complexity of the LFT] algorithm for Q.
is O(n% log n) which is asymptotically better than any approach which uses pairwise joins and
has the runtime complexity of at least O (n?).

8.3 CARDINALITY ESTIMATION

As we mentioned in Chapter 7, a cardinality estimator is a component of a query pipeline
which is essential for picking optimal query evaluation plans. Cardinality estimation in relational
databases is a well-studied topic. Yet, as we will show in this chapter, many of the assumptions
used in the relational world are not directly applicable to graph databases. In our discussion, we
focus specifically on estimation of two types of constructs used in graph query processing: pazhs
and more complex patterns.

There are five main methods used in cardinality estimation: synopses, sketches, his-
tograms, sampling, and wavelets. We discuss simple cardinality estimation methods based on
compact synopses and refer the reader to the bibliographic notes for a short overview of other
cardinality estimation techniques.

8.3.1 CARDINALITY OF PATHS

As shown in Chapter 3, a basic feature of most graph query languages is querying vertex pairs
[gle €V x V connected by paths in a graph G which conform to a user-specified RPQ g.

A cardinality estimator should be able to produce an estimate of |[g] /| for a given path
query g and graph G. One common way to produce this estimate is to recursively break down
g into smaller sub-expressions according to the RPQ path algebra and use the estimates of sub-

8.3. CARDINALITY ESTIMATION 129

expressions to obtain a cardinality estimate for g. This requires the definition of cardinality
estimation methods for graph edges, concatenations, unions, inverses, and transitive closures as
defined in the algebra. In this section, we briefly discuss cardinality estimation of a bag of vertex
pairs [[g1/g2] ¢ which are connected by a path obtained by concatenating two given labels g;
and g.

In general, a cardinality estimate of a concatenation [g1/g2] ¢ can be computed as follows:

[g1/g2l6l = D lor=i([g1l6)l - los=;([g2]6)]. (8.8)

.iejgl,gz

Here, join set Jr, 1, (shown in Figure 8.6) denotes the set of nodes which match the concate-
nation predicate [g1].t = [g2]G.s, where [g] s is a shorthand notation for all source vertices
s €V :3(s,1) € [g]e and [g] Gt is a notation for all target vertices t € V : I(s, 1) € [g] . For
each such vertex j € Jg, g, the number of paths which go through j from [g1]g.s to [g2]c .t
is the product |o;:=; ([g1]6)| - los=; ([g1]c-1)|- Hence, the total cardinality of a join is computed
as a sum of cardinalities (numbers of paths) over all j € Jg, g,

l9:]c-s lg2]c t

l91/92]c Jg1,92

Figure 8.6: Cardinality estimation of a concatenation of graph edges.

In order to estimate the cardinality of a concatenation of two arbitrary labels g; and
g2, we should keep the statistics about the corresponding join set Jg, g,. Further, cardinali-
ties |oy=j([g1]¢)| and |os=; ([g1] ¢ .t)| should be maintained for each node j € Jy, g, In large
graph databases, maintaining accurate statistics for these is often not feasible. To reduce the size
of statistical information which is kept in the database, the following three assumptions can be
made.

1. Uniformity. All nodes j in a join set Jg, ¢, have the same number of tuples associated
with them in both [g1]¢ and [g2]6-

2. Independence. Predicates on sources (s) and targets (¢) in [g] ¢ are mutually independent.

3. Inclusion. The domain of targets (7) in [g1]¢ fully overlaps with the domain of sources
(s) in [g2] G, or vice versa.

130 8. PHYSICAL OPERATORS

Let d(x, [g]¢) denote the column cardinality of attribute x in [¢]g, i.e., the number of distinct
values of x in [g]g. Then, from uniformity assumption, for each vertex j € Jg, ¢,, we have:

_ _leial . _le2]el
i lalo) = RS and ool = 20 69)
Hence, formula (8.8) becomes:
l[g1/g2]6] = |Tgy.e51 llg:]s| llezls| (8.10)

d(t,[gile) ds[g2le)

Further, from inclusion assumption, we derive a naive estimation formula for estimating the
cardinality of concatenation:

. [g1]c] |[g2]c]
|[81/82]6| = min(d(t. [g1]6). d(s. [g2]6)) 20 [ale) 4. [2le) (8.11)
Synopsis statistics. Formula (8.11) corresponds to a classical cardinality estimation of a join of
two arbitrary tables used in most relational databases today. In queries with joins on foreign keys
which are often used in a relational database setting, this formula provides acceptable cardinality
estimates. On the other hand, graph databases deal with edge traversals in which intermediate
path endpoints in [g1]¢ and [g2] ¢ are joined to produce longer paths in [g1/g2]c. In this
scenario, the inclusion assumption will almost always significantly overestimate the cardinality
due to the join set Jg, ¢, being significantly smaller than both column cardinalities d(z, [g1]¢)
and d(s. [g2]6)-
A compact collection of graph label statistics, called syngpsis, can be used in order to pro-
vide a better estimation of the size of a concatenation in a graph. As shown in Figure 8.7 (left),

for each edge label / in graph G, synopsis SYN1 stores the statistics presented at the top of Ta-
ble 8.3.

e [l /l2]e
#one #two‘ 0

out middle in
Figure 8.7: Synopsis statistics for graph label frequencies: frequency synopsis SYN1 (left) and
joint-frequency synopsis SYN2 (right).

Similarly, as shown in Figure 8.7 (right), synopsis SYN2 stores join-frequency statistics for
paths labeled /1/ /5 in G for pairs of labels /1, I, (see the bottom part of Table 8.3). Let [r//1]¢

8.3. CARDINALITY ESTIMATION 131
Table 8.3: Statistical information stored in (joint-)frequency synopses SYN1 and SYN2

Synopis ‘ Name ‘ Description’

out The number of nodes in G which have outgoing edge labeled with [

SYN1 in 'The number of nodes in G which have incoming edge labeled with !
#paths | The number of paths in G labeled with [
#pairs | The number of distinct node pairs connected with paths labeled with 1
out The number of nodes in G which have outgoing path labeled with 1 /lo
in The number of nodes in G which have incoming path labeled with 11 /15
middle | The number of nodes in G which have incoming edge labeled /; and out-
SYN2 going edge labeled I

#paths | The number of paths in G labeled with {4 /I

#pairs | The number of distinct node pairs connected with paths labeled with 14 /15
#one | The number of paths labeled /; from nodes in out to nodes in middle
#two | The number of paths labeled 5 from nodes in middle to nodes in in

denote vertex pairs (s,7) such that path between s and 7 in G conforms to regular expression
r/1y. Similarly, let [/2] ¢ denote all node pairs in G such that a path between them conforms to
[. Here, r is an arbitrary regular expression, and /; and [, are edge labels in G.

Using both SYN1 and SYN2, we can estimate the cardinality of concatenation [r/1; /2]
as follows. As shown in Figure 8.8, let S;, denote the set of all nodes with incoming /; edges in
G. 'Then, a subset S,/;, € S;, will have incoming r/[; paths. Another subset S;, /1, C S;, are
nodes with incoming /; edges and outgoing I, edges. The intersection of S,/;, and Sy, /;, are
those nodes which have incoming r/ [, paths and outgoing /, edges. Therefore, the join set 7 is
exactly this intersection Sy/7, N Sy, /1, -

Consider node x in set S;,. Assuming independence, the probability that x is in the join
set J is:

Syl 1S (
1S, |

Plxe J]=Plx e Sr/]1 N Sll/lz] = Plx € Sr/ll] -Plx € 511/12] = s, 8.12)

n

Consider a Bernoulli trial in which success means node x is in the join set, and failure other-
wise. Then, the probability distribution of the cardinality of a join set | 7| follows a binomial
distribution B(n, p) with parameters n = |S;, | and p = P[x € J]. Therefore, we can derive the
expected value of the cardinality of a join set:

ASenl 1Suyil 1Sy 115
1Su 1S S, |

E[|T|]=n-p =[Sl (8.13)

132 8. PHYSICAL OPERATORS

Figure 8.8: Estimating concatenation cardinality using compact label-frequency synopsis. A
partition of join-candidate nodes for concatenation [[r/l1/ 2] is shown.

Observe that |S,,;, | is the column cardinality d (o, T,/;,) of objects o in table T, . Further, from
synopsis SYN2, we obtain [S;,/1,| = [1/[>.middle and, from synopsis SYN1, we obtain |S;, | =
[1.in. Hence, (8.13) becomes:

d(t, [[}’/11]](;) I1/15. mlddle

[1.in

|J| ~ E[|T]] = (8.14)

Above, we approximate the cardinality | 7| of a join set by its expected value E[|J|].

If we keep the independence and uniformity assumptions, but 7o inclusion assumptions,
we can estimate the cardinality of a concatenation of two tables [/ 1/ [>] ¢ by using (8.10, 8.14)
and synopses SYN1, SYN2 as follows:

_d(t,[r/h]e) b/ lbomidde [/ L] I/]G]
lr/h/)6l = I,in A [r/hle) dG. [/ 1]e)
[/ 16l M (8.15)

Further, from uniformity assumption, we can estimate column cardinalities of both sources (s)
and targets (¢) of the join:

I/ lz middle

ds,[r/h/L]c) =d(s, [r/h]e) - (8.16)

dt,[r/li/l]e) = d(t, [r/h]c) - 1/12'”

(8.17)

Given these formulas, the cardinality of an arbitrary path g which consists of edge label con-
catenations can be estimated by breaking g into a left-deep sequence of pairwise concatenations
and applying the formulas (8.15), (8.16), and (8.17) repeatedly in a bottom-up fashion until the
final cardinality for g is produced.

8.3. CARDINALITY ESTIMATION 133
8.3.2 CARDINALITY OF PATTERNS

The estimation formulas presented in the previous section are sufficient to estimate the cardi-
nality of simple paths in a graph. More elaborate techniques are required to accurately estimate
the cardinality of complex graph patterns, e.g., stars, twigs, and other arbitrary subgraphs. In
this section, we briefly discuss two synopsis-based approaches which aim to accurately estimate
the cardinality of subgraph patterns: characteristic sets and graph summaries.

Characteristicsets. A common type of a graph query found in many workloads is a szar query.
As follows from its name, a star query resembles a star when represented as a query graph, with
one relation in the center with join predicates to a number of other relations around it. An

example of a typical star query Qg describing a book entity is shown in Figure 8.9 (left).

Qstar : (b) < author(b,a), year(b,y), Qestar : (a,t) < author(b, a), title(b, t),language(b, French),
title(b, t), published By(b, p) category(b, Crime), wonPrize(b, z),
publishedBy(b, p), name(p, ACM)

Figure 8.9: Graph representation of typical pattern queries in graph databases. An example of
a star query (left) and an example of more complex query which contains a star query (right).

Adapted from Neumann and Weikum [2009].

If we estimate the cardinality of a star query by assuming the independence of the partici-
pating join conjuncts, we will obtain a cardinality which is, in most real graphs, severely under-
estimated. This is explained by the correlation between the join predicates which is almost always
present in real-world graphs. For example, books of certain authors are likely to be published
by publishers with whom these authors have a contract. Hence, multiplying the corresponding
selectivities of author and publishedBy join predicates in Q,,, we will obtain a cardinality which
is far lower than the actual selectivity of a conjunction of these predicates.

Characteristic sets (CSs) are a type of a compact graph synopsis which aims to capture the
correlations between the join predicates in a given query. CSs exploit the fact that edges emitting
from vertices can be used to describe the entities encoded in these vertices well. For example, in
real graphs, a book entity would almost always be associated with author and title edges. Hence,
the emitting edges can be often used to characterize the entities. A characteristic set for an entity
s in a simple labeled digraph G is defined as a set of edge labels which characterize s in graph

134 8. PHYSICAL OPERATORS

G. This definition can be extended to property graphs by including the labels associated with
entity’s vertices and its emitting edges.

'The exact cardinalities of certain queries can be computed by CSs by counting the number
of occurrences of the CSs which satisfy the query’s join predicates. Note that this can only be
done when the query returns distinct bindings as CSs do not account for duplicate bindings for
the same query variable. To increase the estimation accuracy and cover more query types, CSs
can be enriched with additional statistical information. For example, to estimate the number
of duplicate bindings for a specific entity, each predicate in the CS can be annotated with the
number of occurrences of this predicate in entities characterized by this CS.

Precomputed CSs can be used to provide better cardinality estimation for general classes
of graph queries with complex arbitrary structure and join predicates bound to constants, e.g.,
see query Q.yqr shown in Figure 8.9. This can be done by covering a given query graph by CSs
which have been precomputed in the database synopsis. When the maximal statistical cover is
found, the resulting cardinality can be computed by using simple estimation formulas which
use the correlation information in the covered parts of the query and fall back to using the
independence assumption in the uncovered parts of the query.

Obviously, the more CSs are stored in the synopsis, the more queries it can potentially
cover. This results in a classical space vs. accuracy trade-off. Many approaches exist describing
how to handle this trade-off. For example, a bounded number of usefiu/ CSs can be kept in
the synopsis. The usefulness of a given CS will depend on the query workload and amount of
information this CS carries relative to other CSs.

Graph summaries. Another type of cardinality estimation approach which aims to go beyond
estimating the cardinalities of simple paths is based on using graph summaries as defined in
Section 5.3 of this book. The general idea is, given a graph, to compute its summary and then
perform the cardinality estimation on this summary and not on the graph itself. A large number
of methods exist on how to obtain a summary of a given graph. Typically, the construction of
a summary involves collapsing fragments of a graph (vertices, edges, subgraphs) into a single
vertex or an edge in the summary graph. Since graph summaries can capture arbitrarily complex
graph structures, summary-based cardinality approaches conceptually subsume other simpler
graph synopses such as (joint-)frequency edge label statistics and characteristic sets.

For example, consider a graph of single and married persons and types of cars they own
shown in Figure 8.10a. A summary can be computed over this graph by merging the vertices
of the same #ype, e.g., all married persons m; are represented by a single m vertex in the sum-
mary. Similarly, the edges in the summary condense the edges in the original graph by assigning
weights to edges in the summary which correspond to the counts of the number of edges in the
original graph between corresponding entity types. In this example, 2 manages edges between
single and married persons translate into weight 2 assigned to the corresponding summary edge.

An interesting challenge in itself is developing mathematically sound cardinality estima-
tion formulas on a graph summary which generalize well to the whole family of graph instances

8.4. FURTHER OPTIMIZATIONS 135

S1 82 1 S1 82 1

manages

Figure 8.10: An example graph of married (m) and single persons (s) who own vans (v) and/or
roadsters (r) (a); a summary of this graph (b); and example graphs which also summarize to this

summary (c). Adapted from Stefanoni et al. [2018].

represented by this summary. For example, consider a graph summary s shown in Figure 8.10b
and a corresponding family of graph instances shown in Figure 8.10c which summarize to s.
One approach is to interpret a summary using a possible world semantics as a family of graphs
represented by this summary. Then, a cardinality estimation problem reduces to computation
of an expected value of the query cardinality across the represented family. This approach has
the additional benefit of providing statistical guarantees on cardinality estimates for arbitrary
queries.

It should be noted that space vs. accuracy trade-off and eflicient synopsis update handling
which are common problems affecting synopses-based cardinality estimation techniques and are
even more challenging for summary-based approaches due to the increased structural complexity
of the stored synopsis.

8.4 FURTHER OPTIMIZATIONS

In this section, we briefly discuss two classes of impactful query runtime optimization methods
used in graph databases today: sideways information passing and compression of intermediate results.

Sideways information passing. As described in Chapter 7, a given graph query is evaluated by
executing a physical query evaluation plan, a tree-like structure in which tuples are passed from
operator to operator by following logical pipelines. Typically, the tuples which hold a query’s
intermediate results flow vertically bottom-up in the physical execution plan, i.e., tuples produced
by the operators at the bottom of the tree are consumed by their parent operators up the tree. For
example, see the fragment of the physical execution plan for query Qg shown in Figure 8.11.
In this example, tuples from scan operators are consumed by the merge join 1, and tuples produced
by this merge join are consumed by the next merge join upstream (merge join 2). This bottom-up
tuple flow continues until the query result is produced.

136 8. PHYSICAL OPERATORS

query result

bottom-up

tuple flow merge join 2

merge join 1 sideways

information passing

O = French O = Crime P = wonPrize
P = language P = category

Figure 8.11: An example fragment of a physical execution plan for query Qs which utilizes
several sideways information passing pipelines to efficiently compute a star fragment of a query.

Adapted from Neumann and Weikum [2009].

Most query optimization techniques operate along the tuple pipelines, e.g., “pushing
down” the selection operators down the join tree. In this scenario, an operator is only “aware” of
the operators that generate its input relations, hence restricting the possible optimizations to be
local to its ancestors or descendants in the operator tree. However, in many cases, operators can
benefit greatly by exchanging information with other operators across the tree. The optimization
strategies that operate across the tuple pipelines are called sideways information passing (SIP)
strategies.

Broadly speaking, SIP strategies are classified into two types: cost-based compile-time
methods and adaptive run-time methods. Both SIP types aim to create fi/fers based on the local
information an operator is observing and then sending (or streaming) these filters across the
tree to operators for which they may be useful. Compile-time SIP methods include magic set
rewrites and semi-join reducers. Both semi-joins and magic set rewrites precompute the filters
which can be then used by other operators during query run-time. Note that it can be expensive
to precompute such SIP filters, so, in case a particular filter turns out not to be selective enough
to offset the cost of its creation, the overall performance of a plan may suffer from applying this
SIP optimization! Hence, this type of SIP strategy needs to be carefully considered at compile-
time by the query optimizer which, in turn, is responsible for making a cost-based decision
whether to apply a particular SIP strategy or not.

Another type of SIP optimization is based on Zightweight and adaptive runtime filtering
strategies. These strategies are more limited in their applicability and might not be as selective as
compile-time SIP filters, but they are designed to be very lightweight so that these optimizations

8.4. FURTHER OPTIMIZATIONS 137

can be “always-on” and do not require any complex cost-based decisions. Again, consider the
fragment of an execution plan for query Q s, shown in Figure 8.11. In this plan, three clustered
(sorted) indexes are used to answer a fragment of a star query in Q. Specifically, a book is
being matched against three different selection predicates, whether the book has won a prize
(1), the book is written in the French language (2), and the book is in the crime category (3).
In the absence of SIP, predicates (2) and (3) are evaluated first and then predicate (1) is applied
to the result. However, we can use the fact that all participating base relations are sorted and
all the joins are merge joins. Specifically, a simple lightweight adaptive SIP filter can be based
on occasionally exchanging observed S (subject) values when a certain condition is met. For
example, the PSO scan which finds books which won prizes is naturally very selective. Hence, as
this scan progresses, it can share its observed S values with other, less selective OPS scans when
it detects large gaps in its S values. Since all of the relations are sorted, other operators can
use these gaps to skip through scanning of some of their respective tuples and thus potentially
significantly reduce the intermediate results pipelined up the operator tree.

Compact intermediate results. The performance of graph query evaluation is often domi-
nated by the sum of the sizes of its output and intermediate results (IR). However, it is a common
occurrence in real-world queries, that even while the query itself is very selective and produces a
small output, the size of the intermediate tuples which have been processed during the evaluation
of this query can be still very large.

Unlike relational databases where most of the joins are foreign-key one-to-one or one-
to-many joins which do not drastically increase the size of the intermediate results, in graph
databases path traversals can grow the size of the intermediate results exponentially due to com-
pound many-to-many multiplicity effect. Consider, for example, Jensing as shown in Figure 8.12.
Suppose each focal vertex has m incoming a-labeled edges and n outgoing b-labeled edges. Then,
the number of vertex pairs (x, z) which satisfy (a/b) path pattern is given by a multiplication
m - n. This multiplicity effect is compounded further if more vertex variables are projected by the
query and the more lenses (or similar structures) there are in the underlying graph.

Broadly speaking, the size of intermediate query results can be controlled either by their
timely disposal or by their compression. Some of the intermediate query results can be efficiently
discarded by utilizing pipelining through the execution plan. In this scenario, once the inter-
mediate result has been consumed it is effectively “forgotten” by its producing operator. While
pipelining is extremely effective at reducing the intermediate result sizes, it needs to be used
with extreme caution. First, in many execution plans, pipelining can be blocked by certain op-
erators, e.g., during sorting. Second, in certain graphs, pipelining can severely cripple some of
the refinement strategies and introduce lots of unnecessary computation. For example, in cyclic
graphs, disposal of the intermediate results which contain already visited vertices in the graph
can effectively lead to unbounded computation. Similarly, in dense graphs, the same vertex can
be processed multiple times due to a “short-term” memory of the corresponding refinement
strategy caused by pipelining. Hence, the disposal of the intermediate results should be based

138 8. PHYSICAL OPERATORS
T Y z

—_——— e — —

|
{1,11,6} {1,11,7} {1,11,8} {1,11,9} {1234) X {11} X {6,78.9}

1 a b O 6 (2,11,6} {2,11,7} {2,11,8} {2,11,9} Fyo U |

11 _ {3,11,6} {3,11,7} {3,11,8} {3,11,9} : {345} x {12} x {8,9,10} |

5 -7 »O 7 (4,11,6) {4,11,7} {4,11,8} {4,11,9} pteletelebteletelobtolel '
NI {3,12,8} {3,12,9} {3,12,10} | {123} x {11} x {6,7.8,9} |

3 \\\:O 3 {4,12,8} {4,12,9} {4,12,10} | U |
12 /,< {5,12,8} {5,12,9} {5,12,10} Fo! (34} x {1112} x {89) !

: X i it e |
S~ Yz : {3,4,5} X {12} X {8,9,10} |

5 *©w e

Figure 8.12: Example factorizations F; and F, of a graph which exhibits lensing and their cor-
responding enumeration Ry..

on a cost-based decision of the query optimizer which takes into account the available memory,
current execution plan, and the structure of the given query and the graph.

Another option to reduce the size of the IR is to utilize the structural compression of the
graph. Akin to graph summaries, the compression of the intermediate query bindings can be
performed in many ways. One effective compression technique which works very well in graph
databases is based on computing factorizations of the result set. Again, consider the lensing graph
shown in Figure 8.12 and query Q(x,y,z) : a(x, y),b(y, z). Due to multiplicity introduced by
focal nodes in the graph, the cardinality of the query result [Q(x, y,z)| = |Ryy| is 25 triples.
Assuming 4-byte integer representation for each node ID, the total size of the query result can
be estimated as 25 - 3 - 4 = 300 bytes. The factorization works by detecting common patterns in
the set of tuples and factorizing them out to obtain a compact representation of this set as a
union of Cartesian products of these common patterns. Naturally, many different factorizations
for the same tuple set exist. For example, tuple set Ry, can be represented by factorizations F;
or F; as shown in Figure 8.12. Observe that F; stores 16 integers consuming a total of 64 bytes
which is more compact than F, which stores 21 integers and consumes 84 bytes. Still, both of
these factorizations take significantly less space than the original tuple set.

In general, like all compression techniques, IR compression faces the challenge of finding
the balance between the size of the compressed representation and its efficient decompression,
or enumeration of the IR. Ultimately, like many other decisions in the database, this balance
needs to be based on a careful cost-based choice of the query optimizer.

8.5 BIBLIOGRAPHIC AND HISTORICAL NOTES

The evaluation of transitive closure is a well-studied topic. Dar and Ramakrishnan [1994]
present a good overview of the early evaluation approaches which include naive and semi-

naive methods. The SMART approach is introduced in Ioannidis [1986] and Valduriez and

8.5. BIBLIOGRAPHIC AND HISTORICAL NOTES 139
Boral [1986]. The mixed evaluation strategy is presented in Jakobsson [1991]. Jakobsson [1992]

presents a tree-based technique for TC evaluation. Yang and Zaniolo [2014] is a more recent
work on hybrid SMART and semi-naive approaches in the context of a main-memory multi-
core setting. Planning for evaluation of transitive closure on complex base relations is a part of
a general-purpose RPQ WAVEGUIDE query optimizer [Yakovets et al., 2016].

The study of the worst-case optimal multi-way joins is motivated by the AGM bound
which is introduced in Atserias et al. [2013]. Leapfrog Triejoin [Veldhuizen, 2014] is
used in LogicBlox, a popular deductive database system. NPRR [Ngo et al., 2018] and
Minesweeper [Nguyen et al., 2015] are examples of other recently developed worst-case op-
timal join algorithms.

Cardinality estimation is one of the most intensively studied areas in the database re-
search community. Most of the research has been done in the context of relational databases:
there exist a multitude of cardinality estimation methods based on synopses, sampling, sketches,
histograms, and wavelets. A good overview of these methods is presented in Cormode et al.
[2012]. Cardinality estimation in graph databases is much less studied. Gubichev and Neu-
mann [2014] and Yakovets et al. [2016] demonstrate that estimation techniques developed for
relational databases do not translate well to graphs due to their unrealistic assumptions. Car-
dinality estimation on tree-like data structures (XIML) is studied in various schemes such as
synopses, sampling, and sketches in Polyzotis et al. [2004], Zhang et al. [2006], and Luo et al.
[2009]. Simple estimation for cardinality of paths in graphs by using (joint-)frequency synopses
is presented by Yakovets et al. [2016]. Cardinality estimation with the help of characteristic sets
is used in the high-performance triplestore RDF-3X [Neumann and Moerkotte, 2011]. Ste-
fanoni et al. [2018] is a recent work which uses graph summaries to provide statistically sound
cardinality estimates with confidence intervals.

Sideways information passing techniques were introduced as complex cost-based magic
set transformations [Mumick and Pirahesh, 1994, Seshadri et al., 1996] and semi-join reduc-
ers [Bernstein and Chiu, 1981, Stocker et al., 2001]. A holistic SIP strategy based on adaptive
exchanging of lightweight filters is used in RDF-3X and is described by Neumann and Weikum
[2009]. A hybrid relational-based SIP strategy in which compile-time cost model is used along-
side runtime benefit estimation is proposed by Ives and Taylor [2008].

Compression of intermediate results during query evaluation is a relatively unexplored
topic. Factorization-based compression of the IR is closely related to the notion of factorized
databases [Olteanu and Schleich, 2016]. WIREFRAME is a two-phase cost-based optimizer
which compresses the IR into a factorized answer graph [Godfrey et al., 2017]. SEED [Lai
et al., 2016] is a scalable subgraph enumeration approach which performs clique compression
in order to minimize the IR. Qiao et al. [2017] performed a recent study that aims to find the
ideal compression for a given IR.

141

CHAPTER 9

Research Challenges

‘Throughout the book we have highlighted open research challenges. In this final chapter we
collect and consolidate these challenges, providing an overview of what we see as important
open problems for the graph query processing research community, toward a shared research
agenda for next-generation graph database systems.

We present the research challenges independently of the chapter organization and we
expose them by topic. For each challenge, we pinpoint the chapters and corresponding problems

addressed in this book.

Formal properties and efficient execution strategies for RPGQ. While the worst-case com-
plexity of RPGQ query evaluation is understood, the impact of the novel property graph fea-
tures of the language is not as well understood. Initial progress has been made in this direction
(e.g., Angles et al. [2017, 2018a] and Francis et al. [2018]), however there still remain many
open questions, e.g., static analysis of the language and the impact of graph aggregation func-
tionality (Section 3.3.3) and extending the language with paths as first-class citizens. Progress on
these questions is vital for the practical realization of efficient and scalable solutions for property
graph query processing.

Schema definition for property graphs. Apart from the graph dependencies considered in
Chapter 4, other constraints such as graph schemas make sense for property graphs. Currently
lacking, however, is a common formalism for property graph schemas. Defining a schema for
traditional graph-shaped data has mainly followed two methods, one of which relies on Datalog
and the other builds on bisimulation [Abiteboul et al., 1999]. A schema graph can be defined
by specifying which incoming and outcoming edges are required, or by specifying which out-
going edges are permitted. The definition can be combined with corresponding declarations of
in-degree and out-degree edge distributions [Bagan et al., 2017]. The connection between the
above two methods (resulting in dual schema graphs [Abiteboul et al., 1999]), their extension
or development of new schema formalisms for property graphs, and the study of eflicient algo-
rithms for property graph schema typing are among important directions to undertake in future
studies.

Query specification and graph exploration for property graphs. 'The techniques illustrated in
Chapter 5 on query definability and interactive query specification do not fully accommodate the
special features of the property graph model. Special attention must be paid to the fact that the
results of queries in RPGQ are graphs rather than pairs of nodes and connecting paths. Therefore,

142 9. RESEARCH CHALLENGES

query specification becomes much harder as the interacting user has to provide examples of
input/output pairs that can be as complex as a standalone graph (instead of a single node at a
time). Moreover, the graph summarization techniques known so far are limited to labeled graphs
and their consideration for property graphs is an interesting open issue. Building property graph
summaries and synopses for query specification that can be guided by the underlying queries has
not been pursued until present.

Comprehensive comparative study of graph representations. As laid out in Chapter 6, there
is a cornucopia of property graph representations proposed in the research literature and imple-
mented and practically used in actual systems. In other words, the problem of representing a
property graph in memory or storage does not lack proposed solutions. However, research works
dealing with graph representation usually argue for the advantages of one specific representation
in one often very narrow usage scenario. On the side of practical systems, the design decisions—
and the rationale involved in them—that lead to a particular representation being implement
is typically completely unknown to the public. Graph database systems face large variations in
data and workload characteristics. To build systems that prevail in all these scenarios, we require
a holistic and deep understanding of the trade-offs involved in property graph representations.
Such an understanding is still missing. Comprehensive comparative studies of various property
graph representations over a representative range of use cases can help form such understanding.

Efficient evaluation of rich fragments of navigational graph queries. As mentioned in
Chapter 7, currently there are no evaluation approaches which are able to optimize across rich
fragments of navigational graph queries such as UCRPQs. Current graph databases fall back to
«-RA in order to evaluate complex UCRPQs. This significantly reduces the number of optimiza-
tion techniques which can be utilized to speed up the query evaluation. A comprehensive study
is needed to identify whether the rich body of work on query planning and optimization outside
of @-RA can be efficiently used in the context of UCRPQs.

An extensive study of advanced graph query optimization techniques. As discussed in
Chapters 7 and 8, there are numerous different advanced graph query optimization techniques.
These techniques come from different domains and research areas. For example, DFS-based re-
finement techniques are typically not used in the BFS setting. The connection between sideways
information passing strategies and worst-case optimal joins is also unexplored. Many optimiza-
tion strategies have been proposed over time, but the link between different optimization classes
is missing. A comprehensive study is needed to establish this link and which will pave the way
to new powerful methods for graph query optimization.

Bibliography

Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach. Scalable se-
mantic web data management using vertical partitioning. In VLDB, pages 411-422, ACM,
2007. 99

Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. EmptyHeaded:
A relational engine for graph processing. In SIGMOD, pages 431-446, 2016. DOI:
10.1145/2882903.2915213 100

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995. 44, 54

Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann, 1999. 35, 141

Rakesh Agrawal. Alpha: An extension of relational algebra to express a class of recursive
queries. IEEE Transactions on Software Engineering, 14(7), pages 879-885, July 1988. DOI:
10.1109/32.42731 117

Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient management of transitive
relationships in large data and knowledge bases. In SIGMOD, pages 253-262, ACM, 1989.
DOI: 10.1145/67544.66950 100

Erik Agterdenbos, George H. L. Fletcher, Chee-Yong Chan, and Stijn Vansummeren. Empir-
ical evaluation of guarded structural indexing. In £DBT, pages 714-715, 2016. OpenProcee
dings.org DOI: 10.5441/002/edbt.2016.101. 99

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983. 65

Sandra Alvarez-Garcia, Nieves R. Brisaboa, Susana Ladra, and Oscar Pedreira. A com-
pact representation of graph databases. In MLG, pages 18-25, ACM, 2010. DOI:
10.1145/1830252.1830255 100

Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM Computing
Surveys, 40(1), pages 1:1-1:39, 2008. DOI: 10.1145/1322432.1322433 2,13

Renzo Angles and Claudio Gutierrez. Subqueries in SPARQL. In AMW, vol. 749, page 12,
2011. CEUR-WS.org 34

http://dx.doi.org/10.1145/2882903.2915213
http://dx.doi.org/10.1145/2882903.2915213
http://dx.doi.org/10.1109/32.42731
http://dx.doi.org/10.1109/32.42731
http://dx.doi.org/10.1145/67544.66950
OpenProceedings.org
OpenProceedings.org
http://dx.doi.org/10.5441/002/edbt.2016.101
http://dx.doi.org/10.1145/1830252.1830255
http://dx.doi.org/10.1145/1830252.1830255
http://dx.doi.org/10.1145/1322432.1322433
CEUR-WS.org

144 BIBLIOGRAPHY

Renzo Angles, Marcelo Arenas, Pablo Barcel6, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgoc. Foundations of modern query languages for graph databases. ACM Computing Surveys,
50(5), 2017. DOI: 10.1145/3104031 2, 35, 141

Renzo Angles, Marcelo Arenas, Pablo Barceld, Peter A. Boncz, George H. L. Fletcher, Claudio
Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Sequeda, Oskar van
Rest, and Hannes Voigt. G-CORE: A core for future graph query languages. In SIGMOD,
ACM, 2018a. DOI: 10.1145/3183713.3190654 3, 14, 33, 35, 141

Renzo Angles, Juan Reutter, and Hannes Voigt. Graph query languages. In Encyclopedia of Big
Data Technologies, Springer, 2018b. DOI: 10.1007/978-3-319-63962-8_75-1 35

Timos Antonopoulos, Frank Neven, and Frédéric Servais. Definability problems for graph
query languages. In ICDT, pages 141-152, ACM, 2013. DOI: 10.1145/2448496.2448514
59,61,71

Alberto Apostolico and Guido Drovandi. Graph compression by BFS. Aigorithms, 2(3),
pages 1031-1044, 2009. DOI: 10.3390/22031031 100

Marcelo Arenas and Gonzalo I. Diaz. The exact complexity of the first-order logic definabil-
ity problem. ACM Transactions on Database Systems, 41(2), pages 13:1-13:14, 2016. DOI:
10.1145/2886095 58, 59

Marcelo Arenas, Pablo Barcel6, Leonid Libkin, and Filip Murlak. Relational
and XML Data Exchange. Morgan & Claypool Publishers, 2010. DOI:
10.2200/S00297ED1V01Y201008DTMO008. 53

Marcelo Arenas, Pablo Barcel6, and Leonid Libkin. Graph path navigation. In Encyclopedia of
Big Data Technologies, Springer, 2018. DOI: 10.1007/978-3-319-63962-8_214-1 35

Abdallah Arioua and Angela Bonifati. User-guided repairing of inconsistent knowledge bases.
In EDBT, pages 133—-144, 2018. OpenProceedings.org DOI: 10.5441/002/edbt.2018.13.
55

William Ward Armstrong. Dependency structures of data base relationships. In IFIP Congress,
pages 580-583, 1974. 55

Albert Atserias, Martin Grohe, and Dianiel Marx. Size bounds and query plans for relational
joins. SIAM Journal on Computing, 42(4), pages 1737-1767,2013. DOI: 10.1137/110859440.
139

Séren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. DBpedia: A nucleus for a Web of open data. In ISWC, vol. 4825, pages 722~
735, Springer, 2007. DOI: 10.1007/978-3-540-76298-0_52 13, 57

http://dx.doi.org/10.1145/3104031
http://dx.doi.org/10.1145/3183713.3190654
http://dx.doi.org/10.1007/978-3-319-63962-8_75-1
http://dx.doi.org/10.1145/2448496.2448514
http://dx.doi.org/10.3390/a2031031
http://dx.doi.org/10.1145/2886095
http://dx.doi.org/10.1145/2886095
http://dx.doi.org/10.2200/S00297ED1V01Y201008DTM008
http://dx.doi.org/10.2200/S00297ED1V01Y201008DTM008
http://dx.doi.org/10.1007/978-3-319-63962-8_214-1
OpenProceedings.org
http://dx.doi.org/10.5441/002/edbt.2018.13
http://dx.doi.org/10.1137/110859440
http://dx.doi.org/10.1007/978-3-540-76298-0_52

BIBLIOGRAPHY 145

Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien Lemay,
and Nicky Advokaat. gMark: Schema-driven generation of graphs and queries. IEEE
Transactions on Knowledge and Data Engineering, 29(4), pages 856869, April 2017. DOI:
10.1109/TKDE.2016.2633993. 117, 141

Pablo Barcel6 and Pablo Mufioz. Graph logics with rational relations: The role of word com-
binatorics. ACM Transactions on Computational Logic, 18(2), pages 10:1-10:41, 2017. DOI:
10.1145/3070822 35

Pablo Barcel6, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Transactions on Database Systems, 37(4),
pages 31:1-31:46, December 2012a. DOI: 10.1145/2389241.2389250 35

Pablo Barceld, Jorge Pérez, and Juan L. Reutter. Relative expressiveness of nested regular ex-
pressions. In AMW, pages 180-195, 2012b. CEUR-WS.org 35

Pablo Barcel6, Jorge Pérez, and Juan L. Reutter. Schema mappings and data exchange for graph
databases. In ICDT, pages 189-200, ACM, 2013. DOI: 10.1145/2448496.2448520 54, 55

Pablo Barceld, Gaelle Fontaine, and Anthony Widjaja Lin. Expressive path queries on graph
with data. Logical Methods in Computer Science, 11(4), pages 1-39, October 2015. DOI:
10.2168/lmcs-11(4:1)2015 35

Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Miiller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in

transportation networks. In Algorithm Engineering—Selected Results and Surveys, vol. 9220,
pages 19-80, Springer, 2016. DOI: 10.1007/978-3-319-49487-6_2 100

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Mar-
tin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.
Manifesto for agile software development, 2001. http://agilemanifesto.org/ 13

Catriel Beeri, Ronald Fagin, and John H. Howard. A complete axiomatization for functional
and multivalued dependencies in database relations. In SIGMOD, pages 47-61, ACM, 1977.
DOI: 10.1145/509404.509414. 55

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,

284(5), pages 34-43, May 2001. DOI: 10.1038/scientificamerican0501-34 13

Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins to solve relational queries.
Journal of the ACM, 28(1), pages 25-40, January 1981. DOI: 10.1145/322234.322238 139

http://dx.doi.org/10.1109/TKDE.2016.2633993
http://dx.doi.org/10.1109/TKDE.2016.2633993
http://dx.doi.org/10.1145/3070822
http://dx.doi.org/10.1145/3070822
http://dx.doi.org/10.1145/2389241.2389250
CEUR-WS.org
http://dx.doi.org/10.1145/2448496.2448520
http://dx.doi.org/10.2168/lmcs-11(4:1)2015
http://dx.doi.org/10.2168/lmcs-11(4:1)2015
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://agilemanifesto.org/
http://dx.doi.org/10.1145/509404.509414
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1145/322234.322238

146 BIBLIOGRAPHY

Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient subgraph match-
ing by postponing Cartesian products. In SIGMOD, pages 1199-1214, ACM, 2016. DOI:
10.1145/2882903.2915236 117

Meghyn Bienvenu, Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. Nested regular
path queries in description logics. In KR, pages 218-227, AAAI, 2014. 35

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Séren Auer, Christian Becker, Richard Cy-
ganiak, and Sebastian Hellmann. DBpedia—A crystallization point for the Web of data.
Journal of Web Semantics, 7(3), pages 154-165, 2009. DOI: 10.1016/j.websem.2009.07.002.
57

Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. An experimental analysis of a compact
graph representation. In ALENEX, pages 49-61, SIAM, 2004. 100

Blazegraph. The bigdata RDF dDatabase, May 2013. https://www.blazegraph.com/white
papers/bigdata_architecture_whitepaper.pdf 13

Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In
WWW, pages 595-602, ACM, 2004. DOI: 10.1145/988672.988752 100

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation:
A MultiResolution coordinate-free ordering for compressing social networks. In WIWW,
pages 587-596, ACM, 2011. DOI: 10.1145/1963405.1963488 100

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
A collaboratively created graph database for structuring human knowledge. In SIGMOD,
pages 1247-1250, 2008. DOI: 10.1145/1376616.1376746 57

Iovka Boneva, Angela Bonifati, and Radu Ciucanu. Graph data exchange with target con-
straints. In GraphQ, pages 171-176, 2015. CEUR-WS . org 54, 55

Angela Bonifati and Ioana Ileana. Graph data integration and exchange. In Encyclopedia of Big
Data Technologies, Springer, 2018. DOI: 10.1007/978-3-319-63962-8_209-1 54

Angela Bonifati, Radu Ciucanu, Aurélien Lemay, and Slawek Staworko. A paradigm
for learning queries on big data. In Dara4U, pages 7-12, ACM, 2014a. DOI:
10.1145/2658840.2658842 71

Angela Bonifati, Radu Ciucanu, and Slawek Staworko. Interactive inference of join queries.
In EDBT, pages 451-462, 2014b. OpenProceedings . org DOI: 10.5441/002/edbt.2014.41.
65

Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. Learning path queries on graph databases.
In EDBT, pages 109-120, 2015. OpenProceedings.org DOI: 10.5441/002/edbt.2015.11.
57,59, 61, 62, 64, 65

http://dx.doi.org/10.1145/2882903.2915236
http://dx.doi.org/10.1145/2882903.2915236
http://dx.doi.org/10.1016/j.websem.2009.07.002
https://www.blazegraph.com/whitepapers/bigdata_architecture_whitepaper.pdf
https://www.blazegraph.com/whitepapers/bigdata_architecture_whitepaper.pdf
http://dx.doi.org/10.1145/988672.988752
http://dx.doi.org/10.1145/1963405.1963488
http://dx.doi.org/10.1145/1376616.1376746
CEUR-WS.org
http://dx.doi.org/10.1007/978-3-319-63962-8_209-1
http://dx.doi.org/10.1145/2658840.2658842
http://dx.doi.org/10.1145/2658840.2658842
OpenProceedings.org
http://dx.doi.org/10.5441/002/edbt.2014.41
OpenProceedings.org
http://dx.doi.org/10.5441/002/edbt.2015.11

BIBLIOGRAPHY 147

Angela Bonifati, Radu Ciucanu, and Slawek Staworko. Learning join queries from user ex-
amples. ACM Transactions on Database Systems, 40(4), pages 24:1-24:38, 2016a. DOI:
10.1145/2818637 65

Angela Bonifati, Werner Nutt, Riccardo Torlone, and Jan Van den Bussche. Mapping-
equivalence and oid-equivalence of single-function object-creating conjunctive queries. Zhe
VLDB Journal— The International Journal on Very Large Data Bases, 25(3), pages 381-397, June
2016b. DOI: 10.1007/s00778-016-0421-x 24

Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large SPARQL
query logs. Proc. of the VLDB Endowment, 11(2), pages 149-161, October 2017. DOI:
10.14778/3149193.3149196 52

Angela Bonifati, Stefania Dumbrava, and Emilio Jesus Gallego Arias. Certified graph view
maintenance with regular datalog. 7heory and Practice of Logic Programming. Proc. of the 34th
International Conference on Logic Programming, 18(3—4), pages 372-389, Oxford, UK, July
2018. DOI: 10.1017/51471068418000224. 34

Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas, Patrick
Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. Building an efficient
RDF store over a relational database. In SIGMOD, pages 121-132, ACM, 2013. DOI:
10.1145/2463676.2463718 100

Christof Bornhévd, Robert Kubis, Wolfgang Lehner, Hannes Voigt, and Horst Werner. Flexi-
ble information management, exploration and analysis in SAP HANA. In DATA, pages 15—
28, SciTePress, 2012. DOI: 10.5220/0004011500150028. 14

Pierre Bourhis, Markus Krétzsch, and Sebastian Rudolph. Query containment for highly ex-
pressive datalog fragments. Zhe Computing Research Repository, June 2014a. 21

Pierre Bourhis, Markus Krotzsch, and Sebastian Rudolph. How to best nest regular path
queries. In DLOG, vol. 1193, pages 404-415, 2014b. 21, 35

Mario Briggs, Farzana Anwar, Rajendran Appavu, Ganesh Choudhary, and Priya Ranjan Sa-
hoo. Resource description framework application development in DB2 10 for Linux, UNIX,
and Windows, Part 2, Optimize your RDF data stores in DB2 and provide fine-grained access
control, October 2012a. https://www.ibm.com/developerworks/data/tutorials/dm-
1210rdfdb210/index.html 117

Mario Briggs, Priya Ranjan Sahoo, Gayathri Raghavendra, Rajendran Appavu, and Farzana
Anwar. Resource description framework application development in DB2 10 for Linux,
UNIX, and Windows, Part 1: RDF store creation and maintenance, May 2012b. https://
www.ibm.com/developerworks/data/tutorials/dm-1205rdfdb210/index.html 117

http://dx.doi.org/10.1145/2818637
http://dx.doi.org/10.1145/2818637
http://dx.doi.org/10.1007/s00778-016-0421-x
http://dx.doi.org/10.14778/3149193.3149196
http://dx.doi.org/10.14778/3149193.3149196
http://dx.doi.org/10.1017/S1471068418000224
http://dx.doi.org/10.1145/2463676.2463718
http://dx.doi.org/10.1145/2463676.2463718
http://dx.doi.org/10.5220/0004011500150028
https://www.ibm.com/developerworks/data/tutorials/dm-1210rdfdb210/index.html
https://www.ibm.com/developerworks/data/tutorials/dm-1210rdfdb210/index.html
https://www.ibm.com/developerworks/data/tutorials/dm-1205rdfdb210/index.html
https://www.ibm.com/developerworks/data/tutorials/dm-1205rdfdb210/index.html

148 BIBLIOGRAPHY

Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. k>-trees for compact web graph
representation. In SPIRE, pages 18-30, 2009. DOI: 10.1007/978-3-642-03784-9_3. 100

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-
based query processing for regular path queries with inverse. In PODS, pages 58-66, ACM,
2000. DOI: 10.1145/335168.335207 54, 55

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting

of regular expressions and regular path queries. Journal of Computer and System Sciences, 64(3),
pages 443-465, May 2002. DOI: 10.1006/jcss.2001.1805 54, 55

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. On simpli-
fication of schema mappings. Journal of Computer and System Sciences, 79(6), pages 816-834,
2013. DOI: 10.1016/j.jcss.2013.01.005 54, 55

Sejla Cebiri¢, Francois Goasdoué, and Ioana Manolescu. Query-oriented summarization of
RDF graphs. PVLDB, 8(12), pages 2012-2015, 2015. DOI: 10.14778/2824032.2824124
100

Kristina Chodorow and Michael Dirolf. MongoDB—The Definitive Guide: Powerful and Scalable
Data Storage. O'Reilly, 2010. 13

Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan. An ef-
ficient SQL-based RDF querying scheme. In VLDB, pages 1216-1227, ACM, 2005. 99,
117

Eric Chu, Jennifer L. Beckmann, and Jeffrey F. Naughton. The case for a wide-table ap-
proach to manage sparse relational data sets. In SIGMOD, pages 821-832, ACM, 2007.
DOI: 10.1145/1247480.1247571 99

Radu Ciucanu. Cross-model queries and schemas: Complexity and learning. (Requétes et sché-
mas hétérogenes: Complexité et apprentissage). Ph.D. thesis, Lille University of Science and
Technology, France, 2015. 71

Francisco Claude and Gonzalo Navarro. Extended compact web graph representations. In 4/~
gorithms and Applications, Essays Dedicated to Esko Ukkonen on the Occasion of his 60th Birthday,
pages 77-91, Springer, 2010a. DOI: 10.1007/978-3-642-12476-1_5 100

Francisco Claude and Gonzalo Navarro. Fast and compact web graph representations. 4CM

Transactions on the Web, 4(4), pages 16:1-16:31, 2010b. DOI: 10.1145/1841909.1841913 100

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries
via 2-hop labels. SIAM Journal on Computing, 32(5), pages 1338-1355, August 2003. DOI:
10.1137/50097539702403098 100

http://dx.doi.org/10.1007/978-3-642-03784-9_3
http://dx.doi.org/10.1145/335168.335207
http://dx.doi.org/10.1006/jcss.2001.1805
http://dx.doi.org/10.1016/j.jcss.2013.01.005
http://dx.doi.org/10.14778/2824032.2824124
http://dx.doi.org/10.1145/1247480.1247571
http://dx.doi.org/10.1007/978-3-642-12476-1_5
http://dx.doi.org/10.1145/1841909.1841913
http://dx.doi.org/10.1137/s0097539702403098
http://dx.doi.org/10.1137/s0097539702403098

BIBLIOGRAPHY 149

Douglas Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2), pages 121-137, 1979.
DOI: 10.1145/356770.356776 76

Mariano P. Consens and Alberto O. Mendelzon. GraphLog: A visual formalism for real life
recursion. In PODS, pages 404416, ACM, 1990. DOI: 10.1145/298514.298591 35

Mariano P. Consens, Alberto O. Mendelzon, Dimitra Vista, and Peter T. Wood. Constant
propagation vs. join reordering in datalog. In RIDS, pages 245-259, Springer, 1995. DOI:
10.1007/3-540-60365-4_131 117

Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and Clifford Stein. Introduction to
Algorithms, 3rd ed. MIT Press, Cambridge, MA, 2009. 100

Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses for
massive data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,

4(1-3), pages 1-294, 2012. DOI: 10.1561/1900000004 139

Douglas Crockford. The application/JSON media type for JavaScript object notation (JSON),
REC 4627, July 2006. http://tools.ietf.org/html/rfc4627 DOI: 10.17487/rtc4627
13

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language sup-
porting recursion. In SIGMOD, pages 323-330, ACM, 1987. DOI: 10.1145/38714.38749
35

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. G+: Recursive queries without
recursion. In Proc. of 2nd International Conference on Expert Database Systems, pages 645—660,
Benjamin Cummings, Vienna, VA, April 25-27, 1988. 35

Shaul Dar and Raghu Ramakrishnan. A performance study of transitive closure algorithms. In

SIGMOD, pages 454465, ACM, 1994. DOI: 10.1145/191843.191928 138
Saumen C. Dey, Victor Cuevas-Vicenttin, Sven Kohler, Eric Gribkoff, Michael Wang, and

Bertram Ludischer. On implementing provenance-aware regular path queries with relational
query engines. In GraphQ, pages 214-223, ACM, 2013. DOI: 10.1145/2457317.2457353
117

Orri Erling and Ivan Mikhailov. RDF support in the virtuoso DBMS. In CSSI, vol. 113,
pages 59-68, GI, 2007. 99, 117

Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau
Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. The LDBC social network benchmark:
Interactive workload. In SIGMOD, pages 619-630, 2015. DOI: 10.1145/2723372.2742786
117

http://dx.doi.org/10.1145/356770.356776
http://dx.doi.org/10.1145/298514.298591
http://dx.doi.org/10.1007/3-540-60365-4_131
http://dx.doi.org/10.1007/3-540-60365-4_131
http://dx.doi.org/10.1561/1900000004
http://tools.ietf.org/html/rfc4627
http://dx.doi.org/10.17487/rfc4627
http://dx.doi.org/10.1145/38714.38749
http://dx.doi.org/10.1145/191843.191928
http://dx.doi.org/10.1145/2457317.2457353
http://dx.doi.org/10.1145/2723372.2742786

150 BIBLIOGRAPHY

Ronald Fagin and Moshe Y. Vardi. The theory of data dependencies—An overview. In Proc. of
the 11th Colloguium Automata, Languages and Programming, pages 1-22, Springer, Antwerp,
Belgium, July 16-20, 1984. DOI: 10.1007/3-540-13345-3_1 54

Wenfei Fan and Ping Lu. Dependencies for graphs. In PODS, pages 403-416, ACM, 2017.
DOI: 10.1145/3034786.3056114 45, 50, 55

Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional functional
dependencies for capturing data inconsistencies. ACM Transactions on Database Systems,

33(2), pages 6:1-6:48, June 2008. DOI: 10.1145/1366102.1366103 55

Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. Graph homomorphism
revisited for graph matching. Proc. of the VLDB Endowment, 3(1), pages 1161-1172, 2010.
DOI: 10.14778/1920841.1920986 67

Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. Query preserving graph compression.
In SIGMOD, pages 157-168, ACM, 2012. DOI: 10.1145/2213836.2213855 72, 100

Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. Keys for graphs. Proc. of the VLDB
Endowment, 8(12), pages 1590-1601, August 2015. DOI: 10.14778/2824032.2824056 49,
55

Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional dependencies for graphs. In SIGMOD,
pages 1843-1857, ACM, 2016. DOI: 10.1145/2882903.2915232 38, 55

Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Informatica, 4, pages 1-9, March 1974. DOI: 10.1007/bt00288933 88

George H. L. Fletcher, Dirk Van Gucht, Yuqing Wu, Marc Gyssens, Sofia Brenes, and
Jan Paredaens. A methodology for coupling fragments of XPath with structural indexes
for XML documents. Information Systems, 34(7), pages 657-670, November 2009. DOI:
10.1016/.i5.2008.09.003 100

George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Jan Van den Bussche, Dirk Van Gucht,
and Stijn Vansummeren. Similarity and bisimilarity notions appropriate for characterizing
indistinguishability in fragments of the calculus of relations. Journal of Logic and Computation,
25(3), pages 549-580, June 2015a. DOI: 10.1093/logcom/exu018 72, 98

George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Dimitri Surinx, Jan Van den Bussche,
Dirk Van Gucht, Stijn Vansummeren, and Yuging Wu. Relative expressive power of navi-
gational querying on graphs. Information Sciences, 298, pages 390-406, March 2015b. DOI:
10.1016/.ins.2014.11.031 35

http://dx.doi.org/10.1007/3-540-13345-3_1
http://dx.doi.org/10.1145/3034786.3056114
http://dx.doi.org/10.1145/1366102.1366103
http://dx.doi.org/10.14778/1920841.1920986
http://dx.doi.org/10.1145/2213836.2213855
http://dx.doi.org/10.14778/2824032.2824056
http://dx.doi.org/10.1145/2882903.2915232
http://dx.doi.org/10.1007/bf00288933
http://dx.doi.org/10.1016/j.is.2008.09.003
http://dx.doi.org/10.1016/j.is.2008.09.003
http://dx.doi.org/10.1093/logcom/exu018
http://dx.doi.org/10.1016/j.ins.2014.11.031
http://dx.doi.org/10.1016/j.ins.2014.11.031

BIBLIOGRAPHY 151
George H. L. Fletcher, Marc Gyssens, Jan Paredaens, Dirk Van Gucht, and Yuqing Wu.

Structural characterizations of the navigational expressiveness of relation algebras on a
tree. Journal of Computer and System Sciences, 82(2), pages 229-259, March 2016. DOI:
10.1016/j.jcss.2015.10.002 100

Flink. Introducing Gelly: Graph processing with Apache flink, August 2015. http://flink.
apache.org/news/2015/08/24/introducing-flink-gelly.html 14

Nadime Francis and Leonid Libkin. Schema mappings for data graphs. In PODS, pages 389—
401, ACM, 2017. DOI: 10.1145/3034786.3056113 54

Nadime Francis, Luc Segoufin, and Cristina Sirangelo. Datalog rewritings of regular path
queries using views. Logical Methods in Computer Science, 11(4), December 2015. DOI:
10.2168/lmcs-11(4:14)2015 54, 55

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Vic-
tor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher:
An evolving query language for property graphs. In SIGMOD, ACM, 2018. DOI:
10.1145/3183713.3190657 2, 34, 141

Michael J. Franklin, Alon Y. Halevy, and David Maier. From databases to dataspaces: A new
abstraction for information management. SIGMOD Record, 34(4), pages 27-33, 2005. DOI:
10.1145/1107499.1107502 13

Brian Gallagher. Matching structure and semantics: A survey on graph-based pattern matching.
In AAAIFS, 2006. 117

Parke Godfrey, Nikolay Yakovets, Zahid Abul-Basher, and Mark H. Chignell. WIREFRAME:
Two-phase, cost-based optimization for conjunctive regular path queries. In AMW, 2017.
CEUR-WS.org 139

E. Mark Gold. Language identification in the limit. Information and Control, 10(5), pages 447—
474, May 1967. DOI: 10.1016/s0019-9958(67)91165-5 61

E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3), pages 302-320, 1978. DOI: 10.1016/50019-9958(78)90562-4 61, 62

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael]. Franklin,
and Ion Stoica. GraphX: Graph processing in a distributed dataflow framework. In OSDI,
pages 599-613, 2014. 14

Szymon Grabowski and Wojciech Bieniecki. Merging adjacency lists for efficient web graph
compression. In ICMMI, pages 385-392, Springer, 2011. DOI: 10.1007/978-3-642-23169-
8_42 100

http://dx.doi.org/10.1016/j.jcss.2015.10.002
http://dx.doi.org/10.1016/j.jcss.2015.10.002
http://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html
http://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html
http://dx.doi.org/10.1145/3034786.3056113
http://dx.doi.org/10.2168/lmcs-11(4:14)2015
http://dx.doi.org/10.2168/lmcs-11(4:14)2015
http://dx.doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/1107499.1107502
http://dx.doi.org/10.1145/1107499.1107502
CEUR-WS.org
http://dx.doi.org/10.1016/s0019-9958(67)91165-5
http://dx.doi.org/10.1016/s0019-9958(78)90562-4
http://dx.doi.org/10.1007/978-3-642-23169-8_42
http://dx.doi.org/10.1007/978-3-642-23169-8_42

152 BIBLIOGRAPHY

Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. Datalog and recursive
query processing. Foundations and Trends in Databases, 5(2), pages 105-195, 2013. DOI:
10.1561/1900000017 22, 23

Andrey Gubichev and Thomas Neumann. Exploiting the query structure for efficient join or-
dering in SPARQL queries. In EDBT, pages 439-450, 2014. OpenProceedings.org DOI:
10.5441/002/edbt.2014.40. 139

Fred G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. Transactions on Mathematical Software, 4(3), pages 250269, 1978. DOI:
10.1145/355791.355796 100

Claudio Gutierrez, Jan Hidders, and Peter Wood. Graph data models. In Encyclopedia of Big
Data Technologies, Springer, 2018. DOI: 10.1007/978-3-319-63962-8_81-1. 13, 14

Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turbo;g,: Towards ultraFast and robust
subgraph isomorphism search in large graph databases. In SIGMOD, pages 337-348, ACM,
2013. DOI: 10.1145/2463676.2465300 117

Olaf Hartig. Foundations of RDFx and SPARQL « (an alternative approach to statement-level
metadata in RDF). In AMW, 2017. CEUR-WS.org 13, 35

Matthias Hauck, Marcus Paradies, Holger Froning, Wolfgang Lehner, and Hannes Rauhe.

Highspeed graph processing exploiting main-memory column stores. In FEuro-Par,

pages 503-514, 2015. DOI: 10.1007/978-3-319-27308-2_41 99

Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space. Morgan
& Claypool Publishers, February 2011. DOI: 10.2200/500334ed1v01y201102wbe001 13

Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros, and Rajkumar Buyya. Scalable
graph processing frameworks: A taxonomy and open challenges. ACM Computing Surveys,
51(3), pages 60:1-60:53, 2018. DOI: 10.1145/3199523 2

Jelle Hellings, George H. L. Fletcher, and Herman J. Haverkort. Efficient external-
memory bisimulation on dags. In SIGMOD, pages 553-564, ACM, 2012. DOI:
10.1145/2213836.2213899 99

Jelle Hellings, Bart Kuijpers, Jan Van den Bussche, and Xiaowang Zhang. Walk logic as a
framework for path query languages on graph databases. In ICD7, pages 117-128, ACM,
2013. DOI: 10.1145/2448496.2448512 35

Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. Implication and axiomatization of
functional and constant constraints. Annals of Mathematics and Artificial Intelligence, 76(3—4),
pages 251-279, April 2016. DOI: 10.1007/s10472-015-9473-7 55

http://dx.doi.org/10.1561/1900000017
http://dx.doi.org/10.1561/1900000017
OpenProceedings.org
http://dx.doi.org/10.5441/002/edbt.2014.40
http://dx.doi.org/10.5441/002/edbt.2014.40
http://dx.doi.org/10.1145/355791.355796
http://dx.doi.org/10.1145/355791.355796
http://dx.doi.org/10.1007/978-3-319-63962-8_81-1
http://dx.doi.org/10.1145/2463676.2465300
CEUR-WS.org
http://dx.doi.org/10.1007/978-3-319-27308-2_41
http://dx.doi.org/10.2200/s00334ed1v01y201102wbe001
http://dx.doi.org/10.1145/3199523
http://dx.doi.org/10.1145/2213836.2213899
http://dx.doi.org/10.1145/2213836.2213899
http://dx.doi.org/10.1145/2448496.2448512
http://dx.doi.org/10.1007/s10472-015-9473-7

BIBLIOGRAPHY 153

Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing simula-
tions on finite and infinite graphs. In FOCS, pages 453-462, IEEE, 1995. DOI: 10.1109/s-
£cs.1995.492576 67

Kai Herrmann, Hannes Voigt, and Wolfgang Lehner. Online horizontal partitioning of het-
erogeneous data. IT—Information Technology, 56(1), pages 4-12, 2014a. DOI: 10.1515/itit-
2014-1015 99

Kai Herrmann, Hannes Voigt, and Wolfgang Lehner. Cinderella—Adaptive online parti-
tioning of irregularly structured data. In SMDB, pages 284-291, IEEE, 2014b. DOI:
10.1109/icdew.2014.6818342 99

Tony Hey, Stewart Tansley, and Kristin M. Tolle. 7he Fourth Paradigm. Data-Intensive Scientific
Discovery. Microsoft Research, 2009. 14

Jan Hidders. 4 graph-based update language for object-oriented data models. Ph.D. thesis, Eind-
hoven University of Technology, December 2001. 35

Yannis E. Toannidis. On the computation of the transitive closure of relational operators. In

VLDB, pages 403—411, Morgan Kaufmann, 1986. 138

Yannis E. Ioannidis. Query optimization. ACM Computing Surveys, 28(1), pages 121-123,
March 1996. DOI: 10.1145/234313.234367 116

Zachary G. Ives and Nicholas E. Taylor. Sideways information passing for push-style query
processing. In ICDE, pages 774-783, IEEE, 2008. DOI: 10.1109/icde.2008.4497486 139

Hakan Jakobsson. Mixed-approach algorithms for transitive closure. In PODS, pages 199-205,
ACM,, 1991. DOI: 10.1145/113413.113431 139

Hakan Jakobsson. On tree-based techniques for query evaluation. In PODS, pages 380-392,
ACM, 1992. DOI: 10.1145/137097.137914 139

Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez Elmasri. Querying knowl-
edge graphs by example entity tuples. IEEE Transactions on Knowledge and Data Engineering,
27(10), pages 2797-2811, October 2015. DOI: 10.1109/TKDE.2015.2426696. 67, 71

Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gémez, and Erhard Rahm.
Analyzing extended property graphs with Apache flink. In ND4, pages 3:1-3:8, ACM, 2016.
DOI: 10.1145/2980523.2980527 14, 35

Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. High-level programming abstractions for
distributed graph processing. IEEE Transactions on Knowledge and Data Engineering, 30(2),
pages 305-324, February 2018. DOI: 10.1109/tkde.2017.2762294 2

http://dx.doi.org/10.1109/sfcs.1995.492576
http://dx.doi.org/10.1109/sfcs.1995.492576
http://dx.doi.org/10.1515/itit-2014-1015
http://dx.doi.org/10.1515/itit-2014-1015
http://dx.doi.org/10.1109/icdew.2014.6818342
http://dx.doi.org/10.1109/icdew.2014.6818342
http://dx.doi.org/10.1145/234313.234367
http://dx.doi.org/10.1109/icde.2008.4497486
http://dx.doi.org/10.1145/113413.113431
http://dx.doi.org/10.1145/137097.137914
http://dx.doi.org/10.1109/TKDE.2015.2426696
http://dx.doi.org/10.1145/2980523.2980527
http://dx.doi.org/10.1109/tkde.2017.2762294

154 BIBLIOGRAPHY

Mehdi Kargar and Aijun An. Finding top-k, r-cliques for keyword search from graphs in
polynomial delay. Knowledge and Information Systems, 43(2), pages 249-280, May 2015. DOI:
10.1007/s10115-014-0736-0 66

Gjergji Kasneci, Maya Ramanath, Mauro Sozio, Fabian M. Suchanek, and Gerhard Weikum.
STAR: Steiner-tree approximation in relationship graphs. In ICDE, pages 868-879, IEEE,
2009. DOI: 10.1109/icde.2009.64 66

Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin Han, JeongHoon Lee,
Seongyun Ko, and Moath H. A. Jarrah. Dualsim: Parallel subgraph enumeration in a massive
graph on a single machine. In Proc. of the International Conference on Management of Data,
pages 1231-1245, 2016. DOI: 10.1145/2882903.2915209 117

Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. Taming
subgraph isomorphism for RDF query processing. Proc. of the VLDB Endowment, 8(11),
pages 1238-1249, July 2015. DOI: 10.14778/2809974.2809985 117

Gordon L. Kindlmann and Carlos Eduardo Scheidegger. An algebraic process for visualization
design. IEEE Transactions on Visualization and Computer Graphics, 20(12), pages 2181-2190,
December 2014. DOI: 10.1109/tveg.2014.2346325 65

Krys Kochut and Maciej Janik. SPARQLeR: Extended SPARQL for semantic association
discovery. In ESWC, pages 145-159, Springer, 2007. DOI: 10.1007/978-3-540-72667-8_12
117

André Koschmieder and Ulf Leser. Regular path queries on large graphs. In SSDBM,
pages 177-194, Springer, 2012. DOI: 10.1007/978-3-642-31235-9_12 117

Danai Koutra and Christos Faloutsos. Individual and Collective Graph Mining: Princi-
ples, Algorithms, and Applications. Morgan & Claypool Publishers, October 2017. DOI:
10.2200/500796ed1v01y201708dmk014 2, 65

Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254-266, IEEE, 1977.
DOI: 10.1109/sfcs.1977.16 61

Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. Scalable distributed sub-
graph enumeration. Proc. of the VLDB Endowment, 10(3), pages 217-228, November 2016.
DOI: 10.14778/3021924.3021937 139

Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Slawek Staworko, and Marc Tommasi.
Learning sequential tree-to-word transducers. In LATA, pages 490-502, Springer, 2014.
DOI: 10.1007/978-3-319-04921-2_40 61

http://dx.doi.org/10.1007/s10115-014-0736-0
http://dx.doi.org/10.1007/s10115-014-0736-0
http://dx.doi.org/10.1109/icde.2009.64
http://dx.doi.org/10.1145/2882903.2915209
http://dx.doi.org/10.14778/2809974.2809985
http://dx.doi.org/10.1109/tvcg.2014.2346325
http://dx.doi.org/10.1007/978-3-540-72667-8_12
http://dx.doi.org/10.1007/978-3-642-31235-9_12
http://dx.doi.org/10.2200/s00796ed1v01y201708dmk014
http://dx.doi.org/10.2200/s00796ed1v01y201708dmk014
http://dx.doi.org/10.1109/sfcs.1977.16
http://dx.doi.org/10.14778/3021924.3021937
http://dx.doi.org/10.1007/978-3-319-04921-2_40

BIBLIOGRAPHY 155

Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. An in-depth compar-
ison of subgraph isomorphism algorithms in graph databases. Proc. of the VLDB Endowment,
6(2), pages 133-144, December 2012. DOI: 10.14778/2535568.2448946 117

Michael Levandowsky and David Winter. Distance between sets. Nature, 234, pages 34-35,
November 1971. DOI: 10.1038/234034a0 82

Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. DOI: 10.1007/978-3-662-
07003-1 98

Leonid Libkin, Wim Martens, and Domagoj Vrgoc. Querying graphs with data. Journal of the
ACM, 63(2), pages 14, May 2016. DOI: 10.1145/2850413 35

Yike Liu, Abhilash Dighe, Tara Safavi, and Danai Koutra. Graph summarization meth-

ods and applications: A survey. The Computing Research Repository, January 2018. DOI:
10.1145/3186727 65, 68, 69, 71

Katja Losemann and Wim Martens. The complexity of evaluating path expressions in SPARQL.
In PODS, pages 101-112, ACM, 2012. DOI: 10.1145/2213556.2213573 117

Cheng Luo, Zhewei Jiang, Wen-Chi Hou, Feng Yu, and Qiang Zhu. A sampling approach
for XML query selectivity estimation. In EDBT, pages 335-344, ACM, 2009. DOI:
10.1145/1516360.1516400 139

Yongming Luo, Yannick de Lange, George H. L. Fletcher, Paul De Bra, Jan Hidders, and
Yuqing Wu. Bisimulation reduction of big graphs on mapreduce. In BNCOD, pages 189—
203, Springer, 2013a. DOI: 10.1007/978-3-642-39467-6_18 99

Yongming Luo, George H. L. Fletcher, Jan Hidders, Paul De Bra, and Yuging Wu. Regularities
and dynamics in bisimulation reductions of big graphs. In GRADES, pages 13-18, ACM,
2013b. DOI: 10.1145/2484425.2484438 99

Yongming Luo, George H. L. Fletcher, Jan Hidders, Yuqing Wu, and Paul De Bra. External
memory k-bisimulation reduction of big graphs. In CIKM, pages 919-928, ACM, 2013c.
DOQI: 10.1145/2505515.2505752 99

Norbert Martinez-Bazan, Victor Muntés-Mulero, Sergio Gémez-Villamor, Jordi Nin, Mario-
A. Sinchez-Martinez, and Josep-Lluis Larriba-Pey. DEX: High-performance exploration
on large graphs for information retrieva. In CIKM, pages 573-582, ACM, 2007. DOI:
10.1145/1321440.1321521 14

Norbert Martinez-Bazan, Sergio Gémez-Villamor, and Francesc Escale-Claveras. DEX: A
high-performance graph database management system. In GDM, pages 124-127, IEEE,
2011. DOI: 10.1109/icdew.2011.5767616 14

http://dx.doi.org/10.14778/2535568.2448946
http://dx.doi.org/10.1038/234034a0
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1145/2850413
http://dx.doi.org/10.1145/3186727
http://dx.doi.org/10.1145/3186727
http://dx.doi.org/10.1145/2213556.2213573
http://dx.doi.org/10.1145/1516360.1516400
http://dx.doi.org/10.1145/1516360.1516400
http://dx.doi.org/10.1007/978-3-642-39467-6_18
http://dx.doi.org/10.1145/2484425.2484438
http://dx.doi.org/10.1145/2505515.2505752
http://dx.doi.org/10.1145/1321440.1321521
http://dx.doi.org/10.1145/1321440.1321521
http://dx.doi.org/10.1109/icdew.2011.5767616

156 BIBLIOGRAPHY

Brian McBride. Jena: Implementing the RDF model and syntax specification. In SezWeb, 2001.
99

Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex: A survey
of vertex-centric frameworks for large-scale distributed graph processing. ACM Computing
Surveys, 48(2), pages 25:1-25:39, November 2015. DOI: 10.1145/2818185 2

Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph
databases. SIAM Journal on Computing, 24(6), pages 1235-1258, 1995. DOI:
10.1137/s009753979122370x 117

Tova Milo and Dan Suciu. Index structures for path expressions. In ICDT, pages 277-295,
Springer, 1999. DOI: 10.1007/3-540-49257-7_18 100

Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Parallel materialisa-
tion of datalog programs in centralised, main-memory RDF systems. In A4AI, pages 129—
137, 2014. 99

Davide Mottin, Francesco Bonchi, and Francesco Gullo. Graph query reformulation with di-

versity. In SIGKDD, pages 825-834, ACM, 2015. DOI: 10.1145/2783258.2783343 71

Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. Exemplar queries:
A new way of searching. 7he VLDB Journal—The International Journal on Very Large Data
Bases, 25(6), pages 741-765, December 2016. DOI: 10.1007/s00778-016-0429-2 66, 67, 71

Inderpal Singh Mumick and Hamid Pirahesh. Implementation of magic-sets in a relational
database system. In SIGMOD, pages 103-114, ACM, 1994. DOI: 10.1145/191843.191860
139

Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. RD-
Fox: A highly-scalable RDF store. In ISWC, vol. 9367, pages 3-20, Springer, 2015. DOI:
10.1007/978-3-319-25010-6_1 99

Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate cardinality estima-
tion for RDF queries with multiple joins. In ICDE, pages 984-994, IEEE, 2011. DOI:
10.1109/icde.2011.5767868 139

Thomas Neumann and Gerhard Weikum. RDF-3X: A RISC-style engine for RDF. Proc. of the
VLDB Endowment, 1(1), pages 647-659, 2008. DOI: 10.14778/1453856.1453927 99

Thomas Neumann and Gerhard Weikum. Scalable join processing on very large RDF graphs.
In SIGMOD, pages 627-640, ACM, 2009. DOI: 10.1145/1559845.1559911 133, 136, 139

Thomas Neumann and Gerhard Weikum. x-RDF-3X: Fast querying, high update rates, and
consistency for RDF databases. Proc. of the VLDB Endowment, 3(1), pages 256-263, 2010a.
DOI: 10.14778/1920841.1920877 99

http://dx.doi.org/10.1145/2818185
http://dx.doi.org/10.1137/s009753979122370x
http://dx.doi.org/10.1137/s009753979122370x
http://dx.doi.org/10.1007/3-540-49257-7_18
http://dx.doi.org/10.1145/2783258.2783343
http://dx.doi.org/10.1007/s00778-016-0429-2
http://dx.doi.org/10.1145/191843.191860
http://dx.doi.org/10.1007/978-3-319-25010-6_1
http://dx.doi.org/10.1007/978-3-319-25010-6_1
http://dx.doi.org/10.1109/icde.2011.5767868
http://dx.doi.org/10.1109/icde.2011.5767868
http://dx.doi.org/10.14778/1453856.1453927
http://dx.doi.org/10.1145/1559845.1559911
http://dx.doi.org/10.14778/1920841.1920877

BIBLIOGRAPHY 157

Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal—The International Journal on Very Large Data Bases, 19(1),
pages 91-113, February 2010b. DOI: 10.1007/s00778-009-0165-y 99

Mark E. J. Newman. Networks: An Introduction, 2nd ed. Oxford University Press, 2018. 1

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms.
Journal of the ACM, 65(3), pages 16:1-16:40, March 2018. DOI: 10.1145/3180143. 139

Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q. Ngo, Christo-
pher Ré, and Atri Rudra. Join processing for graph patterns: An old dog with new tricks. In
GRADES, pages 2:1-2:8, 2015. DOI: 10.1145/2764947.2764948 139

Dan Olteanu and Maximilian Schleich. Factorized databases. SIGMOD Record, 45(2), pages 5—
16, June 2016. DOI: 10.1145/3003665.3003667 139

Marcus Paradies and Hannes Voigt. Big graph data analytics on single machines—an overview.

Datenbank—Spektrum, 17(2), July 2017. DOI: 10.1007/s13222-017-0255-8 101

Marcus Paradies and Hannes Voigt. Graph representations and storage. In Encyclopedia of Big
Data Technologies, Springer, 2018. DOI: 10.1007/978-3-319-63962-8_211-1. 101

Marcus Paradies, Wolfgang Lehner, and Christof Bornhévd. GRAPHITE: An extensi-
ble graph traversal framework for relational database management systems. In SSDBM,
pages 29:1-29:12, ACM, 2015. DOI: 10.1145/2791347.2791383 99

Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. nSPARQL: A navigational
language for RDF. jJournal of Web Semantics, 8(4), pages 255-270, 2010. DOI:
10.1016/j.websem.2010.01.002. 35, 117

Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sdnchez, and Emmanuel Miiller. Focused clus-
tering and outlier detection in large attributed graphs. In SIGKDD, pages 1346-1355, 2014.
DOQOI: 10.1145/2623330.2623682 69

Minh-Duc Pham, Linnea Passing, Orri Erling, and Peter A. Boncz. Deriving an emer-
gent relational schema from RDF data. In WWW, pages 864-874, ACM, 2015. DOI:
10.1145/2736277.2741121 99

Frangois Picalausa. Guarded structural indexes: Theory and application to relational RDF

databases. Ph.D. thesis, Université Libre de Bruxelles, 2013. 99

Francois Picalausa, Yongming Luo, George H. L. Fletcher, Jan Hidders, and Stijn Vansum-
meren. A structural approach to indexing triples. In ESIWC, pages 406—421, Springer, 2012.
DOQOI: 10.1007/978-3-642-30284-8_34 72, 98

http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1145/3180143
http://dx.doi.org/10.1145/2764947.2764948
http://dx.doi.org/10.1145/3003665.3003667
http://dx.doi.org/10.1007/s13222-017-0255-8
http://dx.doi.org/10.1007/978-3-319-63962-8_211-1
http://dx.doi.org/10.1145/2791347.2791383
http://dx.doi.org/10.1016/j.websem.2010.01.002
http://dx.doi.org/10.1016/j.websem.2010.01.002
http://dx.doi.org/10.1145/2623330.2623682
http://dx.doi.org/10.1145/2736277.2741121
http://dx.doi.org/10.1145/2736277.2741121
http://dx.doi.org/10.1007/978-3-642-30284-8_34

158 BIBLIOGRAPHY

Francois Picalausa, George H. L. Fletcher, Jan Hidders, and Stijn Vansummeren. Principles of
guarded structural indexing. In ICDT, pages 245-256, 2014. OpenProceedings.org DOI:
10.5441/002/icdt.2014.26. 98

Neoklis Polyzotis, Minos N. Garofalakis, and Yannis E. Ioannidis. Approximate XML query
answers. In SIGMOD, pages 263-274, ACM, 2004. DOI: 10.1145/1007568.1007599 139

Alexandra Poulovassilis and Peter T. Wood. Combining approximation and relaxation in se-
mantic web path queries. In ISWC, pages 631-646, Springer, 2010. DOI: 10.1007/978-3-
642-17746-0_40 71

Miao Qiao, Hao Zhang, and Hong Cheng. Subgraph matching: On compression and com-
putation. Proc. of the VLDB Endowment, 11(2), pages 176-188, October 2017. DOI:
10.14778/3149193.3149198 139

Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases.
Theory of Computing Systems, 61(1), pages 31-83, 2017. DOI: 10.1007/500224-016-9676-2
15,21, 35

Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM, 55(3),
pages 15:1-15:53, July 2008. DOI: 10.1145/1379759.1379763 98

Michael Rudolf, Marcus Paradies, Christof Bornhévd, and Wolfgang Lehner. The graph story
of the SAP HANA database. In BTW, vol. 214, pages 403-420, GI, 2013. 14, 99

Stuart J. Russell and Peter Norvig. Artificial Intelligence—A Modern Approach (3rd international
ed.). Pearson Education, 2010. 65

Sherif Sakr, Sameh Elnikety, and Yuxiong He. G-SPARQL: A hybrid engine for querying
large attributed graphs. In Proc. of the 21st ACM International Conference on Information and
Knowledge Management, pages 335-344, ACM, 2012. DOI: 10.1145/2396761.2396806 117

Simone Santini. Regular languages with variables on graphs. Information and Computation, 211,
pages 1-28, February 2012. DOI: 10.1016/j.ic.2011.10.010 35

Mohamed Sarwat, Sameh Elnikety, Yuxiong He, and Mohamed F. Mokbel. Horton+: A dis-
tributed system for processing declarative reachability queries over partitioned graphs. Proc.
of the VLDB Endowment, 6(14), pages 1918-1929, 2013. DOI: 10.14778/2556549.2556573
117

Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung, Raghu Ramakr-
ishnan, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan. Cost-based optimization
for magic: Algebra and implementation. In SIGMOD, pages 435-446, ACM, 1996. DOI:
10.1145/233269.233360. 139

OpenProceedings.org
http://dx.doi.org/10.5441/002/icdt.2014.26
http://dx.doi.org/10.5441/002/icdt.2014.26
http://dx.doi.org/10.1145/1007568.1007599
http://dx.doi.org/10.1007/978-3-642-17746-0_40
http://dx.doi.org/10.1007/978-3-642-17746-0_40
http://dx.doi.org/10.14778/3149193.3149198
http://dx.doi.org/10.14778/3149193.3149198
http://dx.doi.org/10.1007/s00224-016-9676-2
http://dx.doi.org/10.1145/1379759.1379763
http://dx.doi.org/10.1145/2396761.2396806
http://dx.doi.org/10.1016/j.ic.2011.10.010
http://dx.doi.org/10.14778/2556549.2556573
http://dx.doi.org/10.1145/233269.233360
http://dx.doi.org/10.1145/233269.233360

BIBLIOGRAPHY 159

Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum. FERRARI:
Flexible and efficient reachability range assignment for graph indexing. In ICDE, pages 1009—
1020, IEEE, 2013. DOI: 10.1109/icde.2013.6544893 100

Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework for shared
memory. In PPoPP, pages 135-146, 2013. DOI: 10.1145/2517327.2442530 100

George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. BFS and coloring-based
parallel algorithms for strongly connected components and related problems. In IPDPS,
pages 550-559, IEEE, 2014. DOI: 10.1109/ipdps.2014.64 92

Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys, 46(4),
pages 45:1-45:31, April 2014. DOI: 10.1145/2530531 100

Shaoxu Song, Boge Liu, Hong Cheng, Jeftrey Xu Yu, and Lei Chen. Graph repairing under
neighborhood constraints. 7he VLDB Journal—The International Journal on Very Large Data
Bases, 26(5), pages 611-635, October 2017. DOI: 10.1007/s00778-017-0466-5 52, 53

Giorgio Stefanoni, Boris Motik, and Egor V. Kostylev. Estimating the cardinality of conjunctive
queries over RDF data using graph summarisation. In WI¥IW, pages 1043-1052, ACM, 2018.
DOQOI: 10.1145/3178876.3186003 135, 139

Konrad Stocker, Donald Kossmann, Reinhard Braumandl, and Alfons Kemper. Integrating
semi-join-reducers into state of the art query processors. In ICDE, pages 575-584, IEEE,
2001. DOI: 10.1109/icde.2001.914872 139

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Prelim-
inary report. In S7OC, pages 1-9, ACM, 1973. DOI: 10.1145/800125.804029 61

Jiao Su, Qing Zhu, Hao Wei, and Jeftrey Xu Yu. Reachability querying: Can it be even faster?
IEEE Transactions on Knowledge and Data Engineering, 29(3), pages 683-697, 2017. DOI:
10.1109/tkde.2016.2631160 89, 100

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowl-
edge unifying WordNet and Wikipedia. In WIWIV, pages 697-706, ACM, 2007. 57

Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang Hu, and
Guo Tong Xie. SQLGraph: An efficient relational-based property graph store. In SIGMOD,
pages 1887-1901, ACM, 2015. DOI: 10.1145/2723372.2723732 100

Dimitri Surinx, George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Jan Van den Bussche,
Dirk Van Gucht, Stijn Vansummeren, and Yuging Wu. Relative expressive power of naviga-
tional querying on graphs using transitive closure. Logic Journal of the IGPL, 23(5), pages 759—
788, 2015. DOI: 10.1093/jigpal/jzv028. 35

http://dx.doi.org/10.1109/icde.2013.6544893
http://dx.doi.org/10.1145/2517327.2442530
http://dx.doi.org/10.1109/ipdps.2014.64
http://dx.doi.org/10.1145/2530531
http://dx.doi.org/10.1007/s00778-017-0466-5
http://dx.doi.org/10.1145/3178876.3186003
http://dx.doi.org/10.1109/icde.2001.914872
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1109/tkde.2016.2631160
http://dx.doi.org/10.1109/tkde.2016.2631160
http://dx.doi.org/10.1145/2723372.2723732
http://dx.doi.org/10.1093/jigpal/jzv028

160 BIBLIOGRAPHY

Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1(2), pages 146-160, June 1972. DOI: 10.1137/0201010 92

Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3), pages 73—89, Septem-
ber 1941. DOI: 10.2307/2268577 35

Alfred Tarski and Steven R. Givant. A Formalization of Set Theory Without Variables, vol. 41.
American Mathematical Society, 1987. DOI: 10.1090/coll/041 35

'The Coq Development Team. The Coq proof assistant, version 8.7.2, February 2018. 34

Frank Tetzel, Hannes Voigt, Marcus Paradies, and Wolfgang Lehner. An analysis of the feasi-
bility of graph compression techniques for indexing regular path geries. In GRADES, ACM,
2017. DOI: 10.1145/3078447.3078458 100

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, vol. I and vol. 14. Com-
puter Science Press, 1988. 27

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, vol. II. Computer Science
Press, 1989. 27

Patrick Valduriez and Haran Boral. Evaluation of recursive queries using join indices. In Proc. of
the 1st International Conference on Expert Database Systems, pages 271-293, Benjamin Cum-
mings, Charleston, SC, April 1-4, 1986. 138

Wouter van Heeswijk, George H. L. Fletcher, and Mykola Pechenizkiy. On structure preserving
sampling and approximate partitioning of graphs. In §4C, pages 875-882, ACM, 2016. DOL:
10.1145/2851613.2851650 99

Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. PGQL:
A property graph query language. In GRADES, page 7, ACM, 2016. DOI:
10.1145/2960414.2960421 2, 14, 34

Elena Vasilyeva. Why-query support in graph databases. Ph.D. thesis, Dresden University of
Technology, Germany, 2017. 71

Elena Vasilyeva, Maik Thiele, Adrian Mocan, and Wolfgang Lehner. Relaxation of sub-
graph queries delivering empty results. In SSDBM, pages 28:1-28:12, ACM, 2015. DOI:
10.1145/2791347.2791382 71

Elena Vasilyeva, Maik Thiele, Christof Bornh6vd, and Wolfgang Lehner. Answering “Why
empty?” and “Why so many?” queries in graph databases. Journal of Computer and System
Sciences, 82(1), pages 3—22, February 2016. DOI: 10.1016/j.jcss.2015.06.007 71

Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In ICDT, pages 96—
106, 2014. DOI: 10.5441/002/icdt.2014.13. 139

http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.2307/2268577
http://dx.doi.org/10.1090/coll/041
http://dx.doi.org/10.1145/3078447.3078458
http://dx.doi.org/10.1145/2851613.2851650
http://dx.doi.org/10.1145/2851613.2851650
http://dx.doi.org/10.1145/2960414.2960421
http://dx.doi.org/10.1145/2960414.2960421
http://dx.doi.org/10.1145/2791347.2791382
http://dx.doi.org/10.1145/2791347.2791382
http://dx.doi.org/10.1016/j.jcss.2015.06.007
http://dx.doi.org/10.5441/002/icdt.2014.13

BIBLIOGRAPHY 161

Hannes Voigt. Declarative multidimensional graph queries. In Business Intelligence—6th FEu-
ropean Summer School, eBISS, pages 1-37, Tours, France, July 3-8, 2016, Tutorial Lectures,
Springer, 2017. DOI: 10.1007/978-3-319-61164-8_1 35

Denny Vrandecic and Markus Krotzsch. Wikidata: A free collaborative knowledgebase. Com-
munications of the ACM, 57(10), pages 78-85, 2014. DOI: 10.1145/2629489 13

W3C. Resource description framework (RDF): Model and syntax specification, February 1999.
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ 13

WS3C. Resource description framework (RDF): Concepts and abstract syntax, February 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ 13

W3C. Extensible markup language (XIMIL) 1.0, 5th ed., November 2008. http://www.w3.or
g/TR/2008/REC-xm1-20081126/ 13

W3C. SPARQL 1.1 overview, March 2013. http://www.w3.org/TR/2013/REC-sparqlll-
overview-20130321/ 34

W3C. RDF 1.1 concepts and abstract syntax, February 2014. http://www.w3.org/TR/2014/
REC-rdf1l-concepts-20140225/ 13

Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. Reachability querying: An independent
permutation labeling approach. Proc. of the VLDB Endowment, 7(12), pages 1191-1202, Au-
gust 2014. DOI: 10.14778/2732977.2732992 100

Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: Sextuple indexing for
semantic web data management. Proc. of the VLDB Endowment, 1(1), pages 1008-1019, 2008.
DOI: 10.14778/1453856.1453965 99

Yaacov Weiss and Sara Cohen. Reverse engineering SPJ-queries from examples. In PODS,

pages 151-166, ACM, 2017. DOI: 10.1145/3034786.3056112 71

Horst Werner, Christof Bornhovd, Robert Kubis, and Hannes Voigt. MOAW: An agile visual
modeling and exploration tool for irregularly structured data. In BTW, vol. 180, pages 742~
745, GI, 2011. 13

Kevin Wilkinson. Jena property table implementation. In SSWS, 2006. 99

Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. Efficient RDF storage
and retrieval in Jena2. In SWDB, pages 131-150, 2003. 99

Ross Willard. PP-definability is CO-nexptime-complete. In The Constraint Satisfaction Problem.
Complexity and Approximability, vol. 09441, Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, Dagstuhl, Germany, October 25-30 2009. 59

http://dx.doi.org/10.1007/978-3-319-61164-8_1
http://dx.doi.org/10.1145/2629489
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://dx.doi.org/10.14778/2732977.2732992
http://dx.doi.org/10.14778/1453856.1453965
http://dx.doi.org/10.1145/3034786.3056112

162 BIBLIOGRAPHY

Peter T. Wood. Query languages for graph databases. SIGMOD Record, 41(1), pages 50-60,
2012. DOI: 10.1145/2206869.2206879 35

Yinghui Wu and Arijit Khan. Graph pattern matching. In Encyclopedia of Big Data Technologies,
Springer, 2018. DOI: 10.1007/978-3-319-63962-8_74-1 35

Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. Evaluation of SPARQL property paths via
recursive SQL.. In AMW, 2013. CEUR-WS.org 117

Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. Query planning for evaluat-
ing SPARQL property paths. In SIGMOD, pages 1875-1889, ACM, 2016. DOI:
10.1145/2882903.2882944 117, 139

Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. Big graph analytics plat-
torms. Foundations and Trends in Databases, 7(1-2), pages 1-195, January 2017. DOI:
10.1561/1900000056 2

Mohan Yang and Carlo Zaniolo. Main memory evaluation of recursive queries on multicore

machines. In BD, pages 251-260, IEEE, 2014. DOI: 10.1109/bigdata.2014.7004240 139

Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. GRAIL: A scalable index for reacha-
bility queries in very large graphs. Zhe VLDB Journal—The International Journal on Very Large
Data Bases, 21(4), pages 509-534, August 2012. DOI: 10.1007/s00778-011-0256-4 100

Jeffrey Xu Yu and Jiefeng Cheng. Graph reachability queries: A survey. In Managing and Mining
Graph Data, vol. 40, pages 181-215, Springer, 2010. DOI: 10.1007/978-1-4419-6045-0_6
100

Harald Zauner, Benedikt Linse, Tim Furche, and Francois Bry. A RPL through RDF: Expres-
sive navigation in RDF graphs. In Web Reasoning and Rule Systems—Proc. of the 4th Interna-
tional Conference, RR, pages 251-257, Bressanone/Brixen, Italy, September 22-24, Springer,
2010. DOI: 10.1007/978-3-642-15918-3_25 117

J. W. Zhang and Y. C. Tay. GSCALER: Synthetically scaling A given graph. In EDBT,
pages 53—64, 2016. OpenProceedings.org DOI: 10.5441/002/edbt.2016.08. 117

Ning Zhang, M. Tamer Ozsu, Ashraf Aboulnaga, and Thab F. Ilyas. XSEED: Accurate and
fast cardinality estimation for XPath queries. In ICDE, pages 61-72, IEEE, 2006. DOI:
10.1109/icde.2006.178 139

Ning Zhang, Yuanyuan Tian, and Jignesh M. Patel. Discovery-driven graph summarization.
In ICDE, pages 880-891, IEEE, 2010. DOI: 10.1109/icde.2010.5447830 69, 70, 72

Moshé M. Zloof. Query-by-example: The invocation and definition of tables and forms. In
VLDB, pages 1-24, ACM, 1975. DOI: 10.1145/1282480.1282482 67

http://dx.doi.org/10.1145/2206869.2206879
http://dx.doi.org/10.1007/978-3-319-63962-8_74-1
CEUR-WS.org
http://dx.doi.org/10.1145/2882903.2882944
http://dx.doi.org/10.1145/2882903.2882944
http://dx.doi.org/10.1561/1900000056
http://dx.doi.org/10.1561/1900000056
http://dx.doi.org/10.1109/bigdata.2014.7004240
http://dx.doi.org/10.1007/s00778-011-0256-4
http://dx.doi.org/10.1007/978-1-4419-6045-0_6
http://dx.doi.org/10.1007/978-3-642-15918-3_25
OpenProceedings.org
http://dx.doi.org/10.5441/002/edbt.2016.08
http://dx.doi.org/10.1109/icde.2006.178
http://dx.doi.org/10.1109/icde.2006.178
http://dx.doi.org/10.1109/icde.2010.5447830
http://dx.doi.org/10.1145/1282480.1282482

BIBLIOGRAPHY 163

Lei Zou, M. Tamer Ozsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan Zhao.
gStore: A graph-based SPARQL query engine. 7he VLDB Journal—The International Journal
on Very Large Data Bases, 23(4), pages 565590, August 2014. DOI: 10.1007/s00778-013-
0337-7 100

http://dx.doi.org/10.1007/s00778-013-0337-7
http://dx.doi.org/10.1007/s00778-013-0337-7

165

Authors’ Biographies

ANGELA BONIFATI

Angela Bonifati is a full professor of computer science at Université Claude Bernard Lyon 1 and
affiliated with the CNRS Liris research lab. She received her Ph.D. from Politecnico di Milano
in 2002 and right after she was a postdoctoral researcher at INRIA Roquencourt. Her current
research interests are on the interplay of relational and graph-shaped data paradigms, particularly
on schema mapping and data exchange, query processing, and learning for these data models.
She was Vice Chair of ICDE 2018 for the information extraction, data cleaning, and curation
track and Vice Chair of ICDE 2011 for the semi-structured data track. She is Associate Editor
of the VLDB Journal, ACM TODS, and Distributed and Parallel Databases. She is a member-
at-large of the ICDT council and serving on the program committees of SIGMOD, PODS,
PVLDB, ICDE, and EDBT.

GEORGE FLETCHER

George Fletcher is an associate professor of computer science at Technische Universiteit Eind-
hoven where he is chair of the Database Group. He defended a Ph.D. at Indiana University
Bloomington in 2007. His research interests span query language design and engineering, foun-
dations of databases, and data integration. His current focus is on management of massive graphs
such as social networks and linked open data. He was a co-organizer of the EDBT Summer
School on Graph Data Management (2015) and is currently a member of the LDBC Graph
Query Language Standardization Task Force. His other recent activities include co-organizing

an NII Shonan seminar on Graph Database Systems (2018) and serving on the program com-
mittees of SIGMOD, VLDB, ISWC, ICDE, EDBT, and IJCAL

HANNES VOIGT

Hannes Voigt is a software engineer at Neo4j since June 2018, where he is part of the Query
Languages, Standards, and Research team. Before that he was a post-doctoral researcher at the
Dresden Database Systems Group, Technische Universitit Dresden and obtained his Ph.D.
from the same university in 2014. As a researcher, he worked on various database topics such as
declarative graph query languages, database evolution and versioning, management of schema-
flexible data, and self-adapting indexes. He is member of the LDBC Graph Query Language

Standardization Task Force. Other recent activities include co-editing the section on graph an-

166 AUTHORS’ BIOGRAPHIES

alytics in the Encyclopedia of Big Data Technologies, co-presenting a tutorial on graph query pro-
cessing at EDBT 2017, and serving on the program committees of VLDB, ICDE, and CIKM.

NIKOLAY YAKOVETS

Nikolay Yakovets is an assistant professor of computer science at Technische Universiteit Eind-
hoven. He obtained his Ph.D. from Lassonde School of Engineering at York University in 2017.
He worked on various database topics at IBM CAS Canada and Empress Software Canada. His
current focus is on design and implementation of core database technologies, management of
massive graph data, and efficient processing of queries on graphs. His recent activities include
co-presenting a tutorial on graph query processing at EDBT 2017, co-organizing the 2017 edi-
tion of the Dutch-Belgian Database Day, and serving on a program committee of ICDE.

	Foreword
	Acknowledgments
	Introduction
	Data Models
	Property Graph Model
	Variations of the PGM
	Specializations
	Structural Extensions
	Data Representation Extensions
	Summary

	Bibliographic and Historical Notes

	Query Languages
	Basic Functionality
	Regular Path Queries
	Conjunctive Graph Queries
	Conjunctive Regular Path Queries
	Unions of Conjunctive Regular Path Queries
	Relation Algebra

	Regular Property Graph Queries
	Regular Property Graph Logic
	Regular Property Graph Algebra
	Equivalence and Complexity of RPGLog and RPGA

	RPGQ in Context
	Important Fragments of RPGQ
	Extending RPGQ For Composability
	RPGQ and Practical Graph Query Languages

	Bibliographic and Historical Notes

	Constraints
	Preliminaries
	Graph Functional Dependencies
	Syntax
	Semantics
	Satisfiability
	Implication
	Validation

	Graph Entity Dependencies
	Definition and Special Cases
	Preliminaries
	Chasing Graph Entity Dependencies
	Satisfiability, Implication, and Validation
	Extension to Graph Denial Constraints
	Applications and Practical Impact of Graph Dependencies

	Other Constraints for Graph Data Management
	Graph Neighborhood Constraints
	Graph-to-Graph Constraints

	Bibliographic and Historical Notes

	Query Specification
	Path Query Specification
	The Definability Problem for Graph Queries
	Complexity of Definability for Graph Queries
	From Definability to Learnability of Graph Queries
	Interactive Graph Query Specification

	Graph Searching for Querying
	Query-Driven Graph Exploration
	Bibliographic Notes

	Data Structures and Indexes
	Conceptual Schemas of PGM Representation
	Direct Representation of Ternary Relations
	Value Compression
	Value Indexing

	Pivoted Representation of Ternary Relations
	Adjacency Indexing
	Uncompressed Adjacency Representation
	Compressed Adjacency Representation

	Reachability Indexing
	General Considerations
	Techniques

	Structural Indexing
	Bibliographic and Historical Notes

	Query Processing
	Query Pipeline
	Subgraph Matching Queries
	DFS-Based algorithms
	BFS-Based Algorithms
	Discussion

	Regular Path Queries
	Relational Algebra and Datalog-Based Approaches
	Finite Automata-Based Approaches

	Unions of Conjunctive Regular Path Queries
	Bibliographic and Historical Notes

	Physical Operators
	Transitive Closure
	Multi-Way Joins
	Cardinality Estimation
	Cardinality of Paths
	Cardinality of Patterns

	Further Optimizations
	Bibliographic and Historical Notes

	Research Challenges
	Bibliography
	Authors' Biographies

