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ABSTRACT 

 

We present a new method and tool for activity modeling through qualitative sequential 

data analysis. In particular, we address the question of constructing a symbolic abstract 

representation of an activity from an activity trace. We use knowledge engineering 

techniques to help the analyst build an ontology of the activity, i.e., a set of symbols and 

semantics that supports the construction of activity models. The ontology construction is 

pragmatic, evolutionist and driven by the analysts in accordance with their modeling 

goals and their research questions. Our tool helps the analyst define transformation rules 

to process the raw trace into abstract traces based on the ontology. The analyst visualizes 

the abstract traces and iteratively tests the ontology, the transformation rules, and the 

visualization format to confirm the models of activity. With this tool and this method, we 

found innovative ways to represent the car driving activity at different levels of 

abstraction from activity traces collected with an instrumented vehicle. As examples, we 

report two new strategies of lane changing on motorways that we have found and 

modeled with this approach. 
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1. INTRODUCTION 

We introduce here new principles based on knowledge engineering techniques for 

designing systems to help analysts create models of activity from activity traces. We 

illustrate these principles with a software tool that we have implemented, and with an 

example modeling analysis that we have performed using this tool.  

By activity trace we mean a set of multiple streams of quantitative or symbolic data 

that record (at least partially) an activity performed by a subject. The analysts may be 

psychologists seeking to build theories of the subject’s cognition, ergonomists seeking to 

design better user interfaces, analysts seeking to predict the subject’s behavior in specific 

conditions, trainers seeking to improve training techniques, or even the subjects 

themselves seeking to improve their understanding of their actions. In each case, the 

created models of activity constitute micro-theories proposed by the analysts to describe, 

explain, and try to predict how the subject performs the activity. 

The principles and the tool that we introduce here address three needs for helping 

analysts construct models of activity from activity traces. The first need is for helping the 

analyst learn previously unknown aspects or details of the subject’s activity from the 

activity traces. The second need is for helping the analyst construct meaningful symbolic 

representations of interesting aspects of the activity. These representations, associated 

with the explanations proposed by the analyst, constitute the models of activity. The third 
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need is for helping the analyst test and back up the created models of activity with regard 

to the activity trace. 

Activity traces have also been called  protocols (Ericsson & Simon, 1993) or simply 

sequential data (Sanderson & Fisher, 1994). In this paper, we prefer the term activity 

trace because it conveys the idea that it is something intended to be interpreted by 

somebody (designated here as the analyst). We think of a trace as a footprint that helps 

who sees it understand what happened, at least to some extent. Our activity traces yet 

differ from mere footprints in that they are not accidentally produced but they rather 

result from the analyst’s choices and setup.  

Many software tools have been implemented for activity trace analysis.  Hilbert and 

Remiles (2000) gives a review of forty of them. These tools cannot autonomously 

generate a comprehensive explanation of human behavior but they interactively support 

the analysis work. This analysis work consists of identifying, categorising, labelling, and 

transforming pieces data and information in the activity trace. We summarise this process 

by the notion of “abstraction”.  The analysts use their expertise and knowledge to 

formulate a whole set of tiny hypotheses and choices concerning how to collect the data, 

how to filter it, how to cluster and label it, and how to display and to report it so that it 

responds to the analysis purpose.  

Although most of the existing tools acknowledge the central role of the analysts and 

the importance of their knowledge and expertise in the analysing process, these tools still 
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lack knowledge representation mechanisms to support the management of the analysts’ 

knowledge. For instance, one of the current tools that goes the farthest in that direction, 

MacShapa (Sanderson, McNeese, & Zaff, 1994), does help analysts label and cluster the 

behavioural data. It also acknowledges the usage of these labels as symbols to describe 

the activity. It, however, does not help the analyst formulate and manage the symbolic 

inferences she can make from these symbols.  

We made the hypothesis that techniques of knowledge engineering can help design 

software systems that address the three needs identified above. We use ontology 

management facilities and rule engines to capture the hypotheses and choices made by 

the analyst. When interactively used by the analyst, or a group of analysts, these facilities 

help formalize the way analysts find interesting symbolic patterns and infer models from 

them. Once this knowledge is formalized, the system uses it to automatically compute 

new representations of the activity from the activity traces. The system also helps 

analysts formalize, organize, and store the different analyzing prisms used for different 

studies and help capitalize on these studies.  

To explain our principles and confirm our hypothesis, we have organized this paper 

as follows: section 2 presents the principles of activity trace modelling, based on a 

pragmatic and evolutionist approach. Section 3 presents the prototype software tool that 

we have implemented from these principles, its technical features, its architecture, and its 

user interface. Section 4 presents an example study in which we have used this tool to 
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create models of lane change on motorways from activity traces generated with an 

instrumented car. 

2. MODELING ACTIVITY TRACES 

The notion of activity trace is widely used in the human behavior literature, and we 

cannot attribute its origin to a specific author. Only more specific related notions can be 

identified, such as pattern languages, as reviewed by Dearden and Finlay (2006), or 

grammar techniques (Olson, Herbsleb, & Reuter, 1994). Despite the wide usage of the 

term activity trace, we could not find a definition of it, which led us to propose the 

following definition:  

An activity trace is a meaningful inscription, from the viewpoint of an analyst, of the 

flow of what has happened, from the viewpoint of a subject.  

With this definition, we want to highlight that an activity trace always implies two 

viewpoints, situated in two different moments. It implies the subject’s viewpoint, when 

he or she was performing the activity, and the analyst’s viewpoint, when he or she is 

analyzing the activity trace. Indeed, an activity trace cannot be an inscription of all that 

happened (if that had any sense), because an activity only concerns what relates to the 

subject’s perspective, goals, and intentions. Thus, inevitably, the analyst has to make 

assumptions about what is meaningful to the subject when the analyst sets up the tracing 

mechanism. In addition, the activity trace depends on what activity aspects interest the 



ACTIVITY MODELING FROM ACTIVITY TRACES 

 

 

7 

analyst and what makes sense to her according to her previous knowledge and to her 

analysis goals.  

Because an activity trace depends on the analyst’s assumptions, it can only be 

modeled in an iterative way, each iteration producing new knowledge leading to new 

hypotheses for the next iteration. Ericsson and Simon (1993) described this iterative 

nature of human behavior studies by: “In designing our data-gathering schemes, we make 

minimal essential theoretical commitments, then try to use the data to test stronger 

theories” (p. 274). Moreover, none of the iterations can produce knowledge that could be 

proven to be true in an absolute sense, but only knowledge that is more efficient and 

useful with regard to the analyst’s goals, and which is more convincing to the analyst’s 

community than the knowledge from the previous iteration. More broadly, this 

conception of knowledge relates to a pragmatic epistemology (James, 1907) and an 

evolutionist epistemology (Popper, 1972).  

These pragmatic and evolutionist aspects are crucial when defining a methodology 

and a tool for activity trace modeling. By fully acknowledging these aspects, we have 

designed a tool that facilitates and accelerates the evolutionist modeling process. The tool 

helps formulating a series of micro-hypotheses of possibly-useful symbols, possibly-

useful transformation rules to transform the low-level data into higher-level data, and 

possibly-useful representations of the activity trace based on these hypotheses. If the 

obtained representation does not help the analyst understand the activity better, then she 

rejects these micro-hypotheses; if it helps, then she keeps them. The tool is designed to 
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shorten this formulation / usage / validation-or-rejection loop. This process leads to the 

construction of a set of micro-hypotheses that are validated by the analyst. This set 

constitutes a formalization of the analyst’s knowledge about how to understand the 

activity. The tool stores this knowledge, helps the analyst keep track of it, and helps the 

analysts’ community discuss and question it.  

The next section details how the tool reaches this goal by helping the analyst define 

sequences at the right level of abstraction, and simultaneously identify interesting 

subsequences, define them precisely, and query the whole trace in search for their 

occurrences.  

2.1. Collecting a symbolic trace 

A raw activity trace can be made of any kind of data describing a subject’s activity 

flow and intended for an analyst’s usage. In a broad sense, it can range from video or 

audio recording to computer “logs”. Their only common point is that it is temporally 

organized, meaning that each data piece is associated with a timestamp referring to a 

common time base. The first abstraction step consists of converting these raw traces into 

sequences of symbols. We refer to this step as the discretization of the raw trace into a 

symbolic trace. The symbols in the symbolic trace have to be meaningful to the analyst, 

and they are chosen on a pragmatic and evolutionist basis, in compliance with a 

pragmatic and evolutionist epistemology introduced above (introduction of section 2). 

The discretization process can be manual, semi-automatic, or automatic. The definition of 
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the symbols may evolve in parallel with the implementation of the discretization process. 

This is because the afterward interpretation of the symbols may differ from the meaning 

initially intended by the analyst when she specifies the discretization algorithm. 

For example, in a study of car driving, we have used classical mathematical curve 

analysis method to generate symbols of interest from numerical values of the vehicle 

speed, the steering wheel angle, and the pedal positions. In this case, the symbols 

correspond to threshold crossing, local extremum, and inflexion points. Figure 1 

illustrates this discretization process. 

 

 Figure 1. Discretization of analogical traces (Georgeon, 2008).  

In Figure 1, the curves represent the vehicle speed in km/h, and the brake pedal 

position in percentage of range. Symbols of interest are shown on these curves as circles 

(threshold crossings, inflexion points, local extremums). The symbols are merged into the 

symbolic trace that is represented at the bottom of the figure. The figure also shows a 

derivative value as an example property of interest associated with a symbol generated by 
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a brake pedal threshold crossing. The analyst specifies the way to generate these symbols 

so that they correspond to meaningful events that describe the activity. In this example, 

the threshold crossing indicates the beginning of the braking action and the derivative 

value indicates the abruptness of this action. Notably, while creating these symbols, the 

analyst claims the existence of the events that these symbols represent. So doing, the 

analyst defines an ontology of the activity. 

Our experience taught us that the system must keep a connection between the raw 

trace and the symbolic trace, and provide parallel displays of both of them. The analyst 

needs to tune many parameters of the discretization algorithms, like the threshold values 

or noise filters. The analyst validates the chosen symbols and algorithms by comparing 

the symbolic trace to the raw trace and ensuring that the symbolic trace represents what is 

happening. While she defines and validates these symbols, the analyst also backs up her 

claim that the events represented by these symbols “exist”. This back up comes from that 

the method to generate these symbols from the recorded data is formally specified and 

explained by the analyst. In this example, after we fully specified the discretization 

algorithm in accordance to our specific modeling goals, the discretization algorithm could 

then compute the symbols fully automatically.  

2.2. Modeling the symbolic trace 

At the symbolic level, analysts most often want to focus on relations between events. 

Indeed, events are not meaningful by themselves, but they become meaningful in the 
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context where they relate to each other (Sanderson & Fisher, 1994). Examples of such 

relations can be “sequence following within a certain period of time”, “co-occurrence 

within a certain period of time”, and “causality with regard to a certain explanative 

theory”. Building and understanding these relations between events is a part of the 

analyzing process. By definition, a set of elements connected through relations is a graph. 

Therefore, we model the symbolic traces with a graph structure.  

More precisely, our trace graph structure has two parts: a sequence and an ontology. 

The sequence is a part of the graph that is made of event instances and of relation 

instances between event instances. The ontology is a part of the graph that is made of 

event classes and of relations between event classes. Figure 2 illustrates this graph 

structure with a simplified example taken from the car driving study. 
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Figure 2: Activity trace modeled in a knowledge engineering system. 

The sequence is represented in the bottom part of Figure 2 and the ontology in the top 

part. In the sequence graph, event instances are represented as circles and triangles. 

Relation instances between event instances are represented as solid arrows between these 

circles and triangles. Example properties of event instances are represented with gray 

dashed arrows pointing to their value at the bottom of the figure (duration of an eye 

movement and acceleration value associated with an inflexion point of the speed curve).  

Our tool displays the sequence in a similar form as shown in Figure 2, the exact form 

is shown in Figure 4. This display uses two axes: the time axis and the “abstraction” axis. 

That is, the events’ time-code attributes determine their “x” coordinates, and the analyst 

specifies their “y” coordinates when she configures these event’s class in the ontology. 
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The analyst can use the “y” coordinate to express different meanings; our 

recommendation is to use it to express an idea of abstraction level related to a specific 

analysis. In this example, the lowest level (circles) represents the events obtained from 

the discretization process; the intermediary level represents events that describe the 

activity in usual driving terms: accelerate, glance, turn signal on/off (blinker); and the 

higher level represents events describing lane change behavior: indicator of intention to 

change lane, index of lane change. This example expresses the analyst’s assumption that 

the conjunction of an acceleration and a glance to the left rear mirror can generate an 

indicator of the driver’s intention to change lane (L.C. Indicator). 

In the ontology graph, the nodes represent event classes, and the edges represent the 

relation “subclass of” (dashed black arrows). The analyst defines the ontology during the 

modeling process. For example, the “Collected events” class includes all the event classes 

that come from the discretization process. The “Driving descriptors” class gathers the 

intermediary event classes that describe the activity in usual driving terms. The “Lane 

Change descriptors” class gathers the most abstract event classes describing lane changes. 

The dotted gray arrows in the figure represent the relation “type of” going from event 

classes defined in the ontology to event instances in the sequence.  

Again, like most ontologies, this ontology is made by the analyst on a pragmatic 

basis. It is likely that two analysts will create two different ontologies. While the software 

cannot demonstrate that one is better than the other, it does help the analysts formalize 

and discuss them. This discussion leads to the construction of a language for describing 
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the activity that represents an agreement about the terms that can be used to describe the 

activity. In addition, the ontology also supports the analysts’ agreement about how the 

trace should be visualized, because the visualization properties of the symbols are stored 

in the ontology.  

This trace formalism enables the analyst to conduct a hierarchical analysis of the 

activity. Event instances can be seen as hierarchically organized because some event 

instances represent lower-level events and other represent more general events. The 

ontology also defines a hierarchy because some event classes are sub-classes of others. 

Notably, these two hierarchies are different because lower-level event instances do not 

necessarily belong to a sub-class of the class of higher-level event instances. 

3. SYSTEM IMPLEMENTATION 

We have implemented a prototype system based on an assemblage of open source 

knowledge-engineering tools: an ontology editor, an inference engine, visualization 

facilities, and documentation facilities. This system is named ABSTRACT (Analysis of 

Behavior and Situation for menTal Representation Assessment and Cognitive acTivity 

modeling). Figure 3 illustrates this assemblage. 
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 Figure 3: ABSTRACT architecture.  

The system can be split into three levels: a lower level, at the bottom of the figure, 

which is the Collection System; a core level, in the center of the figure, which is the 

Symbolic Trace System itself; and a higher level, on the top of the figure, which is a 

Documentation level. 

3.1. The collection system 

The collection system integrates tools to help the analyst prepare the symbolic trace. 

We call these tools collection agents. Collection agents may be automatic when specified 
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once by the analyst, or may require the analyst’s intervention. Automatic collection 

agents can be tools for preprocessing sensor data or computer logs, as in the example of 

section 2.1. Semi-automatic collection agents can be tools for helping the analyst take 

notes, record interviews, or transcript video data. As noted, this discretization cannot be 

done blindly, but must be driven by the analyst. Hence, this level requires visualization 

facilities. We use Microsoft Excel with specific Visual Basic macros (VBA) as a 

visualization tool for the collection system. In this visualization, each event of the 

symbolic trace is displayed as a line in the spreadsheet. The lines are colored according to 

the event’s type, and the event’s properties are organized in different columns. We have 

implemented a specific video player and analogical data player that triggers VBA macros 

that automatically scrolls down the spreadsheet in synchronization. Some of these 

facilities are also available in commercial quantitative data analysis tools such as 

MacShapa (Sanderson et al., 1994) and NVivo. These facilities allow the analyst to check 

and validate or reject the symbolic trace, that is, refine the discretization algorithm and its 

diverse parameters until she gets a satisfying and meaningful symbolic trace including 

appropriate properties of interest.  

3.2. The symbolic trace system 

The symbolic trace system is the knowledge-engineering system itself. At this level, 

the traces are modeled as described in section 2.2. In addition, they are associated with a 

set of inference rules and a set of style-sheets. A style-sheet is a specification for 

displaying the trace on the screen. It specifies how semantic properties of the events that 
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are defined in the ontology should be converted into visualization properties, such as 

shape and position. Style-sheets also implement particular time scales, and particular 

filters to display only the interesting aspect of the trace for a particular analysis. They 

correspond to different ways of looking at the trace according to different modeling 

goals.  

The inference rules are the rules that produce inferred symbols from patterns of 

previously existing symbols. The principle is to query the graph in the search for 

subgraphs that match certain patterns, and to attach new nodes and arcs to the matching 

subgraphs. These new nodes represent the inferred symbols and the new arcs represent 

the “inference” relations. The usage of this inference mechanism is further described in 

Section 3.5. 

Technically, the “sequence” part of the activity traces is encoded as RDF graphs 

(Resource Description Framework). We choose RDF because it is the most widely used 

specification for graph encoding. We use XML as a serialization of RDF to store 

sequences, because XML makes RDF graphs easy to exchange with other applications. 

The ontology is encoded as RDFS (RDF-Schema), because RDFS is the simplest 

ontology language based on RDF. We use Protégé as a graphical ontology editor. That is, 

an installation of Protégé is embedded in our tool, and the analyst uses it to define the 

ontology of his traces. The graphical displays of our traces are encoded under the SVG 

(Scalable Vector Graphic) specification. Because Firefox natively supports SVG, we use 

it as a visualization tool, and we have implemented most of the tool as a web application 
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in PHP. We use XSL (Extensible Stylesheet Language) as a transformation language for 

transforming RDF traces into their SVG graphical representation. We use SPARQL as a 

query language for graphs, as we will explain in section 3.5. 

3.3. The documentation system 

Analysts using our symbolic trace system expressed the need for a higher system 

layer providing a way to both index and attach documentation to episodes of interest. We 

implemented this by associating the symbolic trace system with a wiki. As we have made 

the choice of implementing ABSTRACT as a web application, analysts can reference 

each episode of interest by their URL, and easily paste this URL into a wiki page.  

Moreover, some new wiki implementations, like Semantic Mediawiki1, include semantic 

facilities. We are still investigating how these semantic facilities can be used to merge the 

ontology editor with the documentation system into a single semantic documentation 

system.  

3.4. System usage 

The user interface is accessible as a web-page in any browser that supports SVG, 

such as Firefox. This interface is illustrated in Figure 4. It has four tabs: the “Open” tab 

that allows the analyst to select a trace in a list; the “Info” tab that displays general 

                                                

1 Semantic Mediawiki (http://semantic-mediawiki.org) 
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information about the selected trace, such as its creation date and its version, and the 

management of stylesheets; the “View” tab that displays graphical visualizations of the 

trace; and the “Edit” tab that allows the analyst to write queries to transform the trace. 

The interface also provides a link to the ontology editor Protégé. 

 

Figure 4: ABSTRACT User interface. 

The “View” tab shown in Figure 4 provides the following functionalities: 

1. Consultation of the trace reference. 

2. Selection of different visualization style sheets in drop-down lists. Different 

visualizations can be displayed simultaneously on the screen, and their time-code 

is synchronized. 
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3. Time code: this value corresponds to the cursor position in the visualization 

modules (vertical red line). The analyst can enter a time code and click “Go to” to 

focus on it.  

4. Visualization example with a time span of 10 seconds. The analyst can scroll the 

trace left and right with the mouse. This visualization example corresponds to the 

simplified description given in Figure 2.  

5. Visualization example of an entire trace (20 minutes), with only the high-level 

symbols displayed. These trace examples come from our car driving study and are 

further explained in section 4. 

6. The analyst can show the symbols’ properties by clicking on the symbols. 

7. The system can synchronize with a video player. When this box is checked, the 

system gives the timecode control to the video player and automatically follows 

it. 

3.5. The transformation mechanism 

The analyst uses the “Edit” tab to write queries that infer higher-level symbols from 

patterns of lower-level symbols. For instance, Table 1 illustrates a query to infer the 

“Lane Change indicator” symbol shown in Figure 2, which indicates that a lane change is 

about to happen. In this example, the analyst wants to test the hypothesis that this 

indicator can be inferred from a conjunction of an “accelerate” event with an acceleration 

value greater or equal than 1 m/s2, followed by a “Glance” event pointing to the left 

mirror (generated by an eye-tracker), both being held in a time period of 1 second. 
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The graph elements, either from the sequence or the ontology, are handled as triples 

[node, edge, node]. A query consists of a SELECT clause and a CONSTRUCT clause. 

The SELECT clause specifies a pattern of triples that should match the graph, and the 

CONSTRUCT clause specifies a pattern of triples that should be added to the graph 

wherever a pattern matches the SELECT clause. In addition, matching patterns can be 

restricted by a FILTER clause. The syntax shown in Table 1 has been simplified for 

clarity2. 

Table 1: Simplified inference query. 

CONSTRUCT  
(?r1, infer , Indicator_Symbol) 
(?r2, infer , Indicator_Symbol) 
(Indicator_Symbol, type , Lane_Change_Indicator) 
WHERE 
(?r1, type , Accelerate) 
(?r2, type , Left_Mirror_Glance) 
(?r1, time-code , ?d1) 
(?r2, tine-code , ?d2) 
(?r2, Acceleration_Value , ?v1) 
FILTER 
( ?v1 > 1) 
(sequence(?d1,?d2,1)) 

In this query, ?r1, ?r2, ?d1, ?d2, and ?v1 represent variables. Each of them must 

match the same graph element each time they appear in the query.  For instance, it must 

be the same event ?r1 that is of type Accelerate, that has the time-code ?d1, and that is the 

origin of the infer relation towards the new Indicator_Symbol. This example assumes that 

                                                

2 The complete SPARQL syntax can be found in the SPARQL documentation, 

http://www.w3.org/TR/rdf-sparql-query/ 
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the property Acceleration_Value has been copied to the Accelerate event when it was 

created during the first level of analysis. The “sequence” function tests that the time-

codes ?d1 and ?d2 are comprise within the time period of 1 second. 

In our implementation, the analyst has to know SPARQL to specify queries on the 

trace. To make it simpler, however, we have implemented a template mechanism that 

prepares skeletons of queries. We have also added some customized functions in our 

implementation of SPARQL, such as the “sequence” function presented above. These 

functions facilitate the specification of queries that compare time codes of events, and 

make it easier to specify temporal constraints. In so doing, we are implementing a 

semantics of time, for example, the semantic of the relation of co-occurrence or of 

sequential ordering. In the future, we plan to progressively add ways to let the analyst 

specify these queries from a graphical interface based on the visualization of the trace. 

The “Edit” tab allows the analyst to visualize the resulting trace in a similar way as 

the “View” tab, but it also allows her to reject the trace if she is not satisfied by the result. 

This feature helps her refine the query in search for the best symbols and inferences rules 

she can get to describe the activity from the actual data. Our system returns the number of 

times the pattern has matched in the trace. This number indicates the number of new 

symbols added. The system also provides an export function to a text file that can be 

imported into other tools like Microsoft Excel for further statistical computations. 

Queries are saved as independent files and the tool helps the user reference them. The 
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database of queries associated to the ontology constitutes a representation of the analyst’s 

understanding about how to make sense of the activity trace. 

4. EXAMPLE ACTIVITY MODEL  

We report here an example activity modeling taken from a car driving study (Henning, 

Georgeon, & Krems, 2007). Another example application—in a study of non-state 

political violence—is reported by Georgeon, Morgan, Horgan, and Braddock (2010). 

Figure 5 shows a 10 second cut of a car-driving activity trace focusing on a lane change 

on a motorway. The legend is given by Figure 6. 
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Figure 5: Example of lane change on a motorway (screenshot with text labels added at the top). 

 

Figure 6: Legend of car driving symbolic trace. 

In Figure 5, the “Button” is an index signal from the experimenter recorded during 

the experiment, the “start thinking” comes from a verbal signal given by the driver in a 

video-based post-experiment interview, and the “Lane-crossing” is the moment when the 

left front wheel crosses the lane, manually encoded from the video. All other symbols are 

automatically inferred from the sensor data. The representation of the driving episode 

given in Figure 5 is automatically generated once the analyst has defined the inference 

rules.  

From a manual investigation of different lane changes, using the trace querying 

facilities of ABSTRACT, we could identify two categories of lane changes that we 
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explain by the performance of two strategies. Figure 7 and Figure 8 describe these. In 

these descriptions, the lower part is a representative trace episode from our database 

while the upper part is drawn by hand as an abstract description of the strategies. This 

upper part also shows the car trajectory in the lanes, respecting the scale ratio 

length/width: about 300 m long of 4 m wide lanes. 

 

Figure 7: Lane change with acceleration (Lane_Change_Delayed).  

The strategy displayed in Figure 7 is characterized by beginning in a situation where 

the subject is impeded by a slow vehicle. In this case, the subject starts accelerating  

[1] almost at the same time as he looks at his left mirror [2]. Then, if there is no vehicle 

coming from behind, he starts looking at the left lane [3], he switches his blinker on [4], 

and he performs the lane change [5]. In this situation, the acceleration associated with a 

glance to the left mirror appears as a good predictor of the lane change. It occurs more 

than one second before the subject switches the blinker on.  
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In the situation of Figure 8, no slow vehicle impedes the subject, and he performs the 

lane change “on the fly”. In this case, we can find no behavioral sign of his intention to 

change lane before the blinker is switched on [1]. Nevertheless, the blinker appears to be 

a sufficient predictor in that case, because it is switched in anticipation of the lane 

change, several seconds before the maneuver: looking to the left lane [2], looking to the 

left mirror and starting steering [3] and [4]. 

 

Figure 8: Lane change anticipated without acceleration (Lane_change_anticipated). 

In parallel of searching and identifying these categories of situations and strategies, 

we define symbols to represent them and inference rules to generate these symbols. 

Finally, we have named the first strategy Lane_change_delayed and represented it with 

white triangles, and the second strategy Lane_change_anticipated represented with white 

squares. Figure 9 shows that these two types of event occur four times in a representative 

20-minute motorway ride of a subject.  
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Figure 9: Categorization of lane changes between Lyon and airport (20 minutes long). 

Figure 9 displays only the symbols that are useful to see the lane changes: the index 

button pressed by the experimenter (blue circles), the blinker (orange triangles up and 

down), the accelerations (ochre triangles to the right), the left mirror glances (gray 

triangles to the left), main junctions on motorways given by the GPS position (green 

square and triangles on the bottom of the display), and the lane change category symbols 

(white triangles and squares). In this example, one lane change, marked by the vertical 

cursor line in the figure, was not categorized. The uncategorized cases would require 

advanced case study to understand their specificity. Once the analyst has finished her 

analysis, she can export the abstract traces into a spreadsheet to compute and report the 

statistics of the occurrences of events of interest. 

Despite the extensive existing studies of car driving (e.g., Groeger, 2000) and on lane 

change maneuvers (e.g., Salvucci & Liu, 2002), we could find no representation of the 

driving activity that could compare to ours in terms of comprehensiveness of the data and 

capacity to support higher-level understanding. In the case of lane changes, this 

innovative description helped us discover different strategies that have not been reported 
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in the literature before. So doing, this study shows how our principles and tool have 

addressed the needs enounced in the introduction: our prototype tool helped us generate 

comprehensive symbolic representations of the activity at an appropriate abstraction level 

to discover previously unknown knowledge about the activity. It also helped us explain, 

report, and back up our models with the collected traces.  

5. RELATED WORK 

In this section, we situate our work in relation to two research areas, the area of 

qualitative data analysis and the area of trace-based reasoning.  

Studies in the area of qualitative data analysis have produced many software tools 

intended to the social and human sciences to both construct theories from field data while 

explaining field data in parallel (Hilbert & Redmiles, 2000). Many of these tools address 

the need for supporting the transcription of raw data into sequences of encoded events, 

for example, Dismal (Ritter & Larkin, 1994), NVivo, INTERACT, InfoScope, MORAE, 

and MacVisSTA. As such, these tools relate to our collection system as described in 

Section 3.1. Among these tools, MacVisSTA (Rose, Quek, & Shi, 2004) particularly 

relates to this aspect of our work in that it supports merging multimodal data into a 

common timeline.  

At the symbolic level—also called transcript level in these studies—tools like Theme 

(Magnusson, 2000) support the automatic discovery of temporal patterns based on 

statistical properties.  We consider our tool complementary to these tools because our tool 
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helps find symbolic pattern based on the meaning they have to the analyst rather than on 

their statistical properties. In the car-driving example, our symbols of interest are not 

particularly frequent or infrequent nor do they obey pre-assumed statistical laws. 

HyperRESEARCH appears to be the only qualitative data analysis tool that supports 

the validation of hypothetic theories through rule-based "expert system" techniques 

(Hesse-Biber, Dupuis, & Kinder, 2001). We find HyperRESEARCH’s underlying 

principles for theory building very similar to ours. It, however, does not focus on 

temporal semantics and does not offer symbolic timeline visualization facilities to 

support activity modeling. Its rule engine also does not exploit elaborated semantics 

defined in an ontology, as apposed to our solution based on SPARQL and RDF Schemas. 

The other related research area, Trace-Based Reasoning (TBR) (Cordier, Mascret, & 

Mille, 2009) comes from the domain of knowledge representation, and more precisely 

from Case-Based Reasoning (CBR) (Aamodt & Plaza, 1994). CBR consists of helping 

users solve new problems by adapting solutions that have helped them solve previous 

problems. TBR extends CBR in that it seeks to retrieve useful cases as episodes from the 

stream of an activity trace (Mille, 2006). Our work relates to TBR because both address 

the question of modeling and representing a stream of activity for future usage. In 

particular, we pull lessons from the work of Settouti, Prié, Mille, and Marty (2006) that 

implemented a trace-based system to support the management and the transformation of 

traces. TBR has been used to implement companions that provide assistance to the user 

based upon previous usage (e.g., Cram, Fuchs, Prié, & Mille, 2008), or to support 
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reflexive learning by providing the users with a dynamic display of his passed activity 

(Ollagnier-Beldame, 2006). Our work is the first that uses TBR to help a user (the 

analyst) understand the activity of another user (the subject). So doing, our work brings 

principles of qualitative data analysis to TBR and brings TBR techniques to address 

problems of quantitative data analysis. 

 

6. CONCLUSION 

We have defined the principles of a methodology and a software tool to help an 

analyst create models of activity from activity traces, in an iterative and interactive 

fashion. These principles relate to the notion of abductive reasoning in that they consist 

of helping analysts form, organize, and test micro-hypotheses to explain and represent the 

activity. In particular, they help investigate what concepts and semantics describe the best 

the activity and represent these concepts in an ontology and this semantics in a rule 

engine. These principles are summarized in Figure 10. 
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Figure 10: Activity modeling from activity traces 

In Figure 10, the collected raw data is represented as curves along the activity axis. 

The first step consists of collecting this raw trace. The second step consists of producing 

a symbolic trace (symbols represented by rectangles) through the discretization of the raw 

trace. The third step consists of modeling the symbolic trace by inferring more abstract 

symbols (represented as squares and triangles) and organizing these symbols in an 

ontology (hierarchy of white rectangles). The fourth step consists of producing explained 

models of activity (round-angled rectangles) that are backed up by the abstract trace. 

During the modeling process, the analyst formalizes her understanding of the activity in 

the form of transformation rules, ontology, and documentations that are stored in the 

system, which allows capitalizing on the analyst’s knowledge across studies. 
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To illustrate these principles, we have implemented a prototype software tool through 

an assemblage of open source knowledge engineering software modules. With this tool, 

we have modeled car-driving activity traces collected with an instrumented vehicle. This 

analysis allowed us to identify and describe two strategies of lane change on motorways. 

This example shows that our knowledge engineering approach of activity modeling from 

activity traces offers answers to the needs for tools to help analysts understand better an 

observed activity, create models of this activity, report, and back up these models with 

the observational data.  

The abstract activity traces that we have constructed constitute a model of the car 

driver in their own, in that the analysts can use our tool to query these traces to answer 

new questions they may have about the driving activity. We now plan future 

developments that will consist of simulating the activity, for instance, in the field of car 

driving, generating realistic driving behavior in a driving simulator, based on our abstract 

activity traces. 
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