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Abstract. Databases of sequences can contain consecutive repetitions
of items. This is the case in particular when some items represent
discretized quantitative values. We show that on such databases, a
typical algorithm like the SPADE algorithm tends to loose its efficiency.
SPADE is based on the used of lists containing the localization of the
occurrences of a pattern in the sequences and these lists are not appro-
priated in the case of data with repetitions. We introduce the concept
of generalized occurrences and the corresponding primitive operators
to manipulate them. We present an algorithm called GO-SPADE that
extends SPADE to incorporate generalized occurrences. Finally we
present experiments showing that GO-SPADE can handle sequences
containing consecutive repetitions at nearly no extra cost.

Keywords: frequent sequential pattern mining, generalized oc-
currences, SPADE

1 Introduction

Mining sequential patterns is an active data mining domain dedicated to sequen-
tial data. For example, customer purchases, Web log access, DNA sequences,
geophysical data, and so on. The objective is to find all patterns satisfying some
given criterion that can be hidden within a set of event sequences. Among the
selection criterion proposed in the past (e.g., syntactic properties, similarity with
a consensus pattern) the minimal frequency is still one of the most commonly
used. Basically, the problem can be presented as follows: Let I = {i1, i2, . . . , im}
be a set of m distinct items. Items are ordered by a total order on I. An event
(also called itemset) of size l is a non empty set of l items from I : (i1i2...il),
which is sorted in increasing order. A sequence α of length L is an ordered list of
L events α1, . . . , αL, denoted as α1 → α2 → ... → αL. A database is composed of
sequences, where each sequence has a unique sequence identifier (sid) and each
event of each sequence has a temporal event identifier (eid) called timestamp. In
a sequence, each eid is unique and if an event ei precedes event ej in a sequence,
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then the eid of ej must be strictly greater than the eid of ei. Such a database can
be represented by a table like, for example, the left table of Fig. 2. A sequential
pattern (or pattern) is a sequence. We are interested in the so-called frequent
sequential patterns defined as follows. A sequence sa = α1 → α2 → . . . → αn

is called a subsequence of another sequence sb = β1 → β2 → . . . → βm if and
only if there exist integers 1 ≤ i1 < i2 < . . . < in ≤ m such that α1 ⊆ βi1 ,
α2 ⊆ βi2 , . . ., αn ⊆ βin . Let N be a positive integer called absolute support
threshold, a pattern p is frequent in a database D if p is a subsequence of at least
N sequences of D. In this paper, we also use interchangeably relative support
threshold expressed in the percentage of the number of sequences of D. A lot
of work has been done since the introduction of the frequent sequential pattern
mining problem in 1995 [2]. Each presents its own interests depending on the
characteristics of the database to mine (e.g., [6,10,7,4,8,11,13,12]).
In this paper we consider the problem of mining frequent patterns in sequences
where same items tend to be repeated in a consecutive way. This corresponds
in particular to the important practical situation where databases are built in
part from quantitative time series. In this case, these time series are discretized
(using for example the method proposed in [3]) and the discrete values are en-
coded using items. This has an impact on the form of the resulting sequences
that tend to contain more consecutive occurrences of the same items. Indeed,
this research is motivated by sequential pattern mining from stock market data
where we observed this situation [5]. For example, if items are used to encode a
discretized stock price value having slow variations, we will often find in the se-
quences several consecutive occurrences of the same item. As far as we know, no
specific work has been done to tailored the current algorithms towards this kind
of data containing repetitions. Figure 1 shows the behavior of the SPADE algo-
rithm [11,13] (a typical sequential pattern mining algorithm) on such datasets.
The results of the experiments presented in Fig. 1 correspond to extractions
on two datasets: set1 r0 and set1 r5. set1 r5 contains the same sequences that
set1 r0 in which a few additional consecutive repetitions of some items have been
added (see Sect. 5.1 for a description of these datasets). The curves of Fig. 1
represent the costs (in term of execution time) for the extraction of different
amounts of frequent patterns on each dataset, i.e., for different support thresh-
olds. These curves show that to extract a given number of frequent patterns,
SPADE execution time is much more important on the dataset containing more
consecutive repetitions (set1 r5).

The main contribution of this paper is to show that this extra extraction cost
can be reduced drastically by using a more compact information representation.
We propose such a representation and present an extension of SPADE, called
GO-SPADE, that operates directly on it. We show that in practice it can be
used to handle efficiently the consecutive repetitions of items in the data. This
practical interest can be seen in particular the bottom right graph on Fig. 5
that presents the same experiments than Fig. 1 using both SPADE and GO-
SPADE. This figure shows notably that the presence of consecutive repetitions
has nearly no impact on GO-SPADE extraction time for a given amount of
frequent patterns.
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Fig. 1. Evolution of SPADE execution time on datasets with consecutive repetitions

This paper is organized as follows. Section 2 gives an overview of related work
in the sequential pattern mining field. Section 3 presents in a synthetic way the
SPADE algorithm before to introduce in Sect. 4 our contribution which is a novel
SPADE-based algorithm. Section 5 presents experimental results that illustrate
how GO-SPADE gains in efficiency compared to SPADE in the case of datasets
presenting consecutive repetitions. We conclude in Sect. 6 by a summary and
directions for future work.

2 Related Work

In the data mining community, the computation of the sequential patterns has
been studied since 1995, e.g., [6,10,7,4,8,11,13,12]. It has lead to several algo-
rithms that can process huge sets of sequences. These algorithms use three
different types of approaches according to the way they evaluate the support
of sequential pattern candidates. The first family contains algorithms that are
based on the A-Priori scheme [1] and that perform a full scan of the database to
evaluate the support of the current candidates, e.g., [2,10,7]. In these approaches,
a particular effort is made to develop specific structures to represent the sequen-
tial patterns candidates to speed-up the support counting operations (e.g., the
dedicated hash tree used in [10]). The second family (e.g., [4,8]) contains algo-
rithms that try to reduce the size of the dataset to be scaned by performing
projections of the initial database. The last family (e.g., [11,13,12]) concerns
algorithms that keep in memory only the information needed for the support
evaluation. These algorithms are based on the so called occurrence lists which
contain the descriptions of the location where the pattern occur in the dataset.
The projection database and occurrence list approaches seem to be more effi-
cient than the first one in the case of low support threshold and long sequential
patterns since the occurrence lists and the projected databases become more
and more smaller. As far as we know, no comparative studies has been done
enabling to affirm whether one approach is definitely better than the others. In
the frequent itemset extraction field, these three families also exist (e.g., [9,14,
1]) and according to the experimental results of [14], it seems that techniques
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based on occurrence lists are more efficient at very low support thresholds (while
this is not always the case for higher thresholds).

Databases containing consecutive repetitions of items present a new specific
problem and, to our knowledge, has not been studied yet. We propose an algo-
rithm based on SPADE [11,13]. It uses generalized occurrences lists to represent
consecutive occurrences of patterns.

3 The SPADE Algorithm

In this section, we recall the principle of the SPADE algorithm [11,13]. SPADE
repeats two basic operations: a generation of candidate patterns and a support
counting step. Let us introduce some needed concepts. A pattern with k items is
called a k-pattern. For example, the pattern B → ACD → CDFG is a 8-pattern.
A prefix of a k-pattern z is a subpattern of z constituted by the k−1 first items of
z (items in the last event of z are ordered according to the lexicographical order)
and its suffix corresponds to its last item. For example, the prefix of the pattern A
→ BC is the subpattern A → B and its suffix is item C. SPADE uses two frequent
k-patterns z1 and z2 having the same (k−1)-pattern as prefix to generate a (k+
1)-pattern z. We denote this operation as merge(z1, z2). The support counting
for the newly generated pattern is not made by scanning the whole database.
Instead, SPADE has stored in specific lists, called IdLists, the positions where
z1 and z2 occur in the database. It then uses these two lists denoted IdList(z1)
and IdList(z2) to determine where z occurs. Then IdList(z) allows to compute
directly the support of z. The computation of IdList(z) is a kind of join and is
denoted join(z1, z2). There are several different merge and join operations used
depending on the form of z1 and z2 for merge and on the form of z1, z2 and z
for join. Before describing in more details these operations and the structure of
IdLists we give an abstract formulation of SPADE (algorithm 1).

To reduce the memory consumption and to enhance the efficiency, the SPADE
algorithm uses various important optimizations (in particular a notion of equiv-
alence class of patterns, dedicated breadth-first and depth-first search strategies
and also a specific processing for 1-patterns and 2-patterns). These optimizations
are not related to the problem tackled in this paper and we refer the reader to [11,
13] for their descriptions.

The IdList of a pattern z contains only the information needed to compute
the support of z and the IdLists of the patterns that will be generated using
z. IdList(z) is a set of pairs 〈sid, eid〉, each pair describing an occurrence y of
z in the database. sid is the identifier of the sequence containing y and eid is
the timestamp of the last event of y. Examples of IdLists for 1-patterns are
given in Fig. 2 and for the same database, the two Right-Tables of Fig. 3 present
examples of IdLists for the 2-patterns C → D and CD.

The support of pattern z is obtained by counting the number of distinct
sids present in IdList(z). For example, in Fig. 2, the support of A and E are
respectively 2 and 1.

During the merge operation of the generation step, SPADE distinguishes
two kinds of patterns: sequence patterns and event patterns, depending on the
temporal relation between the prefix and the suffix of a pattern. A pattern having
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Algorithm 1 (abstract SPADE)
Input: a database of event sequences and a
support threshold.
Output: the frequent sequential patterns
contained in the database.

Use the database to compute:
- F1 the set of all frequent items
- IdList(z) for all element z of F1

let i := 1
while Fi �= ∅ do

let Fi+1 := ∅
for all z1 ∈ Fi do

for all z2 ∈ Fi do
if z1 and z2 have the same prefix then

for all z obtained by merge(z1, z2) do
Compute IdList(z) by join(IdList(z1), IdList(z2)).
Use IdList(z) to determine if z is frequent.
if z is frequent then

Fi+1 := Fi+1 ∪ {z}
fi

od
fi

od
od
i := i + 1

od
output

⋃
1≤j<i

Fj

Fig. 2. A database and IdList for items A, B, C, D and E
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prefix p and suffix s is called an event pattern, denoted ps if s occurs at the same
time than the last item of p. If s occurs strictly after the last item of p, the
pattern is called a sequence pattern and is denoted p → s. For example, pattern
AB → C → BDF having pattern AB → C → BD as prefix and item F as suffix
is an event pattern. Pattern AB → C whose prefix is AB and suffix is C is a
sequence pattern.

Let z1 and z2 be patterns having the same prefix p with respective suffix s1
and s2. The merge operation used to generate a new pattern depends on the
form of z1 and z2 (i.e., an event pattern or a sequence pattern). The form of z
determines the kind of join performed to compute IdList(z) from IdList(z1)
and IdList(z2). If z is an event pattern (resp. a sequence pattern) the join is
made using a procedure called EqualityJoin (resp. TemporalJoin). We present
these generation cases and then describe the join operations.

– when z1 and z2 are event patterns (generation case 1):
z1 and z2 are of the forms z1 = ps1 and z2 = ps2. The pattern generated by
merge is z = ps1s2 and its IdList = EqualityJoin(IdList(z1),IdList(z2)).

– when z1 is an event pattern and z2 a sequence pattern (generation case 2):
z1 and z2 are of the forms z1 = ps1 and z2 = p → s2.
The pattern generated by merge is z = ps1 → s2 and we have
IdList(z)=TemporalJoin(IdList(z1),
IdList(z2)).

– when z1 and z2 are sequence patterns: z1 and z2 are of the forms z1 = p → s1
and z2 = p → s2. If s1 �= s2, three patterns are generated:

• (generation case 3) the pattern generated by merge is z = p → s1s2 and
IdList(z) = EqualityJoin(IdList(z1),IdList(z2)).

• (generation case 4) the pattern generated by merge is z = p → s1 → s2
and IdList(z) = TemporalJoin(IdList(z1),IdList(z2)).

If s1 = s2 and z1 = z2 = p → s1 (generation case 5), there is only one gener-
ated pattern z = p → s1 → s1 and IdList(z) = TemporalJoin(IdList(z1),
IdList(z2)).

The two join operations are defined as follows:
Computation of IdList(z) using TemporalJoin(IdList(z1),IdList(z2)): For
each pair 〈s1, e1〉 in IdList(z1) and each pair 〈s2, e2〉 in IdList(z2) check if
〈s1, e1〉 represents an occurrence y1 preceeding the occurrence y2 represented by
〈s2, e2〉 in a sequence (i.e., s1 = s2 and e1 < e2). If this is the case, it means that
the events in y1 and y2 form an occurrence of z, then add 〈s1, e2〉 to IdList(z).

Computation of IdList(z) using EqualityJoin(IdList(z1),IdList(z2)): For
each pair 〈s1, e1〉 in IdList(z1) and each pair 〈s2, e2〉 in IdList(z2) check if
〈s1, e1〉 represents an occurrence y1 ending at the same time than the last event
of occurrence y2 represented by 〈s2, e2〉 (i.e., s1 = s2 and e1 = e2). If this is the
case, y1 and y2 form an occurrence of z and then add 〈s1, e1〉 to IdList(z).

We now describe on an example how these joins are performed. Let con-
sider the IdList of items C and D represented in Fig. 3 (from the example
database of Fig. 2). The IdList of pattern C → D is obtained performing a
TemporalJoin between IdList(C) and IdList(D) as follows: for a given pair (s,
e1) in IdList(C), SPADE checks whether there exists a pair (s, e2) in IdList(D)
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Fig. 3. Temporal and equality joins on IdList(C) and IdList(D)

with e2 > e1, which means that item D follows the item C in the sequence s.
If this is true, then the pair (s, e2) is added to the IdList of pattern C → D.
The resulting list is represented in Fig. 3. The IdList of pattern CD is com-
puted by EqualityJoin(IdList(C),IdList(D)) and is depicted on Fig. 3. This
EqualityJoin is performed as follows: for a given pair (s, e1) in IdList(C),
SPADE checks whether there exists a pair (s, e2) in IdList(D) with e2 = e1,
which means that item D occurs at the same time than item C in the sequence
s. If this is true, then the pair (s, e2) is added to the IdList of pattern CD.

4 The GO-SPADE Algorithm

4.1 Motivations

Let us revisit the example of Fig. 2 and consider the IdList for item A. This
item occurs in a consecutive way in the sequences: at eid 1, 2 and 3 in the first
sequence and at eid 1, 2, 3 and 4 in the second one. Such a situation can appear
in several kind of databases in particular when the events come from some quan-
titative data such as time series with smooth variations. SPADE IdList stores
one line per occurrence, that is 3 lines for the occurrences of item A in sequence
1 and 4 lines for sequence 2. We introduce the concept of generalized occurrence
to compact all these consecutive occurrences. For example, the 3 consecutive
occurrences of item A in sequence 1 can be represented by only one generalized
occurrence of the form 〈1, [1, 3]〉 containing the sequence identifier (i.e., 1) and
an interval [1,3] containing all the eids of the consecutive occurrences. When
the pattern contains several events, the interval contains all eids of the con-
secutive locations of the last event. For example, for pattern A → B, its four
occurrences in sequence 1 in Fig. 4 are represented by the single generalized
occurrence 〈1, [3, 6]〉.

Using such a representation enables to reduce significantly the size of the
IdLists, as soon as some consecutive occurrences appear in the database. This
compact form of IdList containing generalized occurrences is termed GoIdList.
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Fig. 4. GoIdList vs. IdList

Figure 4 illustrates these reductions and also shows how these reductions are
propagated during the join operations. For example, IdList(A) contains 7 oc-
currences while the GoIdList(A) contains only 2 generalized occurrences. This
figure also presents the reductions obtained for IdList(B) and for the IdLists
of A → B, B → A and AB resulting from TemporalJoin and EqualityJoin
operations on IdList(A) and IdList(B).
In the following, we present our new algorithm, GO-SPADE based on new join
operations using GoIdLists.

This approach not only reduces the memory space used during an extraction
process, it also reduces significantly the join cost , and thus the overall execution
time. These effects (memory and time gains) will be described and analyzed in
Sect. 5. For example,

4.2 GO-IdList: An IdList of Generalized Occurrences

A generalized occurrence represents in a compact way several occurrences of a
pattern z, and contains the following informations:

– An identifier sid that corresponds to identifier of a sequence where pattern
z occurs.

– An interval [min,max] corresponding to consecutive occurrences of the last
event of pattern z.

Such a generalized occurrence is denoted as a tuple 〈sid, [min, max]〉.
A GoIdList is a list containing all the generalized occurrences of a sequential

pattern. The generalized occurrence list of the sequential pattern z is denoted
by GoIdList(z).
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4.3 GO-SPADE Algorithm

The overall principle of GO-SPADE is the same that the one of SPADE presented
in Algorithm 1. The generation process remains the same as in SPADE (i.e., a
new pattern z is generated from two generator patterns z1 and z2 sharing a same
prefix p).

The difference between the two algorithms is that in GO-SPADE the occur-
rences of the patterns are stored in generalized occurrence lists and that the
TemporalJoin and EqualityJoin computations are replaced by dedicated pro-
cedures operating on this generalized form of occurrence.

We now present the new TemporalJoin in Algorithm 2 and, in Algorithm 4,
the new EqualityJoin.

Algorithms 2 and 4 generate a new GoIdList from the GoIdLists of two
generator patterns z1 and z2. They proceed in a similar way. The nested loops of
lines 1 and 2 iterate on the elements of GoIdList(z1) and GoIdList(z2). For each
pair (〈sid1, [min1, max1]〉, 〈sid2, [min2, max2]〉), the algorithms call a function
to join these two generalized occurrences using respectively LocalTemporalJoin
(algorithm 3) and LocalEqualityJoin (algorithm 5). Algorithm 2 just checks
before that min1 < max2 in order to verify that at least one occurrence of
〈sid1, [min1, max1]〉 terminates before the end of at least one occurrence of
〈sid2, [min2, max2]〉. Test in line 5 (resp. line 4) verifies that the generalized
occurrence returned by LocalTemporalJoin (resp. LocalEqualityJoin) is valid.
If it is the case, then it can be added to the current generated GoIdList (line 6,
resp. line 5). These algorithms terminate after having proceeded with all couples
of generalized occurrences (〈sid1, [min1, max1]〉, 〈sid2, [min2, max2]〉) returning
the computed GoIdList.

Algorithm 2 (TemporalJoin)
Input: GoIdList(z1), GoIdList(z2)
Used subprograms: LocalTemporalJoin
Output: a new GoIdList

Initialize GoIdList to the empty list.
1.for all occ1 ∈ GoIdList(z1) do
2. for all occ2 ∈ GoIdList(z2) do
3. if (min1 < max2) then
4. let 〈v, add〉 := LocalTemporalJoin

(〈sid1, [min1, max1]〉,
〈sid2, [min2, max2]〉)

5. if add then
6. Insert v in GoIdList
7. fi
8. fi
9. od
10.od
11.output GoIdList

Algorithm 3 (LocalTemporalJoin)
Input: Two generalized occurrences
〈sid1, [min1, max1]〉
and 〈sid2, [min2, max2]〉
Output: 〈v, add〉 where:
v = 〈sid, [min, max]〉 and add, a boolean
value that is false if v cannot be created.

1. let add := false
2. let v := null
3. if (sid1 = sid2) then
4. find min the minimum element x

of [min2, max2]
such that x > min1

5. let sid := sid1

6. let max := max2

7. let v := 〈sid, [min, max]〉
8. let add := true
9.fi
10.output 〈v, add〉
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Algorithm 4 (EqualityJoin)
Input: GoIdList(z1), GoIdList(z2)
Used subprograms: LocalEqualityJoin
(Algorithm 5)
Output: a new GoIdList

1.for all occ1 ∈ GoIdList(z1) do
2. for all occ2 ∈ GoIdList(z2) do
3. let 〈v, add〉 :=

LocalEqualityJoin(occ1,occ2)
4. if add then
5. Insert v in GoIdList
6. fi
7. od
8.od
9.output GoIdList

Algorithm 5 (LocalEqualityJoin)
Input: Two generalized occurrences
〈sid1, [min1, max1]〉
and 〈sid2, [min2, max2]〉
Output: 〈v, add〉 where:
v = 〈sid, [min, max]〉 and add, a boolean
value that is false if v cannot be created.

1. let add := false
2. let v := null
3. if (sid1 = sid2) then
4. if (min1 ≤ max2 and max1 ≥ min2 ) then
5. let sid := sid1

6. let min := max(min1,min2)
7. let max := min(max1,max2)
8. let v := 〈sid, [min, max]〉
9. let add := true
10. fi
11.fi
12.output 〈v, add〉

Algorithm 3, LocalTemporalJoin, generates a new generalized occurrence
from the two input ones. It first verifies that the two generalized occurrences
are from a same sequence, that is sid1 = sid2 (line 3). Lines 4 to 8 generate
a new generalized occurrence. Line 4 sets the min value of the generalized oc-
currence to be created with the minimum element of [min2, max2] which is
greater than min1. This means that min is the first occurrence of the general-
ized occurrence 〈sid2, [min2, max2]〉 that strictly follows the first occurrence of
〈sid1, [min1, max1]〉. Secondly, Line 5 sets the sid value. Then, line 6 sets the
max value of the new generalized occurrence to max2 (the location of the last
occurrence corresponding to z2).

Algorithm 5, LocalEqualityJoin, first verifies that the two generalized occur-
rences come from the same sequence and then checks in line 4 if the intersection
of the two intervals [min1, max1] and [min2, max2] is empty or not. If the
intersection is not empty, it means that there exists occurrences of the new pat-
tern ending at each eid in this intersection. Then the algorithm sets [min,max]
to the intersection of [min1, max1] and [min2, max2] , and sets the value of
sid.

4.4 Soundness and Completness

Definition 1. (v represents y) Let y be an occurrence of pattern z in a
sequence S from a database β. Let GoIdList(z) be the generalized occurrence list
of this pattern and let v be one generalized occurrence from GoIdList(z) denoted
by the tuple 〈sid, [min, max]〉. We say that v represents y if sid(v) = Id(S) and
min ≤ end(y) ≤ max where end(y) denotes the eid of the last event of y.

Definition 2. (soundness) Let S be a sequence of β and z be a pattern with
its generalized occurrence list GoIdList(z). GoIdList(z) is sound if for all v in
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GoIdList(z), where v is of the form 〈sid, [min, max]〉 with sid(v) = Id(S), we
have: for all integer tf in [min,max], there exists an occurrence of z in S such
that end(y) = tf .

Theorem 1. For all patterns z, the GoIdList(z) generated by GO-SPADE is
sound.

Definition 3. (completness) Let z be a pattern, GoIdList(z) its generalized
occurrence list. GoIdList(z) is complete if for all S in β and for all y such that
y is an occurrence of z in S, then there exists v in GoIdList(z) such that v
represents y

Theorem 2. For all patterns z, the GoIdList(z) generated by GO-SPADE is
complete.

The following theorem follows directly from Theorem 1 and 2.

Theorem 3. (correctness) For all patterns z, the support determined by GO-
SPADE using GoIdList is the same as the support determined by SPADE using
IdList.

5 Experimental Results

We present experimental results showing that the behavior of SPADE algorithm
is greatly enhanced by the use of generalized occurrences when datasets contain
consecutive repetitions. Both GO-SPADE and SPADE algorithms have been
implemented using Microsoft Visual C++ 6.0, with the same kind of low level
optimization to allow a fair comparison. All experiments have been performed
on a PC with 196 MB of memory and a 500 MHz Pentium III processor under
Microsoft Windows 2000.

The experimentations have been run on synthetic datasets generated using
the Dataquest generator of IBM [2]. Two datasets have been generated using
the following parameters: C10-T2.5-S4-I1.25-D1K over an alphabet of 100 items
(called set1) and C10-T2.5-S4-I1.25-D10K over an alphabet of 1000 items (called
set2). The first one contains 1000 sequences, the second one 10000 sequences.
In both cases, the average size of the sequences is 10 (see [2] for more details
on the generator parameters). In these datasets, the time interval between two
time stamps is 1, and there is one event per time stamp.

In order to have datasets presenting parameterized consecutive repetitions
on certain items, we performed a post-processing on set1 and set2. Each item
founded in an event of a sequence has a probability fixed to 10% to be repeated.
When an item is repeated, we simply duplicate it in the next i consecutive
events. If the end of the sequence is reached during the duplication process
the sequence is not extended (no new event is created) and thus, the current
item is not completely duplicated. For dataset set1 (resp. set2) we denote
set1 r{i} (resp. set2 r{i}) the dataset obtained with a repetition parameter of
value i. For the sake of uniformity, set1 (resp. set2) is denoted set1 r0 (resp.
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Fig. 5. Evolution of the total number of occurrences used (top left), of the total number
of comparisons (top right) and of the total execution time (bottom left). Influence of
consecutive repetitions on SPADE vs. Go-SPADE (bottom right)

set2 r0). The post-processing on set1 r0 leads to the creation of 5 new datasets
set1 r1,. . ., set1 r5. They all have been created simultaneously, to repeat the
same items in all the new datasets. For example, if item A occurring in sequence
10 at timestamp 5 is chosen to be repeated, then it will be added to event at
timestamp 6 in sequence 10 in set1 r1, and to events at timestamps 6 and 7 in
sequence 10 in set1 r2, and so on.

5.1 Generalized Occurrences Impact on the List Sizes

Generalized occurrences represent in a compact way all consecutive occurrences
that can be found in a sequence database. The top left graph of Fig. 5 shows
the sizes of IdLists and GoIdLists (in number of elements) for extractions
performed on files set1 r0, set1 r1, . . ., set1 r5 using several support thresholds
(7.5%, 5% and 2.5%). The number of occurrences used by SPADE is greater
than the number of generalized occurrences used by GO-SPADE. As expected,
this reduction is more important when the consecutive repetition parameter
increases.

5.2 Generalized Occurrences Impact on the Join Costs

As shown in the previous experiments, the size of GoIdList is smaller than the
size of IdList. This reduction has a direct impact on the join costs. Indeed,
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let ns and ms be the number of occurrences of two generator patterns in a se-
quence s. In the worst case, and assuming that there are nbSeq sequences in
the database, the number of comparisons needed to perform one join between
these two generator patterns is

∑
s nsms, s ∈ [1, . . . , nbSeq]. Suppose now that

all ns and ms are reduced by an average factor of γ ≤ 1, then the number of
comparisons becomes

∑
s γ2nsms, s ∈ [1, . . . , nbSeq]. In this case, the number

of comparisons used by GO-SPADE is reduced by γ2 compared to SPADE.
The top right graph of Fig. 5 shows this reduction in practice during extractions
performed on set1 r0 to set1 r5 with support thresholds 2.5% and 7.5%. For ex-
ample, the cost in term of number of comparisons needed during a GO-SPADE
extraction at 2.5% is significantly lower than the cost for SPADE at the same sup-
port threshold and furthermore is close to the cost for SPADE extraction at 7.5%.

5.3 Generalized Occurrences Impact on the Execution Time

The reduction of the list sizes and the reduction of the comparison number
enable to greatly reduce the overall execution time of extractions. This is
illustrated on the bottom left graph of Fig. 5, that presents the execution
time of SPADE and GO-SPADE on datasets set1 r0 to set1 r5 for support
thresholds 2.5%, 5% and 7.5%.

In Fig. 1 (Sect. 1), we have presented how the time needed by SPADE
(to extract a given number of patterns) increases in presence of sequences
containing consecutive repetitions. The bottom right graph of Fig. 5 completes
these results with the corresponding times for GO-SPADE. It shows that the
execution time of GO-SPADE to find a given number of patterns remains quite
the same in presence of repetitions.

6 Conclusion and Future Works

We considered databases of sequences presenting some consecutive repetition of
items. We showed that the SPADE algorithm [11,13], a typical sequential pat-
tern extraction algorithm, turns out to become significantly less efficient on this
kind of databases. SPADE is based on lists containing information about the
localization of the patterns in the sequences. The consecutive repetitions lead to
a defavorable growth of the size of these occurrence lists and thus increase the
total extraction time. We defined a notion of generalized occurrences to handle
in a compact way the pattern localizations. We propose an algorithm, called GO-
SPADE, that extends SPADE to handle these generalized occurrences. Finally,
we showed by means of experiments that GO-SPADE remains efficient when
used on sequences containing consecutive repetitions. In the data mining com-
munity, the frequent sequential pattern extraction process has been enhanced by
the consideration of other constraints that the minimal frequency to specify be-
forehand the relevancy of extracted patterns. These constraint specifications can
be used to reduce both the number of extracted patterns and the search space.
The c-SPADE algorithm [12], a constrained version of SPADE, is an example
of such a constrained-base sequential pattern mining algorithm. A promising
direction for future work is to extend c-SPADE with an appropriated form of
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generalized occurrences to process efficiently sequences with consecutive repeti-
tions. Furthermore, we can now proceed with the real data about stock market
analysis that has motivated this research.
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