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Abstract: Approximation of natural objects (curves, surfaces, or images) with fractal models is an important
center of interest for research. The general inverse problem paradigm concerns many application fields and a
large variety of studies have been proposed to address it.The most known of them is the fractal image compression
method introduced by Jacquin. Generally speaking, these techniques lack of flexibility in term of control over the
approximated shape. Furthermore, iteration space used is the visualisation space,R2. Previous work achieved a
general framework for fractal modeling: fractal free forms. This model allows user to define self-similar objects
in a space of a higher dimension. We propose a resolution of the inverse problem based on this model and a
non-linear regression algorithm. A hierachical extension of this model is introduced for modeling heterogeneous
objects, for which characteristics are varying in space. A complete coding scheme has been performed on such a
model showing good performances for low bitrate compression.
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1. INTRODUCTION

Models that are able to produce rough objects (curves, surfaces, images,. . . ) are mostly based on random pro-
cesses. This is the reason why these models are not suitable for approximation. In order to propose an efficient
solution to the problem of rough objects approximation, the current study proposes a parametric model based on a
deterministic fractal approach.

In [11] and [12], we have proposed a model for fractal curves and surfaces. This model combines two classical
models: a fractal model (Iterated Function Systems attractors) and a CAGD model (free form shapes). This model
is called projected IFS model. A set of control points allows an easy and flexible control of the fractal shape
generated by the IFS model and provide a high quality fitting, even for surfaces with sharp transitions. In [2]
and [3], we have proposed an approximation method for curves based on this model. In [4] and [5], we give the
extension of this method to surfaces. In this paper, we present a general framework for surface and image modeling,
using a combination of projected IFS attractors with quadtrees.

2. PROJECTED IFS MODEL

In this section we develop the projected IFS attractors model. First, we introduce the IFS model. Then, we see how
it is possible to obtain a parametric representation of this model. Afterward, we show how this IFS attractor can be
projected through control points. At least, tabulation of the surface is introduced to simplify computations.

2.1. IFS

Introduced by BARNSLEY[1] in 1988, the IFS (Iterated Function Systems) model generates a geometrical shape or
an image [6] with an iterative process. An IFS-based modeling system is defined by a triple(X , d,S) where:

• (X , d) is a complete metric space,X is callediteration space;

• S is a semigroup acting on points ofX such that:λ ∈ X 7→ Tλ ∈ X whereT is a contractive operator,S is
callediteration semigroup.



An IFST (Iterative Function System)is a finite subset ofS : T = {T0, ..., TN−1} with operatorsTi ∈ S. We note
H(X ) the set of non-empty compacts ofX . The associated HUTCHINSON operator is:

K ∈ H(X ) 7→ TK = T0K ∪ ... ∪ TN−1K .

This operator is contractive in the new complete metric spaceH(X ) and admits a fixed point, calledattractor [1]:

A(T) = lim
n→∞

TnK with K ∈ H(X ) .

2.2. Parameterisation of attractors

By introducing a finite setΣ, the IFS can be indexedT = (Ti)i∈Σ and the attractorA(T) has anaddress function
[1] defined onΣω, the set of infinite words ofΣ:

σ ∈ Σω 7→ φ(σ) = lim
n→∞

Tσ1 ...Tσn
λ ∈ X with λ ∈ X . (1)

When operators match joining condition [11, 12], this function defines parameterised curves or surfaces. For
curves, a single indexing̃Σ = {0, ..., N − 1} is sufficient [8, 7]:

Φ(s) = φ(σ) with s =
∞∑

i=1

1
N i

σi

whereσ = σ1 . . . σn . . . corresponds to the development of the scalars in baseN . For surfaces, it is more
convenient to use PEANO indexingΣ = {0, . . . , N2 − 1}:

Φ(s, t) = φ(ρ) with ρ = σ1\τ1 . . . σn\τn . . . ∈ Σω

whereσ = σ1 . . . σn . . . andτ = τ1 . . . τn . . . are respectively the development ofs andt in baseN andσi\τi =
Nσi + τi.

2.3. Projected attractors

The main idea of our model is drawn from the formula of free form surfaces used in CAGD:

F (s, t) =
∑
j∈J

Φj(s, t)pj

wherepj constitutes a grid of control points (see Fig. 1), andΦj are blending functions. These blending functions
have the following property:

∀(s, t) ∈ [0, 1]2
∑
j∈J

Φj(s, t) = 1 .

The way to obtain the same property for IFS attractors is to use a barycentric metric spaceX = BJ [11, 12]:

BJ = {(λj)j∈J |
∑
j∈J

λj = 1} .

For curves, this barycentric space is used withJ̃ = {0, . . . ,m}, for surfaces withJ = {0, . . . ,m} × {0, . . . ,m}.
Then, the iteration semigroup is constituted of matrices with barycentric columns:

SJ = {T |
∑
j∈J

Tij = 1, ∀i ∈ J} .

This choice leads to the generalization of IFS attractors namedprojected IFS attractors:

PA(T) = {Pλ |λ ∈ A(T)}

whereP is a grid of control pointsP = (pj)j∈J andPλ =
∑

j∈J λjpj . In this way, we can construct a fractal
function [11, 12] using the projection:

F (s, t) = PΦ(s, t) =
∑
j∈J

Φj(s, t)pj

whereΦ(s, t) is a vector of functionsΦ(s, t) = (Φj(s, t))j∈J andJ is the double index setJ = {0, . . . ,m} ×
{0, . . . ,m}. Two different actions may be performed on the model, each one playing a different role (see Fig. 1):

• Action on the control gridP performs a global deformation on the surface.

• Action on the transformationsT changes the local aspect of the surface (roughness).
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Fig. 1 Deformation of a free form surface using the control grid.

2.4. Tabulation of parametric surfaces

With a tabulation process[3, 4], considering only the values ofs andt multiple of 1
Np leads to a simplification in

the computing without any loss of information. The surface tabulation is a grid defined by:

F (
i

Np
,

j

Np
) = PΦ(

i

Np
,

j

Np
) with (i, j) ∈ {0, . . . , Np − 1} × {0, . . . , Np − 1} .

In this special case, developments ofi
Np are ended by a infinite sequences of0:{

σ = σ1 . . . σp 00 . . .
τ = τ1 . . . τp 00 . . .

Denotingρi = σi\τi simplifiesF ( i
Np , j

Np ) in:

F ( i
Np , j

Np ) = Pφ ((σ1\τ1) . . . (σp\τp) . . . (0\0) . . . (0\0) . . .)
= PTρ1 . . . Tρpφ (0 . . . 0 . . .) = PTρ1 . . . Tρ1Φ(0, 0)

By choosing simplifications (but no restrictions) such asΦ(0, 0) = e00, the surface tabulation can be generated
computing onlyp iterations without any loss of information:

F (
i

Np
,

j

Np
) = PTρ1 . . . Tρp

e00 .

Fig. 2 shows the three first iterations of the construction process.

Step 0 Step 1 Step 2 Step 3

Fig. 2 Three first iterations of the construction process



3. QUADTREE OF PROJECTED IFS MODELS

The previous section shows that the use of Projected IFS attractors implies a uniform control on the form. This is
a real restriction when the goal is approximation. In this section, we introduce a generalization of projected IFS
attractors by adding a quadtree structure.

Let us denoteΓ a cut of the quadtree andγ ∈ Γ a leaf node of this cut. As the indexing of this leaf node is
similar to the indexing of transformations of IFS, we will use the same notation,i.e. γ ∈ Σ∗ with Σ = {0, 1, 2, 3}.
We introduce subdivision functions ofI = [0, 1]:

TI
0(s) =

1
2
s and TI

1(s) =
1
2
(s + 1), s ∈ I

Then, it is possible to introduce subdivision functions of[0, 1]2:

T0(s, t) = (TI
0(s), TI

0(t)) ; T1(s, t) = (TI
0(s), TI

1(t))
T2(s, t) = (TI

1(s), TI
0(t)) ; T3(s, t) = (TI

1(s), TI
1(t))

with (s, t) ∈ [0, 1]2.
We associate to eachγ a projected IFS model: control gridP γ and IFSTγ = (T γ

i )i∈Σ. The fractal surface is
then defined by projected IFS patches organized in a quadtree structure:

F (s, t) =
∑
γ∈Γ

χγ(s, t) P γ Φγ(T−1
γ (s, t))

where

χγ(s, t) =
{

1 if (s, t) ∈ Tγ [0, 1]2

0 else

andTγ = Tγ1 ◦ . . . ◦ Tγk
. To obtain a continuous function, a boundary constraint has to be satisfied. We will not

detail this joining condition in this paper.

4. APPROXIMATION METHOD

First we shows how it is possible to perform an approximation on a single model by a non-linear fitting formalism.
Assuming we are able to approximate a given surface with a given projected IFS model, our goal is then to provide
an adaptative method for approximating complex surfaces and images with a quadtree of projected IFS models.

4.1. Projected IFS model approximation

Given a sampled surface(si, tj ,Qij) ∈ R3, the challenge is to determine the projected IFS model which provides
a good quality approximation of this surface. The approach proposed in the current study is similar to the one we
introduced in [2, 3] for curves. It is based on a non-linear fitting formalism.

Let Qij(i=0,...,Np j=0,...,Np) be a given surface to approximate. LetFa be the function associated with the
parameter vectora. The approximation problem consists in determining the parameter vectora that minimizes the
distance between the sampled surfaceQ = {( i

Np , j
Np ,Qij)} and the functionFa:

aopt = argmin
a

d(Q, Fa)

where:

d(Q, Fa) =
∑
ij

||Qij − Fa(
i

Np
,

j

Np
)||2 .

Our resolution method is based on the LEVENBERG-MARQUARDT algorithm [9]. This algorithm is a numerical
resolution of the following fitting problem:

aopt = argmin
a

M∑
i=0

(vi − f(a, ui))2

where vectorsv andu are the fitting data andf is the fitting model.



(a) Original Image (b) JPEG2000,0.044bpp,
PSNR= 23.1dB

(c) PIFS,0.044bpp,
PSNR= 24.7dB

Fig. 3 Compression results

In order to resolve our approximation problem using this algorithm, we have to consider the following data:

v = (v0, . . . , vM ) = (0, . . . , 0) ; u = (u0, . . . , uM ) = (0, . . . ,M)

whereM = (Np + 1)2. Then, the fitting model is:

f(a, k) = ||Qikjk
− Fa(

ik
Np

,
jk

Np
)||

whereik = k mod Np andjk = k/Np ∀k = 0, . . . , (Np + 1)2.
The LEVENBERG-MARQUARDT method combines two types of approximation (linear and quadratic) for min-

imizing the square distance. These approximations are computed with the provided partial derivatives of the fitting
model. In our case, these partial derivatives are numerically computed by a perturbation vector [2, 3]:

∂f

∂ai
(a, u) ' f(a + δai, u)− f(a, u)

ε

with δai = (0, . . . , 0, ε︸ ︷︷ ︸
i

, 0, . . . , 0)

4.2. Quadtree approximation

We are able to perform approximation on a piece of surface or image. The final goal is to find the quadtree
structure that approximate a whole surface or image, given a criteria. For grey-level images, the standard criteria is
Rate/Distortion ratio optimisation. That means, given a coding bitrate (quantity of information needed for coding),
find the description that minimizes the distortion (error) between the original and the reconstructed images. We
have implemented an optimisation algorithm based on [10] with a Lagrange multiplier formalism. For surfaces, it
is more convenient to give a distortion criteria, and to find the simplest model that satisfies this constraint. Results
of a surface approximation and an image compression are shown in the next section.

5. RESULTS

Fig. 3 shows an example of image compression. Original image (Fig. 3a) has been compressed with two methods:
the standard JPEG 2000 (Fig. 3b) and our method (Fig. 3c). The coding bitrate is0.044bpp, it represents a
compression ratio of1 : 181. At this very low bitrate, our method generates less artifacts and a smaller distortion.
Fig. 4 shows a surface approximation result. The original surface (Fig. 4a) is the french "Massif Central". Fig. 4b
shows its approximation with a distortion criteria of35 dB. Fig. 4c shows the quadtree structure generated for this
example. Dark patches represent simple models since we use several types of model.



(a) Original surface, french "Massif
Central"

(b) Approximated surface (c) Quadtree

Fig. 4 Surface approximation results

6. CONCLUSION

We presented a new approach for modeling both rough or smooth objects. This method is based on a fractal model
named projected IFS attractors. This model is a parametric description which has the advantage of compactly
describing the surface shape making it useful for geometric modeling and image synthesis. Several projected IFS
models are combined in a quadtree structure to obtain more accurate and adaptative modeling. Results show that
our method is an interesting approach for low bitrate image compression and surface approximation.
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