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In a map, there are different relationships between spatial objects, such as topological,
projective, distance, etc. Regarding topological relations, if the scale of the map is changed
and if some spatial objects are generalized, not only the shapes of those objects will
change (for instance, a small area becomes a point and then disappears as the scale
diminishes), but also their topological relations can vary according to scale. In addition, a
mathematical framework which models the variety of this category of relationships does
not exist. In the first part of this paper, a new topological model is presented based on
ribbons which are defined through a transformation of a longish rectangle; so, a narrow
ribbon will mutate to a line and then will disappear. Suppose a road is running along a
lake, at some scales, they both appear disjointed whereas at some smaller scales, they
meet. So, the topological relations mutate according to scale. In this paper, the different
components of this mathematical framework are discussed. For each situation, some
assertions are defined which formulate the mutation of the topological relationships into
other ones when downscaling.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When somebody is saying “this road runs along the
sea,” what are exactly the spatial or geographical relations
which are concerned? Sometimes, either the road touches
the sea or a small beach is located between the road and
the sea, etc. From a mathematical point of view, mostly
there is a disjointed relation between the road and the sea
whereas for people the relation is different. In addition,
when one is reading a map, according to scale, the
topological relation can be different, disjoint or meet. So,
topological relations can vary according to scale. Suppose a
decision-maker wants to create a new motorway running
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along a lake with the help of a computer. Taking this
consideration into account, any reasoning system will
generate difficulties because the spatial relations hold
differently: any conceptual framework dealing with spatial
relationships must be robust against scales.

Another problem comes from mathematical modeling of
streets and rivers. Often, they are considered as linear objects
even if they have some widths or areas. By considering a
road as a line or as an area, topological relationships can be
different. In order to solve this problem, the concept of
ribbon will be developed. Depending on the scale, or more
exactly on visual acuity and granularity of interest, a ribbon
will be a longish rectangle (area), a line or it will disappear. In
other words, ribbons can be seen as an extension of poly-
lines. Moreover, in order not to be stuck to cartography, the
concept of granularity of interest will be introduced.

This paper will be organized as follows. Firstly, defini-
tions and a state of the art review for the generalization
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process will be given (Section 2). Also, definitions and a
state of the art review for topological relationships will
be given (Section 3). Then, the framework of topological
relationships for ribbons will be defined (Section 4). Finally,
we present a conclusion and future work (Section 5).

2. Geographic object generalization
2.1. Definition

Many definitions have been given for the generalization
process, The International Cartographic Association [12]
has defined it as “the selection and simplified representa-
tion of detail appropriate to scale and/or the purpose of a
map.” The geographic object generalization is a very
complex process. In order to reduce its complexity, the
overall process is often decomposed into individual sub-
processes, called operator [13], such as simplification,
displacement etc. Each operator defines a transformation
that can be applied to a single spatial object, or to a group
of spatial objects.

2.2. State of the art for generalization process

Historically, cartographic production was a matter of
cartographers who generate maps for different users,
generally for a specific domain (e.g., geological maps). This
cartographic production always includes steps of possible
control to ensure the quality of the generalized map. This
crucial phase is usually performed by experienced carto-
graphers. But today, with computer technologies that
allow users not experts in the field of cartographic pro-
duction to generate maps without the intervention of
experts.

The first generalization process appeared in early 1990s
[14]. It involved only a few geographical areas. The first
algorithm for generalizing polylines was published in Ref.
[15]. Then, several variants were published essentially to
improve the results of the initial algorithm. However, this
algorithm does not take into account many aspects, such
as the topological relationships between objects.

Now, several methods and concepts have been pro-
posed to model and implement the generalization process
but a framework for their combination into a comprehen-
sive generalization process is still missing [16].

Ruas and Plazanet [17]| proposed a framework con-
trolled by a set of constraints. The dynamic generalization
model is based on avoiding constraint violations and on
the local qualification of a set of objects represented by
means of an object situation. A situation is described by
the geographical objects involved, their relationships and
the constraint violations. They concentrated only on con-
straints related to objects and not on the constraints
between objects such as the topological constraints.

Many other works use the least squares adjustment theory
to solve the generalization problems such as [18,19,20]; these
works aim to globally reduce all spatial conflicts. The idea is to
solve spatial conflicts by modeling different constraints using
mathematical expressions. Moreover, Harrie [21] proposed to
formulate the geometrical and topological constraints as linear

functions of the object coordinates. The least squares adjust-
ment seems to be an interesting technique but these con-
straints are difficult to express by a linear equation.

In the same context and for reducing the spatial
conflicts in the map, many interesting methods were
proposed in [21,22]. In those approaches, a cost function
(fitness) must be defined for validating the statements.
However, it is questionable whether it is realistic to define
such a function that integrates all the constraints of
generalization such as the topological constraints.

Then several works model the spatial objects by agents
such as the works of [23-25]. In the agent-based model,
the spatial objects are modeled by the decisional entities
in the generalization system. These entities are software
agents the goal of which is to satisfy their cartographic
constraints as much as possible. In Ruas [23], the con-
straints are subdivided into four types: metric, topological,
structural and procedural constraints. The topological
constraints ensure that any topological relationship
between objects is maintained or modified consistently,
for example, self-intersections of an object or any inter-
section between two objects must be avoided.

Also to improve the map generalization process,
another approach was proposed in [26], which is based
on a new concept called SGO (self-generalizing object). An
SGO is able to generalize a cartographic object automati-
cally using one or more geometrical patterns, simple
generalization algorithms and spatial integrity constraints,
but this approach does not define a pattern for topological
constraints.

In the EuroSDR project, cartographic experts of four
NMAs (National Mapping Agencies) were called to evalu-
ate the results of the automation generalization process
according to certain constraints [29]. The objective of this
project is to illustrate the state-of-the-art of automated
generalization in practice, exchange of knowledge
between research community, NMAs and software vendor
and to contribute to the development of constraint speci-
fication. Four test cases were selected and provided by the
participating NMAs. The NMAs defined their map specifi-
cations for automated generalization in template which
were developed by the EuroSDR team [29]. These map
specifications were formalized as a set of cartographic
constraints to be followed. They distinguished between
two main categories of constraints: legibility constraints
and preservation constraints. After the analysis of con-
straints composition, the EuroSDR project team derived a
list of generic and specific cartographic constraints which
must be respected in the generalization process.

Lejdel and Kazar [27] proposed an approach for opti-
mizing the automatic generalization process by satisfying
cartographic constraints. This approach consists of provid-
ing agents with geographical genetic properties to enable
them to choose the optimal actions, thus giving the
concept of genetic agent. Each geographical agent is
equipped with an optimizer, and each one executes a
genetic algorithm to determine the optimal action to be
executed according to its current state in order to satisfy
cartographic constraints as much as possible. The genetic
algorithm follows the classical steps as selection, crossover
and mutation. The solution is refined gradually over the
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iterations until reaching convergence to a solution that
approaches the optimal solution and a certain degree of
imperfection is acceptable. The solution here is a set of
algorithms with adapted parameters which minimize
conflicts. The model of the topological constraints of this
approach is not addressed in this paper.

3. Topological relations
3.1. Definition

Topology is defined as the mathematical study of the
properties that are preserved through deformations of
objects. Many works can be cited here such as the work
of Thom and Zeeman [30]; they study the evolution of
forms in nature. Thus, this theory can be applied in
mapping and more exactly in the transformation of
topology.

Topology is foremost a branch of mathematics, but
some concepts are of importance in the GIS domain, such
as topological relationships [1]. Topological relationships
describe relationships between all objects in space, the
points, lines and areas for all possible kinds of deforma-
tion. Several researchers have defined topological relation-
ships in the context of geographical information [2-4].

3.2. State of the art for topological relations

From a historical point of view, different topological
models were proposed. Firstly, Allen [5] proposed a model
organizing pieces of a linear model which can also be used
for temporal reasoning, Max Egenhofer [6] with his col-
leagues proposed the first topological model for two-
dimensional objects, and then Lee and Hsu [7,8] defined
the relations between rectangles. Let us examine them
rapidly.

3.2.1. Allen model
The objective of the Allen model is to represent the
relations between two segments [5], as illustrated in Fig. 1.

3.2.2. Egenhofer region topological relationship

To define a model of topological relationships, Egenho-
fer and Herring [6] proposed a spatial data model based on
topological algebra. The algebra topological model is based
on geometrical primitives called cells that are defined for
different spatial dimensions 0-D, 1-D, and 2-D. A variety of
topological properties between two cells can be expressed
in terms of the 9-intersection model [10]. The 9-
intersection model between two cells A and B is based
on the combination of six topological primitives that are
interiors, boundaries and exteriors of A (A",0A,A”) and B
(B",0B,B™).

These six topological primitives can be combined to
form nine possible combinations representing the topolo-
gical relationships between these two cells. These

9-intersections are represented as one 3 x 3 matrix [28]

ANB AN ANB
RAB)=|ANB 6ANoB 0ANB~
AT NB A" NnoB A" NB~

The value represented in the matrix will be only a
symbol indicating whether the intersection is null (¢) or
not null (—¢). When the value of the intersection is not
important, it is represented by (—). Based on these nine
possible intersections, one can construct 512 theoretical
relationships. However, they are not all available. The
detection of possible relations is made using negative
conditions which prevent the association between pairs
of primitives (non-existing topological relations). There-
fore, the result implies eight possible topological relations
between two regions in R2. These eight relations are
explicitly represented in Fig. 2 (note that sometimes the
MEET relation is called TOUCHES in some papers).

3.2.3. Egenhofer line topological relationship

Egenhofer and Herring define 33 relations can be
realized between two simple lines [6]. Fig. 3 shows the
different types of intersections and their mathematical
interpretations.

3.24. Lee and Hsu model

In this model, Lee and Hsu [7,8] study the rectangle
relations; they proposed a table representing all spatial
relations between two rectangles. They found a total of
169 types (see Fig. 4) in which they number: 48 disjoints,
40 joints, 50 partial overlaps, 16 contains and 16 belongs
(=inside). Due to the semantics of ribbons, a lot of them
can be discarded. We shall not examine all of them, but the
more interesting ribbon relations, namely, disjointing,
meeting, merging and crossing.

All the models presented above define topological
relationships between objects but they do not treat the
transformation of topological relationships between the
spatial objects when downscaling. In this paper, we will
discuss the transformation of these categories of relation-
ships during the generalization process.

4. Mathematical framework for topological relations

As previously told, it is common to state that there are
0D (points), 1D (lines), 2D (areas) and 3D (solids) geome-
trical objects for modeling geographical objects. But the
reality is much more complex. It is also common to state
that streets and rivers can be modeled as lines or polylines,
but in reality (ground) they are areas with specific proper-
ties so that they can be reduced to lines when needed.
In order to take these characteristics into account, the
concept of ribbon will be detailed. But before defining a
mathematical framework of topological relationships for
ribbons and regions, let us present some mathematical
background.
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Before( A, B) After (A, B) During (A. B)
Meets (A, B) ~Meets (A, B) ~During (A, B) —
—

Overlaps (A, B) ~Qverlaps (A, B) I J Equals (A, B) I 1

—
~Finishes (A, B) Finishes (A, B)

[ |
~Starts (A, B) Starts A, B) — i
]

Fig. 1. The Allen topological relations.

Raisjoint (A, B) = ( o 0 —@) Romeec(4,B) = ( ® —?@ :¢,> Reontains(A,B) = ( o 0 _,®> Requa(AB)=( 0 -0 ¢
0

A

-0 -0 -0 -0 -0 -0 ) g
o O :
a0 A0 -0 0 ¢ ¢ -0 9 0 =0 =0 -0
Reovers(4,B) = ( o -0 ﬂo) Rinsize(A,B) = (—|0 o 0 > RcoveredBy(A:B) = (ﬂw I Raverlap(A-B) =(-0 -0 -0
6 0 -0 0 -0 -0 20 -0 -0 8 -0 -8

Fig. 2. The eight topological relations between two regions A and B.

4.1. Mathematical background

4.1.1. Definition of ribbon

We claim that ribbons may elegantly model rivers and
roads (so-called linear objects): a ribbon can be loosely
defined as a line or polyline with a width. Mathematically
speaking, a ribbon is defined as a longish rectangle [9]. The
ribbon has a skeleton which is its axis. See Fig. 5 for an
example.

It is noted that the ribbons have width w, length [ and
longishness ratio r; (r;=I/w). The longishness ratio is
supposed to be much greater than a positive value r; so
that r;>r;; a possible minimum value of this threshold
rp is 10.

Let us note Skeleton (R) is the axis of a ribbon.
Remember that the ribbon can contain holes which can
be useful for modeling islands in rivers.

In the sequel of this paper, to simplify the presentation,
a ribbon will be represented by a longish rectangle. For
instance, a motorway (see Fig. 6) can be described by
several ribbons corresponding to several driving lanes,
emergency lanes and one median.

4.1.2. Region

This feature may represent real objects, such as a
building. We can define a region as a loose polygonal type.
See Fig. 7 for an example, each region has an interior,
boundary and exterior. Using these primitives, nine topo-
logical relationships can be formed by two regions called
the 9-intersection model [6].

4.1.3. Basic theory

In this section, we give certain definitions of the
intersection which will be used to formulate the mathe-
matical description for each topological relationship
between two ribbons or between a ribbon and a region:

Def 01 # the intersection:

If R! and R? are two ribbons, to define the intersection
of R! n R%, we have three cases:

® Point P (x,y).
® Line L (y=ax+Db).
® Area A.
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In other terms, this is an exclusive “belong to” defined
as follows: (P @ L @ A). Therefore, we can formulate it as

RINR={x/xc(PoL®A)}

Fig. 3. Topological relations between two lines.

Def 02 # complement of the intersection:

Let there be two ribbons R' and R? The relative
complement of intersection R' N R? can be a set of points

between ribbons as

belonging to R' or R?, but not toR' N R?. Therefore, we can
formally define the relative complement of intersection

CMP(RR' N R?) = {x/x e (R! ® R?) etx ¢(R' N R?)}
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Fig. 5. Definition of ribbon.

Median
Lanes
Emergency lane

Verge/Shoulde

Fig. 6. Ribbon model applied to a motorway.
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Fig. 7. Example of regions.

4.1.4. Downscaling process

In most cases the required representation scale
does not, however, exist in geographical database, thus a
derivation from the existing representation of the required
representation is necessary. This process of adaptation and
reduction of the representation content to a requested
scale is called a downscaling process.

During the downscaling, the topological relationships
can vary as the changes of objects geometry. We treat in
this context, two principal objects: ribbons and regions.
We can use the process as it is described in Ref. [9]

Step 0: original geographical features only modeled as
areas and/or ribbons,

Step 1: as scale diminishes, small areas and ribbons will
be generalized and possibly can coalesce,

Step 2: as scale continues to diminish, areas mutate to
points and ribbons into lines (its skeleton), and

Step 3: as scale continues to diminish, points and lines
can disappear.

4.1.5. Visual acuity applied to geographical objects

In the GIS, “Cartographic representation is linked to visual
acuity” [9]. Thresholds must be defined. In classical carto-
graphy, the limit ranges from 1 mm to 0.1 mm. If one takes
a road and a certain scale and if the transformation gives a
width of more than 1 mm, this road is an area, between
1 mm and 0.1 mm it is a line, and if less than 0.1 mm the
road disappears. The same reasoning is valid for cities or
small countries such as Andorra, Liechtenstein, Monaco, etc.

In these cases, the “holes” in Italy or in France disappear
cartographically.

In the sequel of this paper, sometimes some of those
abbreviations will be used:

Inters(R',R?): represent the intersection between
R' and R?;

Dist(R', R?): is the distance between R! and R?;

Area(R' N R?): represent the area of the intersection
between R' and R?;

2Dmap(R!, 6): is a function transforming a geographical
object to some scale possibly with generalization, in the
2-dimension.

Thus, with the defined thresholds &, &5, we can
formally get

a. Disappearance of a geographical object (O) at scale o:

VO e GeObject, Vo e Scale A O,
=2Dmap(0, 6) A Area(0,) < (€,)* = Oy = ¢p.

b. transformation of an area into a point (for instance, the
centroid of the concerned object, for instance, taken as
the center of the minimum bounding rectangle):

VO € GeObject, Vo e Scale A O,
=2Dmap(0, 6) A (&;)* > Area(O,)
> (1p)* = 0, = Centroid(O).

c. Transformation of a ribbon R into a line (for instance, its
skeleton):

VR e Ribbon, Vo e Scale A R,
=2Dmap(R, o) A & > Width(R,)
> gp = R=Skel(R).

Therefore, one can say that any spatial relation varies
according to scale. As previously told, one says that a road
runs along a sea; but in reality, in some place, the road
does not run really along the water of the sea due to
beaches, buildings, etc. At one scale, the road MEETs the
sea (see Fig. 8a), but at another scale at some places, this is
a DISJOINT relation (see Fig. 8b). Let us consider two
geographical objects 0' and 02 and O and O their
cartographic representations, for instance, the following
assertion holds:

v0!,0? e GeObject, Vo e Scale A O =2Dmap(0', 6) A 02

= 2Dmap(0?, 6) A Disjo int(0', 0?)
ADist(Q', 0%) < &1 = Meet(0} , 02).

Similar assertions could be written for CONTAINS,
OVERLAP relationships. In addition, two objects in the real
world with a MEET relation can coalesce into a single one.

As a consequence, in reasoning what is true at one
scale, can be wrong at another scale. So, any automatic
system must be robust enough to deal with this issue.
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Fig. 8. According to scale, the road MEETs or not the sea.

Side-by-side

End-to-end

Fusion :—
E—

Fig. 9. Basic ribbon relations.

Splitting

4.2. Ribbons-ribbons relations

In a recent paper of Laurini [9], ribbon relations were
proposed to describe streets, roads and rivers. Four rela-
tions can be defined with ribbons as exemplified in Fig. 9,
side-by-side, end-to-end, fusion (or merging) and splitting.
For a real world feature (e.g., a road or a river), it can be
modeled by a single composite ribbon, that is, a set of
ribbons is linked by side-by-side and/or end-by-end rela-
tions. As the scale diminishes, ribbons will be reduced to
lines, for instance, to their axes (Axis(R)). Thus, Laurini [9]
has proposed ribbons and partially developed a model for
ribbon relationships. In this work, we will complete and
refine this model and we will define and classify more
topological relationships between ribbons according to
certain criteria, then a mathematical description will be
given for each type. Thus, two ribbons can be disjoint or
intersect. The disjunction is defined by a distance separat-
ing the two ribbons. The intersection between two ribbons
can be point (0OD), line (1D) or area (2D) according to
certain criteria. In the following subsection, we will get
formally the mathematical description for each topological
relationship when we use thresholds and metric measure-
ments; as area, distance, etc. let us present the most
important relationships.

4.2.1. Disjoint relations

For disjoint relation between two ribbons Disj(R!,R?),
the first condition is the inexistence of an intersection
between them. Fig. 10 shows five cases:

VR',R? e Ribbon, (Vo € Scale) A (R} = 2Dmap(R’, 6))
A (R% =2Dmap(R?, 6))

A Inters(R',R?) = ¢  (Dist(R',R?) > eps) = Disj(R., R?).

o’ 0

4.2.2. Meeting relations

Two ribbons R’ and R? are linked by a meeting relation
Meet(R!, R?) when

the intersection of two ribbons isP(x,y) v L(y = ax+b),
such as P is Point (0D) and L is Line (1D) (see Fig. 11).

VR!,R?> e Ribbon, (Vo e Scale)
A (R} =2Dmap(R', 6)) A (R2 = 2Dmap(R?, 6))
A (Inters(R',R?) = {P v L}) A (Dist(R',R?)
=0) = Meet(R}, R2).

4.2.3. Merging relations

Two ribbons R! and R? are linked by a merging relation
Merge(R', R?), if the intersection of these ribbons is an area.
We obtain six cases, (see Fig. 12):

Formally, we can state:

vR', R? e Ribbon, (Yo eScale)
A (R} =2Dmap(R!, 6)) A (R = 2Dmap(R?, 6))
A Inters(R',R?) # ¢
A (Area(R' N R?) > &%) A (Area(CMP(R' N R?)) = 0)
= Merge(R.,R%).

4.2.4. Crossing relations

This topological relationship is very important because
80% of spatial objects are polyline-type [31]. Common
examples include road-road crossings and river-road
crossings. For instance, see Fig. 13.

This relation is based on the area of the intersection
between two ribbons R! and R2. For instance, a threshold
£cr can be given.

So, we have

¥R',R? eRibbon, (Yo e Scale)
A (R} =2Dmap(R', 6)) A (R = 2Dmap(R?, 6))
A Inters(R!,R?) # ¢
A (Area(R! N R?) > e¢;) A (Area(CMP(R! N R?)) > 0)

= Cross(RL, R2).
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Fig. 10. Disjoint relations between two ribbons.

a b

e

]

c d
WJ

Fig. 11. Several cases for meeting from (b-d). Except (a) corresponding to a side-by-side and (e) to end-to-end.

4.3. Transformation of ribbons-ribbons relations

When downscaling, the transformation of topological
relations can be applied. The topological relations between
objects varied according to certain criteria, we present in
the following subsection these transformations.

4.3.1. Transformation of disjoint to merge
This disjoint relation transformed into merging rela-
tion, when downscaling (see Fig. 14).
This process can be modeled as follows:
VR!,R? eRibbon, (Vo e Scale) A (R. = 2Dmap(R', 5))
A (R =2Dmap(R*, 6)) A Disj(R', R*)
A (Dist(R',R?) < ep;) = Merg(RL, R2).

070

When a ribbon becomes very narrow, we apply this
assertion:

VR e Ribbon, (Vo e Scale) A (R, = 2Dmap(R, 0))
A (Width(Rs) < £,) = Ry = ¢.

4.3.2. Transformation of cross to merge
The crossing relation can transform into merging rela-
tion according to the area of complement of the intersec-
tion between the two ribbons: Area(CMP(R' n R?)), (see
Fig. 15).
The formal definition of this process is
VR!,R? e Ribbon, (Vo e Scale) A (R: = 2Dmap(R!, 5))
A (RZ =2Dmap(R?,6)) A (Cross(R', R?))
A (Area(CMP(R! N R?)) < Area(R' N R?)) = Merge(R!, R2).
When a ribbon becomes very narrow, we apply this
assertion:
VR e Ribbon, (Vo € Scale ) A (R; = 2Dmap(R, 6))
A (Width(Rs) < £1,) = Ro = ¢b.

4.3.3. Transformation of meet to merge
The transformation of meeting relation to merging
relation was expressed by the following assertion
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b c
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d e

Fig. 12. Example of merging.

Fig. 13. Example of crossing.

(see Fig. 16):
VR',R? eRibbon, (Yo e Scale) A (RL =2Dmap(R’, 6))
A (R2 =2Dmap(R?, 6)) A (meet(R', R?))

A (Area(R' N R?)) > €2;,) = merge(R}, R%).

When a ribbon becomes very narrow, we apply this
assertion:

VR e Ribbon, (Vo € Scale ) A (R, = 2Dmap(R, o))
A (Width(R,) < €1p) = Rs = ¢.

4.4. Ribbons-regions relations

In this section, we study the relations which can hold
between ribbons and regions. To describe these relations,
we can classify them into types, namely, disjoint, meet or
touches, cross, cover (covered-by), contain ( contained by),
overlap and on-boundary, as shown in Fig. 17.

Scale 0 meet

Scale 1 y Merging
Scale 2 l

The smaller disappear
Scale 3 L

ull

Fig. 14. Transformation of disjoint relation between two ribbons.

The common example in this case is when a road runs
along the sea, what are exactly the spatial or geographical
relations which are concerned? Sometimes, either the
road touches the sea or a small beach is located between
the road and the sea, etc. From a mathematical point of
view, mostly there is a disjoint relation between the road
and the sea whereas for people the relation is different.
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Scale 0 I crossing
Scale 1 y Merging
Scale 2 The smaller

disappear
Scale 3

Null

Fig. 15. Transformation of crossing relation between two ribbons.

Scale 1 merge

|
|

Scale 2
The smaller disappear

Scale 3 l
Null

Fig. 16. Transformation of merge relation to meet.

In addition, when one is reading a map, according to scale,
the topological relation can be different, disjoint or meet.

Also, the relations between regions and ribbons can
also be varied according to the scale, for instance, the
disjoint relation may be transformed into meet or on-
boundary relations when downscaling.

4.5. Transformation of ribbons-regions relations

4.5.1. Transformation of disjoint to meet

The disjoint relation can transform into relation meet
according to the following conditions (see Fig. 18):

The exact condition is that the distance between region
and ribbons must be greater than the thresholds &p;.

This transformation can be applied according to this
assertion:

VR e Ribbon, VG € Region, (Vo € Scale) A (R, = 2Dmap(R, o))

A (Gs = 2Dmap(G, o)) A Disj(R, G)
A (Dist(R, G) > eps) = Meet(R., R?).

0’0

When a ribbon becomes very narrow, we apply this
assertion:

VR e Ribbon, (Vo e Scale) A (R, = 2Dmap(R, 6))
A (Width(R,) < €1) = Ry = ¢p.

The region can be eliminated if its area is too small to be
well visible. Thus, in this case, the initial relation does not
hold anymore.

VO € GeObject, Vo € Scale A (O, = 2Dmap(0, o))
A (Area(0,) < (ep)*) = Oy = ¢p.

4.5.2. Transformation of contain to cover
The transformation of contain relation into cover rela-
tion was expressed by the following assertion (see Fig. 19):

VG e Region, VR € Ribbon, (Vo € Scale )
A (G = 2Dmap(0, 6))
A (R=2Dmap(R, 0)) A (Contains(R , G))
A (Dist(R,G ) < &1) = Cover(0} , 02).

But a smaller object can disappear or be eliminated if its
area is too small to be well visible. So in this case, the
initial relation does not hold anymore.

4.5.3. Generalized irregular tessellations when downscaling

By irregular tessellation (or tessellation), one means the
total coverage of an area by sub-areas. For instance, the
conterminous States in the USA form a tessellation to cover
the whole country. Generally speaking, administrative sub-
divisions form tessellations, sometimes as hierarchical tes-
sellations. Let us consider a domain D and several polygons
P;; they form a tessellation if (see Fig. 20b):

- For any point py, if p, belongs to D then there exists P;,
so that py belongs to P;.
- For any p; belonging to P;, then p, belongs to D.

A tessellation can also be described by Egenhofer
relations applied to P; and D, but in practical cases, due
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/R touches A
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R cross A
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R covred by A

R on-boundry A

R contained A

R cover A

R touches A

2

overlap A

Fig. 17. Basic relations between regions and ribbons.

Scale 0 disjoint
Scale 1 meet
Scale 2
The smaller disappear
Scale 3

Null

Fig. 18. Transformation of disjoint into meet.

to measurement errors, this definition must be relaxed in
order to include sliver polygons (see Fig. 20a). Those errors
are often very small, sometimes a few centimeters at scale
1. In other words, one has a tessellation from an admin-
istrative point of view, but not from a mathematical point
of view.

When downscaling, those errors will be rapidly less
than the threshold &, so that the initial slivered or
irregular tessellation will become a good-standing
tessellation.

The situation becomes complex when roads or rivers
traverse the tessellation, because we have to study all

Scale 0
Contain

Scale 1 Cover

Scale 2

2
4
/

v

Scale 3 The smaller disappear

Null

Fig. 19. Transformation of contain into cover.

topological relationships between tessellation and ribbons
which represent the roads or rivers.

4.6. Chain of ribbons

A chain is defined by a set of ribbons linked by end-to-
end relations. A ribbon chain may be closed; in this case, it
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b

Fig. 20. A tessellation with sliver polygons and a good standing tessellation.

Fig. 21. Chain of ribbons.

d

Fig. 22. The distance between two polylines.

constitutes a ribbon circuit. In general, since river's and
road's widths are variable, they can be modeled by a chain
of ribbons (see Fig. 21).

4.7. Distance between objects

We concentrated, in this work, especially on the dis-
tance between objects. Considering two objects A and B,
what is the distance between them? An interesting defini-
tion is given by the Frechet distance which corresponds to
the minimum leash between a dog and its owner, the dog
walking on a line, and the owner in the other line as they
walk without backtracking along their respective curves
from one endpoint to the other. The definition is symme-
trical with respect to the two curves (see Fig. 22) [11]. By
noting a, a point of A, and b of B, the Frechet distance F is
given as follows in which dist is the Euclidean conven-
tional distance:

F= Ildgzc(ll&/lslg(dlst(a, b)))

But in our case, one must consider two distances, let us
say, the minimum and the maximum of the leash, so

giving:
dl = Ié/lelg(lg/lelg(dlst(a, b)))

and
d2 = Izﬂggc(%g(dlst(a, b))).

The thresholds used in the mathematical assertions are
defined from this distance. Then, the distance between
two regions A and B is defined also as the Frechet distance
between both boundaries. In this context, the algorithm
defined in [11] is used.

4.8. Experimental analysis

The downscaling of a map implies that the topological
relationships between spatial objects (ribbons and
regions) should be transformed into other ones. To apply
these transformations on the map, the following require-
ments should be satisfied: (1) the topological relationships
between spatial objects should be defined, (2) a frame-
work is required to derive the transformations of topolo-
gical relationships, and (3) some metric measures and
thresholds are taken to guide these transformations.

To analyze the variation of topological relationships
using our mathematical framework, a prototype is devel-
oped. We implement three main functions

— Dist (0',0%): calculate the distance between two
objects;

- RelTOPO(0',0%): define the relations holding between
two objects;

— TRansRel(Rel, Dist, threshold): apply the possible trans-
formations using the mathematical assertions.

Using predefined thresholds, the prototype works as
the following steps:

- Compute and store the topological relationships
between the ribbons and/or regions, using the asser-
tions developed in Sections 4.2 and 4.4.

- Apply the simplification operator of the generalization
process.

— Use the assertions developed in Sections 4.3 and 4.5
to transform the possible topological relationships
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b

G1

Fig. 23. Transformation of topological relationships. (a) before generalization, (b) after generalization.

Table 1
The variation of topological relationships.

Before generalization After generalization

Disjoint( G!, G?)
Cross(R', R?)

Disjoint( G', G?)
Disjoint ( R%, G%)

Meet (G!, G?)
Merge (R, R?)
Meet(G', G*)
Meet(R?, G%)

between the simplified objects (regions and ribbons).

The prototype can automatically detect the topological
relationships between objects and transform them into
other ones according to the mathematical assertions
described in Sections 4.3 and 4.5.

Fig. 23 shows a real example; the River R! is crossed
with another river R? and the buildings (G!, G and G>) are
disjointed. The topological relationships are as follows:

Disjoint(G!, G?).
Cross(R!, R?).

Disjoint(G!, G?).
Disjoint (R?, G*).

Let us define two thresholds, &; for invisibility of objects
and ¢, for the reduction of objects (regions or ribbons) to
point or line. In our implementation, we takeg; =
0.1 mm and &), =1 mm. When downscaling, the rivers and
the buildings are generalized and the topological relationships
are transformed into other relationships. Table 1 illustrates
these transformations of topological relationships

Fig. 24 shows another real example, consisting of
several objects: rivers, coast, city. Thus, the French Riviera
coast runs along the Mediterranean Sea, from Spain to
Italy. There are three cities: Nice, Montpelier and Mar-
seilles. The Rhone River is linked to the sea.

Meet (River, Coast).

When downscaling, the Mediterranean coast is gener-
alized and the topological relation is transformed into

Merge (River, Coast).

Since certain topological relations must be persistent,
regardless of the scale of representation, those relations
must hold. See, for instance, in Fig. 24 the Mediterranean
Coast in the South of France: as the coast is generalized,

some harbors will be in the middle of the sea such as Nice,
whereas others will be inside the country such as Mar-
seilles and Montpellier; in addition, the confluence of the
Rhone river will be badly positioned in the middle of the
land. The constraints are as follows:

Covers (France, Nice).
Covers (France, Marseilles).
Covers (France, Montpellier).
Covers (France, Rhone).

Another example of topological constraint when gen-
eralizing the Eastern French border is the case of Geneva
which must hold outside France (see Fig. 25); the con-
straint is as follows:

Meet (France, Geneva).

In our implementation, we use the ribbons to represent
the linear objects in order to verify the correctness of the
concepts of the proposed framework. In this study, we
present some examples to show the transformations of
topological relationships when downscaling. The topolo-
gical consistencies of the map are required when down-
scaling. However, traditional methods for maintaining
consistencies of topological relationships are ineffective
as they do not associate the shape simplification with the
transformation of topological relationships. Thus, they
cannot analyze the transformations of topological relation-
ships; this makes them ineffective and weak to preserve
topological consistencies in the map.

The framework presented in this paper consists of trans-
forming the topological relationships into other ones in order
to maintain the consistencies of topological relationships,
thus, keep the high quality of the map when downscaling.
Our collection of the cases we tested in the three previous
examples corresponds to different topological relationships
between spatial objects (ribbons or regions) as disjoint, meet,
cross, merge and covers. They have been successfully tested
and indicate the correctness of our concepts and the ability of
our mathematical assertions to transform the topological
relationships from any given map.

This study focuses only on the transformation of
topological relationships when downscaling. The mathe-
matical assertions of this framework can be integrated on
any simplification algorithm provided by GIS as the algo-
rithm presented in Ref. [15], but this is beyond the scope of
this study. This work will be addressed in the future.
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a Rhone Italy

River

Montpellier Marseilles

Mediterranean Sea

b

Montpellier

Shoreline
generalized

Nice
arseilles e

Montpellierg,

Fig. 24. Holding topological constraints for harbors in the Mediterranean Sea. (a) Before generalization. (b) Only the coastline is generalized. (c) Harbors
must move. (d) After generalization (the meet relation transformed into merge).

a b
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France ’
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Italy ) Italy

Fig. 25. Holding topological constraints for outside border cities.

5. Conclusion and future works

The concept of generalization was introduced into the
GIS domain many years ago. Many propositions were given
for modeling generalization but propositions do not exist
which treat really the topological relations issues.

The application of the generalization operators may cause
topological conflicts. To avoid these conflicts, topological
conditions are used to generate the relationships in terms
of meeting, overlapping, disjunction, and containment
between map objects into others relationships. In this paper,
we use these topological conditions to formulate some of
mathematical frameworks which are composed of a set of
assertions for treating the variety of topological relations
according to the scale. We consider two principal types of
objects: regions and ribbons. When downscaling, a spatial
object, represented by area, can mutate into a point, or
disappear; also a ribbon can mutate into a line, or disappear.
These objects have topological relationships between them.
So, each topological relation will also be generalized using
the assertions given in mathematical framework for each
situation. This framework was based on three principle

models of relations, Allen [5], Egenhofer [6] and Lee and
Hsu [7,8].
This work can open various future works, such as:

® [ntegration of this topological model in on-the-fly web
map generation.

® A map does not contain only the simple objects such as
areas and ribbons, but there are also roundabouts and
motorway interchanges that are complex objects.
A complementary mathematical framework for this
type of objects will be a future work.

® The assertions of the mathematical framework consid-
ered the geometries of object represented in the 2D
domain, we would like to extend our work to deal with
geometries of higher dimension, such as the 3D.

And finally, the foundations of a robust topology with
newly presented concepts of ribbons, loose ribbons, chain
of ribbons and their particular relations can be more useful
to help solve real problems in geographical reasoning and
in territorial intelligence. Indeed we need to design a
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theory which must be robust against measurement errors
and downscaling.
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