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Abstract—Organizations often hold large amounts of unused data, trapped in fragmented databases, locked in legacy data

formats. As well, the Web offers a variety of data sources accessible in diverse ways. There is a lack of approaches to handle

this multiplicity of data sources and combine multi-origin data into coherent smart data sets. We therefore define a meta-model

that allows flexible modeling of data source diversity, and we propose a resource-oriented approach to handle data access and

processing. We designed and evaluated our approach to offer scalability, responsiveness, as well as dynamic and transparent

data source management features. We motivate our solution through a live scenario based on the information system of the

Audience Labs French company. This paper describes our models and resource-oriented architecture and shows how they adapt

to industrial needs and facilitate smart data production and reuse.
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1 Introduction

With the emerging presence of social media and social
networking systems, users adapted their online way of
life, becoming both data providers and consumers. They
comment, review, gather interests and wish lists, pro-
ducing a huge amount of data across the Web, collected
as custom profiles. Furthermore, governments and large
companies open their databases to the world across
the Web, thanks to initiatives such as the open data
project [1]. These data sources are typically exposed via
Web APIs [2] or SPARQL endpoints that can be com-
bined in service mashups [3] to produce highly valuable
services. As an example, the sets of APIs provided by
Twitter, Facebook, LinkedIn, Amazon, Youtube, Flickr
or Dropbox are reused in thousands of mashups1. The
huge amount of public data allows organizations and
companies to adopt new data-driven strategies. It leads
them to open and improve their information systems,
drawing benefits from the aggregation of data from
the Web. Specific business mashups enrich data with
semantics and combines external with internal data
sets to improve data exploitation, providing advanced
statistics, and useful data for decision support systems.

In this paper, we propose an adaptive solution for
combining multi-origin data sets available from inter-
nal information systems and Web sources in order to
produce smart data sets. We define smart data as
significant, semantically explicit data, ready to be used
to fulfil the stakeholders’ objectives.

1. See also http://www.programmableweb.com/

1.1 Objectives and Scientific locks

Our objective is to generate an homogeneous linked
data set from diverse data sources in response to a
given user request. In addition, our proposed solution
must present scalability and responsiveness features
Our approach relies on a generic metamodel and a set of
models focused on data source description, access and
processing. Each data source is described with a combi-
nation of specific characteristics that allows to improve
data access. Our meta-model allows describing data
sources in a flexible way and generating models that in
turn provide adapted data processing depending on the
scenario. The provided scenario demonstrates how the
different models (data source model, data model and
data access model) enable specific data processing to
handle data source characteristics such as data volume
and freshness.

We articulate our approach around different steps
which are necessary for completing data aggregation
in order to produce smart data. The main steps of
the process are extraction from data source, semantic
annotation in order to manipulate them as linked data,
combination and filtering of produced data in order to
remove duplicates and correct malformed pieces. We
isolate each task with a different resource enabled by
our service oriented architecture implementation.

In order to adapt to diverse scenarios, we provide
our architecture with a plugin registry that provides
specific implementation for the management of each
characteristic. Accordingly, we identify the following
challenges and/or scientific locks to address during the
data integration process.

• dynamic and transparent data source management:
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it must be possible to transparently add or remove
a data source at runtime without any need of hard
coded information

• scalability and responsiveness: the solution must
support a large number of data sources while of-
fering low response time

• dynamic data processing: the solution needs to
adapt at runtime to data sources that require
different processing (large data volume, frequent
update, latency)

• data consistency: provide consistent, error and
duplicate-free data

In the following, we illustrate these problems with a set
of data sources from our scenario.

1.2 Illustrative Scenario

In the context of our work, we focus on the enrichment
and reusability of data handled by a communication
company, which has a need for an adaptive system to
automatically combine data from their internal infor-
mation system and enrich it with data from Web sources
in order to study the impact of campaign broadcasting
over a list of customers. The system must provide
decision support tools under the form of recommenda-
tions for future broadcasts. The scenario describes the
following data sources, each of them presenting different
characteristics.

1) an internal linked service giving access to our
company business data

2) a SQL database containing a large volume of
information (around 100Gb)

3) a database that records user activities (high vol-
ume of changing data) with 10.000/20.000 new
tuples per day

4) a stream of update requests
5) external APIs (twitter, facebook, dbpedia, etc.)

Each of these data sources present several character-
istics. These characteristics are specific to the scenario.

Source 1 is a linked service, i.e. consumes and pro-
duces linked data. It provides access to a small data set
that describes the business data of the company. Data
pieces that come from this source are subject to privacy
constraints. Source 2 is a SQL endpoint to a database
that contains millions of tuples with no semantic an-
notations, this data source has a low update frequency.
Source 3 is a SQL endpoint to a database that contains
user daily activities, data from this source are updated
regularly, so it requires freshness. Source 4 is a RSS
stream that contains user update requests, it mostly
contains data which has to be saved or removed from
data results (blacklist information). Other sources are
represented by a set of APIs (Twitter, Facebook) that
help construct interest profiles, as well as a Dbpedia
SPARQL endpoint for concept manipulation.

The appearance of one or another characteristic in
a data source is unpredictable and may vary from one
scenario to another. This unpredictability of variation

in scenario clearly illustrate the need for a meta-model
in order to fix the limits of data model definition. This
meta-model will set the design guideline, and enable the
adaptivity of the approach.

1.3 Paper Organization

This paper is organized as follows. Section 2 presents
our meta model and models for describing data sources.
Section 3 explains our different processing techniques
in order to handle the constraints and characteristics
data sources provide. Section 4 presents our resource-
oriented architecture, details the different components
and their orchestration. Section 5 gives an evaluation of
our prototype in terms of responsiveness and shows how
it responds to user requests with acceptable timings.
Section 6 presents related work and highlights the
advantages of our approach. Section 7 discusses our
results and provides guidelines for future work.

2 Data Source Models
In order to address the above challenges, we introduce
a metamodel that allows to describe the characteristics
of data and data sources with models according to
different characteristics. A data source model describes
sources in terms of physical characteristics such as
volume, update frequency, privacy, authentication, se-
mantics, according to the needs of our scenario. A Data
model defines a scenario-based representation of meta-
data associated to extracted data from data sources.
The data characteristics introduced in this model, when
defined, override the properties of the data source
model. In addition, we define data processing workflows
generated with an adaptive algorithm to extract data
from data sources according to the characteristics in-
troduced in the models. Hence, these models are used
in our smart data architecture that provides a service-
oriented solution for data integration.

2.1 A Metamodel for describing data sources

One of the first major challenge that appears during
integration of multi-origin data is to handle data source
extraction, as data sources are divided into different
categories, with different characteristics. Data sources
contain or produce data in their own format, responding
or not to standardized efforts, e.g. CSV or XML for
structured files; tuples for databases; JSON or XML
for streams and services. Since data source processing
capabilities depend on these characteristics, we build
our adaptive integration approach on a flexible data
source representation. To do so, we define a meta-model
for describing data source models that could easily
adapt to any use case. Figure 1 presents this data source
meta model.

In this meta-model, we make a difference between
a data source and the data extracted from a source.
Characteristics appear at different level in this meta-
model and can be associated either with the source
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Figure 1. Data source metamodel

itself, which implies that the characteristics are useful to
guide the interaction with the data source, or associated
with the data to be extracted, in which case they apply
to the data schema or to data instances.

Our meta model includes a set of core attributes:
URI, request format, data source model and data
model. We identify URI and request format as the
mandatory pieces of information needed to manage the
data sources. The request format characteristic is rep-
resented by a syntax attribute (e.g. XML, JSON, SQL)
and a schema defined by three attributes : endpoint,
syntax (e.g. XML, n3, JSON) and structure (e.g. RDFS,
XSD, JSON Schema).

The Data source model is defined as an object that
contains all the necessary properties and attributes,
that will be used by the client to request the data
source. These properties are scenario-specific. The Data
model defines the set of properties and meta-data infor-
mation that apply directly to the extracted data. These
information are specific to the extracted instances.

While we illustrate the use of this meta-model in the
context of our scenario, the former remains appliable to
any new data source characteristic and other scenarios.

2.2 Data Source Description Model

Relying on the meta-model presented above, we create
an adapted data source model that presents the char-
acteristics which are shared or specific to the different
types of data source presented in our scenario (cf Sec-
tion 1.2). We consider our data sources as defined by
a set of the following characteristics: Data Source ID,
Endpoint URI (data access transparency), Request for-
mat (SQL, SPARQL, JSON, XML etc.), Data volume,
Latency, Update period, Authentication, Semantic and
Privacy agreement [4]. Fig. 2 presents our scenario-
based data source model.

The URI characteristic identifies the data source
and contains the necessary information to enable the
interaction with this data source. An URI is com-
posed by at least : a protocol, a domain and a re-
source, e.g file://localhost/home/file1.xml. The
protocol specifies the source connection procedure, such
as HTTP, FTP or SGBD connection. URI can also
contains authentication information, port number and
query parameters. URI can transparently identify any
resource, a HTTP URI for a web resource, a file on local
system, a database URI, etc.

Request Format defines how to interact with the
data source. Most common request formats are SQL,
SPARQL, JSON and XML.

Update frequency indicates the recommended average
duration between each request to a data source. An
update frequency of 0 means that each request may
retrieve different data. The update frequency value has
an impact on cache or synchronization possibilities.

Volume represents the global quantity of data that
a data source manages. Depending on the volume of
the data source, specific data access strategies can be
adopted. According to the specific strategies to access
data, we defined different volume intervals. A small

volume data source can be accessed directly (less than
20 Mo of data). A medium volume data source (from
20Mo to 200Mo) requires cache in order to handle
eventual delays. A high volume data source (more than
200Mo) may required synchronization systems or big
data mechanisms such as map/reduce.

Latency represents the average network time required
to obtain a response message to a request on a data
source. This value is maintained and updated regularly
by statistical measure of delay.

Authentication describes the data source access re-
striction. This attribute can take different values, or
can be disabled if data is publicly accessible. Common
values are HTTP-auth, where access is granted by
server directives over username/password verifications,
OAuth or OpenId, where authentication is handled by a
third party server, or SSH public/private keys. In some
cases, auth parameters can be specified in the URI, e.g.
http://user:pass@test.com/.

Semantics aggregates the information required to
perform the semantic transformation from raw data
to linked data. The semantic description contains :
an URI of the linked data graph that describes the
data model, an URI of the mapping file that gives
information about required data transformation and an
attribute identifying the system used to perform the
transformation.

Privacy agreements define whether or not data is
limited to a specific usage context, according to a set
of conditions. Agreements can, as an example, avoid
to provide a piece of data to a third party system, or
prevent any modification or commercial use of a data
piece.
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Figure 2. A data source model based on our scenario

2.3 Data Description Model

At the data level, there is a need for a model to describe
data characteristics. Based on our scenario, we define
here a data model that allows to characterize data sets
and instances with specific attributes. The model we
devised contains the following attributes that describe
data instances: Privacy, Validity, Semantics and Filters.
These attributes can be associated with either data
tuples or globally with the whole data set.

A set of privacy attributes describes privacy require-
ments that has been given to data values by the data
owner. As an example, a user who provides an email
address, solely on the condition that she or he does not
receive any email, requires a specific data agreement to
be associated with the data value.

Validity specifies the lifetime of the data we extract
from the data source, in other words it give the date
after which the data will be considered as unusable or
obsolete. Validity is different from update frequency, as
a data source can specify an update frequency of an
hour, and specify that the provided data is valid until
the end of the year.

Semantics are conceptual metadata which are asso-
ciated with a data set. Data semantics can be provided
together with the data, when accessing the data source,
or updated later with a semantic annotation process.

Filters are scenario-based specific attributes, which
specify the values in the data set in terms of quality.
Filters can specify a detected malformed piece of data,
or a forbidden value.

The data constraints introduced in the data model
always override the data source characteristics. As an
example, a privacy agreement in the data model can
specify the recipient allowed for a piece of data, but a
data source level privacy agreement specifies a wider
recipient will be disabled.

2.4 Data Access Strategies

In the following, we present different data access strate-
gies in order to help our approach handle cases where
volume or latency problems hamper data access. A
data access model describes several characteristics that
affect the way a client connects to and downloads data
from data sources. According to characteristic values,
different data access policies can be adopted.

Data volume is defined as a discrete scale, as pre-
sented before. In case where the data source represen-
tation does not specify it, the default volume value is
set to small. Technically, low volume sources can be ac-
cessed at any times, according to needs. Medium volume
sources involve delays and high processing times, so a
cache system should be setup. A high volume source can
either not be directly queried in a synchronous way, be-
cause the volume of data it contains implies a too high
response time. In this case, it is recommended to set
up a synchronization system, where data is periodically
retrieved from the source and saved in a local cache.
In the case of big data sources, when data cannot be
accessed directly because requests takes to much times,
we recommend setting up big data mechanisms such
as Map-Reduce to process data in addition to a local
cache.

Latency represents the delay (in seconds and millisec-
onds) between a data request and the received answer,
set by default to 0. The system statistically update data
source latency value after each request. When latency
is high, mechanisms of cache or preloading are set up.

Update period represents the delay between 2 major
changes in the data source, set to daily by default. An
update period variation will not influence small data
sources, but from medium to big data sources, the cache
and synchronization systems will be impacted. A short
update period will force to increase synchronization
delay, and cache will be cleared more often.

We build our access strategies according to two dif-
ferent models: push and pull strategies.

In pull based strategies, there is no background
workflow, data sources are requested directly and on
demand. This solution does not imply any storage or
synchronization, we request sources, combine results
and return the response. This strategy is only available,
with low or medium data sources (with or without
cache).

In some cases where data source volume is high, or
if data source is a stream, data has to be retrieved
in background, and stored at a given frequency. We
call this a push strategy, it provide some interesting
reduction of time and cost for request that involves big
data transfer or processing, or in case where the request
has a high demand certainty.

In the following section, we present the different
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processing tasks required to perform the integration
process. We identify the needs and propose some or-
chestration methods in order to optimize computational
time and provide a low response time.

3 Data Processing Workflows
From the needs we have identified in the previous
sections, we define processing tasks, which we combine
in workflows to generate smart data. In this section,
we envision different data processing workflows as com-
binations of functions in different orders. We list in
the following the different kind of functions that our
architecture manages as resources, before presenting
how the different possible workflows are constructed.

3.1 Defining Processing Functions

We consider a data source DSa, defined by a set of
characteristics. We define a download function DL()
that extracts a quantity of data D from a data source
DSa.

Definition 1: DL(URIa, Sa) = Da where URIa, Sa

represent the data source DSa (URI and Model) and
Da the data extracted.

An access function can accept optional parameters
(query for databases, authentication parameters etc.).
In this case, the download function handles the specific
authentication or secure protocol to send the query to
the data source. In order to be processed, data needs
to be transformed from its raw extracted format to
a format we can manipulate. We define a decoding
function Dec() which will transform the data into our
standard format.

Definition 2: Dec(Da,r) = Da,f where Da,r is the
data extracted into its raw format and Da,f is the
transformed data.

In order to combine data from multiple data sources,
we need to ensure that concepts from both data source
model graph can be compatible. We define this model
as G which is a linked data graph. In order to transform
the data extracted into an instance of this graph, Ia, we
define a mapping function Sema() which is defined as:

Definition 3: Sema(Da, G) = Ia where Da is the
data extracted from data source DSa, G is the linked
data graph, and Ia another linked data graph produced
from DSa.

Once data has been extracted and semantically en-
hanced, it can easily be combined into a new data
set. We define an integration function called I() which
takes as input the data sets that have been previously
annotated and combines them into a new one.

Definition 4: I(G,Da, Db, ...) => Dmix where G is
the semantic graph of manipulated data and (Da, Db,
...) are semantically transformed extracted data from
data source (DSa, DSb, ...). Finally, Dmix is the smart
data set result.

The function relies on graph instances to link the
concepts of the different data sets with each other. It

analyzes the data pieces which have to be combined and
provides on-the-fly mediation by fulfilling the data piece
conversions and transformations with help from a set of
predefined mediation processes. Based on the domain
ontology, the integration function combines the data
sets based on their common concepts. The function per-
forms concept matching to link concepts and perform a
cartesian product over matching data pieces (i.e. similar
to a database join with a pivot). Before performing
the combination, the integration function analyzes data
and detects heterogeneities, providing mediation based
on our previous work with the DMaaS approach [5].
The DMaaS approach proposes an architecture that
solves data inconsistencies in service compositions. The
approach focuses on service descriptions to analyze con-
ceptual compatibility, and resolves conflictual aspects
with help from mediation services.

We define another function F () that removes the
malformed part, noise and inconsistencies that may
appear in a data set Da after processing. This function
can also take as input a set of conditions to filter data.

Definition 5: F (Da, < Filters >) => Da,clean

The different processing tasks defined here will help
to complete the tasks that participate in the integration
process. In the following, we present how these functions
can be combined into different processing workflows
depending on the characteristics described in the data
source and data models.

3.2 Interaction models in the architecture

Figure 3 presents an example of process orchestra-
tion in order to integrate data coming from two data
sources called S1 and S2. Processes are executed from
left to right, where boxes represent the previously de-
fined functions. Data is going through the following
steps: download (Dl), decode (Dec), transformation
into linked data with help from a mapping description
(Sem), then both data set are integrated (I) and finally
filtered (F ).

S2 Dl Dec Sem

S1 Dl Dec Sem

I F

Figure 3. Typical integration workflow

During execution data goes through different states,
from the raw original format following data extraction,
to our internal format that facilitates manipulation, and
finally to the linked data format once annotated. The
move from one state to another may have an impact on
processing in terms of response time (especially when
processing a huge data volume) or data consistency
(streams VS static DB).

Therefore, the processing workflow can be envi-
sioned as two connected workflows, where the con-
nection point is the integration function. This way,
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we define two different parts in the integration work-
flow: pre-integration and post-integration. The pre-
integration part represents the different functions ap-
plied to the data set from the extraction from the
data source to the integration task. The post-integration
part begins with data integration and ends with data
rendering. This separation helps performing the tasks at
different levels, first data preparation aims at preparing
data for integration, then the integration task combines
data from different sources, and then different functions
such as filtering apply to the resulting set.

In a classical workflow, the filtering task is placed
after the integration process, so that data cleaning is
performed only once. As well, data is typically trans-
formed into linked data before the integration task,
because semantic annotations facilitate the integration
process.

When it comes to big data volume, combining two
huge data sets can be tedious and time-consuming. We
then optimize our workflow by swaping components, or
by duplicating some of them.

For example, when we combine a really big data set
with any other one, it may be interesting to perform a
cleaning before integration. In this case, the filtering
process can be placed before the integration task or
before the semantic transformation task.

S1 Dl Dc Se F I

Figure 4. Filtering before integration

Most of the time, with big volume data sources, it
can be very interesting to move some tasks forward, in
order to reduce the volume we have to process. In some
cases, process may be deleted from the pre-integration
part and placed in the post-integration part. In the case
where the data sources are 2 databases with the same
model, or 2 CSV data files that have common fields,
performing integration before semantic transformation
optimizes the process, because it reduces the size of the
data sets to annotate.

S2 Dl Dc

S1 Dl Dc
I Se F

Figure 5. Earlier integration in the workflow

As presented in the previous section, in some cases,
specific tasks can be added to the workflow, especially
when the semantic model is missing. In this case, the
mapping extraction Mex is inserted before the semantic
transformation task. Here is an example of a classical
integration process where one of the data source does
not provide any semantic mapping definition.

In the following, we motivate the need for a resource
oriented architecture in order to help task processing
as workflows. We extract generic patterns from these
workflows and define rules for our orchestrator.

S1 Dl Dec Mx Sem

S2 Dl Dec Sem

I F

Figure 6. Workflow with a semantic extraction process

3.3 Choice of an Architectural Design

In order to organize and structure the previously in-
troduced tasks into a distributed architecture, we have
studied different architecture design patterns, as sum-
marized in the following. The first pattern is an Enter-
prise Integration Pattern, the next three patterns are
related to Service Oriented Architecture, and the last
one is related to Resource-Oriented Architecture. We
present these patterns and discuss their advantages and
drawbacks.

3.3.1 Shared Databases

A shared database architecture [6] is a enterprise inte-
gration pattern where different services and components
share the same data storage. This type of architec-
ture presents advantages related to the data storage,
when enterprises need information to be shared rapidly
and consistently. All services and components share
the same schema, which helps interaction. Moreover,
database studies have shown that this type of architec-
ture is highly adaptable to big volumes, due to database
characteristics. Database caching is also widely sup-
ported. Nevertheless, this architecture is completely
centralized, preventing use of third party services, or
components with heterogeneous schemas. Furthermore,
the database as a single point of failure becomes an
architectural limitation.

3.3.2 Classical SOA architectures

Classical SOA architectures [7] consist of a set of ser-
vices and static workflows that are compositions of
these services. A workflow describes service calls and
explicits transformations of data flows. Each use case
in the architecture requires a manually crafted and
specific workflow. Using such a architecture allows to
gain benefits from the principles of SOA, i.e. platform-
and location-independent loosely coupled services. It
allows to use different service types (SOAP, REST, ...)
provided by a variety of third-parties. Despites these
advantages, SOA architectures lack adaptivity due to
hard-coded workflows. Each task has to be manually
integrated into workflows, for example data mediation
or caching. Moreover, querying components that are
not deployed as services becomes a complex task and
requires adapters.

3.3.3 Layered Architecture

A layered architecture [7] gathers services together in
layers according to their functional similarity. Each
service from a layer may only interact with services
of the upper and lower layer. This pattern presents a
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Shared Database Generic SOA Layered SOA ESB ROA
(+) - Same schema

- Big volumes
- Cache

- Independence
- Third parties
- Service diversity

- Cohesive
- Limited coupling
- Good reuse
- Easy maintenance

- SOA advantages
- Easy coupling
- Good reuse

- Independence
- Uniform interface
- Dynamic
- Adaptive

(-) - Centralized
- No third party
- Database SPOF

- Static workflows
- Hard-coded config
- Limited to services

- Inflexible
- Complexity

- Static routes
- Service adapters

- Learning curve
- Resource adapters

Table 1
Comparative table of architecture designs

good cohesion within layers, since groups of common
featured services are gathered together. This cohesion
brings a good separation of concerns, making layers
reusable and easy to maintain. Structuring services
into layers limits coupling, which simplifies development
and facilitates component replacement. Unfortunately,
a common schema is needed in the architecture, oth-
erwise it becomes necessary to insert transformation
components between each layers. Furthermore, there is
a lack of modularity due to this layered data exchange,
it is impossible to swap services in workflows for op-
timization purpose, making the architecture inflexible.
And finally, it is difficult to structure layers. If grouping
conditions are too strict or too soft, the architecture
ends up by having either one layer per service or a global
layer which contains all the services.

3.3.4 Enterprise Service Bus

Enterprise service bus (ESB) [8] is a type of architecture
based on a message bus where various components con-
nect to a service bus via their service interface. Service
composition are managed through the architecture by
creating routes. Routes describes service interactions,
and a message broker handles the data flowing from
and to components. Enterprise service bus architectures
present all the advantages of SOAs, including service
independence and loose coupling. The usage of a mes-
sage bus simplifies the integration process. It provides a
precise data management in service composition. How-
ever, Enterprise service buses have two main drawbacks.
First of all, message routes are static, which forbids
dynamic composition, and secondly, message bus needs
service adapters to connect to different resources and
components.

3.3.5 Resource Oriented Architecture

In a resource oriented architecture [9], all the software
components must be resources with RESTful interfaces,
which means they are accessible through their URI via
HTTP methods (GET, POST, PUT, DELETE,. . . ).
A RESTful arhcietcture must respect several princi-
ples [10], as follows:

• Uniform interface ensures that the method infor-
mation is kept in the HTTP method (we use GET
to retrieve a representation of a resource, POST
to create a new resource, PUT to upload new

representations and DELETE to delete resources),
this property also helps to respect statelessness

• Addressability ensures that the information about
the scope of a resource is kept in the URI, every
object will have its own specific URI

• Statelessness means that each request happens in
complete isolation, and the server does not store
any state information, each request contains all the
necessary information, thus improving scalability
of the solution

• Representation oriented means that interactions
with resources are made using representations of
these resources, request header (such as accept)
specifies the desired format

The REST architectural style provides advantages
such as a complete independence of underlying plat-
forms and languages, universal interface and access
thanks to HTTP methods. Resources can be dynam-
ically composed and reused to fulfill a request.

3.3.6 Our architecture

Table 1 summarizes the advantages and drawbacks of
the different architectures presented above. Relying on
the previous study, we propose a resource oriented
architecture enhanced with a data bus. Our architecture
handles components as RESTful resources available
through a uniform interface via HTTP methods. It
overcomes the drawbacks of ESBs, and prevents the use
of service adapters. In our architecture, presented in the
following, each resource is connected to the bus.

4 A Smart Data Architecture
Our approach relies on a resource oriented architecture
in which we define the different tasks required to pre-
pare, semantically annotate and clean data so that it
becomes a consistent “smart data” set.

4.1 Global Overview: a Resource-Oriented Archi-
tecture

Our architecture follows the principles of SOA [11],
which makes our components decoupled, cohesive and
reusable, thanks to these properties:

• Loose Coupling implies that resources have small
or no knowledge of other resources

• Abstraction makes components hide their imple-
mentation behind a decoupled interface
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• Reusability maximizes the effort of separating con-
cerns into components in order to reuse them

• Autonomy ensures that components have control
over what their implementation and are indepen-
dent from their execution environments

• Composability ensures that components can be
combined in order to solve different kind of prob-
lems

In order to build a completely generic and modular
architecture, we deploy our components as RESTful
resources, i.e. relying on the REST principles presented
above. Thanks to the REST and SOA principles, our
architecture is generic, scalable and modular, as it is
composed of different resources that can be dynami-
cally orchestrated in different ways as presented in the
following.

Figure 7. Architecture Resources

We defined a set of architecture components, as
shown in Fig. 7, exposed as generic RESTful resources
identified by URIs and accessible through HTTP meth-
ods. These business resources are the core of the archi-
tecture, they handle the main data processing tasks. In
addition to these core resources, we defined resources
that support task configuration and administration,
referred to as management resources.

4.2 Core Resources

The data source handler resource manages the access
and data extraction from data sources (DL and Dec
tasks of Section 3.1). The semantic annotation resource
helps to annotate and transform data coming from
diverse sources into linked data (Sem task). The data
integration resource combines multi-origin data and
resolves heterogeneities that appear (I task). The Fil-
tering and Cleaning resource filters data and removes
duplicates as well as malformed pieces of data (F task).

The Reasoner (running as a background task) infers
new facts from existing data with help from customer-
defined business rules. Finally, the Web Interface com-
bined with the Query Parser handle user interaction
and data requests to the architecture.

In the following, we present the core resources that
handle the tasks presented in Section 3. We then present

the management resources that allow to configure com-
ponent usage in the background. Please note that all
components do not necessarily have a resource configu-
ration API.

4.2.1 Web Interface and Query Parser

The Web interface is the main entry point to the ar-
chitecture. User interactions through this interface gen-
erate queries that are sent to the architecture, through
the orchestrator API. Data queries are formatted in
SPARQL and involve semantic concepts. Listing 1 gives
an example of query that involves a set of concepts
belonging to our scenario.

PREFIX al: <http://restful.alabs.io/concepts/0.1/>
SELECT ?email value ?campaign WHERE {

?email a al :email ;
al :has email value ?email value .

?email value a al :email value .
? clic a al : clic ;

al : clic email ?email ;
al :clic campaign ?campaign .

?campaign a al :campaign .
}

Listing 1. A data query example

Data queries are forwarded to the query parser,
which extracts the corresponding algebra, as a set of
subgraphs and concepts2. Subgraphs and concepts help
to detect the different data sources involved. The parser
generates a workflow, involving different architecture
resources and the data sources that are needed.

4.2.2 Orchestrator

In order to handle data flows between resources, we
define an orchestrator, which acts as a data bus and
receives HTTP requests from the Web interface. On re-
quest reception, the orchestrator extracts the SPARQL
query from the request and forwards it to the query
parser, which returns a workflow, defined as a sequence
of tasks as defined in Section 3. According to this work-
flow, the orchestrator handles requests to the different
architecture resources, retrieving data responses and
forging HTTP requests. The orchestrator is defined as a
RESTful resource, user queries are sent through HTTP
requests. In order to follow the REST principles, we
used HTTP GET requests are used for SELECT queries
and HTTP POST requests for UPDATE.

GET /query?user token=AS65G&query=SELECT+%3Femail value
+%3Fcampaign+WHERE+%7B%0D%0A++%3Femail...
HTTP/1.1

Host: restful .alabs. io
Keep−Alive: timeout=15
Connection: Keep−Alive

Listing 2. Sample of HTTP request embedding a SPARQL
query

2. See https://github.com/semsol/arc2/wiki for a documenta-
tion about the SPARQL parser we use.
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4.2.3 Data Source Handler

The data source handler allows to extract data
from the different data sources involved in the query
subgraphs. This resource accesses each data source
and extracts data with the help of the data source
description (see Section 2).

In order to extract data from a data source, the
handler accepts HTTP requests (GET to read, POST
to update, ...) with as parameters the data source
representation and the data query. Listing 3 illustrates
an example of data source configuration resource.

"source":{
"id" : 1,
"format":{

"syntax":"mongodb",
"schema":{

"endpoint":"http://153.75.28.26/schema_def",
"syntax":"JSON", "structure":"JSON-S" } },

"uri":"mongodb://user1:76ls6h@153.75.28.26:80/myDBendpoint",
"volume" : "low"

}

Listing 3. A data source configuration file example

Relying on this information, the resource retrieves
(or deploys, according to access strategies defined in
Section 2.4) an adaptive client that handles the char-
acteristics of the data source, authentication, format,
volume, etc.

4.2.4 Semantic Annotation Resource

Relying on the semantic information provided in the
data source representation, the semantic annotation
resource will either annotate with concepts or transform
data into linked data.

The resource uses different techniques to enhance
semantics of raw data, depending on the kind of data
source. As an example, for CSV file sources, we rely
on the RDF123 approach [12] to transform raw data
into linked data. This approach relies on expressions
to map the contents of spreadsheet columns to linked
data. The semantic annotation resource also relies on
the D2R approach [13], in order to transform data from
relational databases into linked data. The D2R platform
is based on RDF mappings that attach conceptual
graphs to SQL requests, giving access to relational data
through a SPARQL endpoint. The resource benefits
from a management API, presented later in this section,
which helps to generate or retrieve semantic mapping
information for each data source.

4.2.5 Data Integration Resource

The data integration resource interconnects the data
sets that have been extracted from sources and an-
notated with linked data concepts. The integration
resource aligns the different concepts, relying on the
user data query to construct the graph represented by
this query. The architecture analyses the concepts in
the query and prepares data for the merging process,
detecting the pivot values if they exist, relying on
metadata to connect data from the sources involved.

To detect possible heterogeneity problems, could they
be syntactic or structural, and to reconcile them, we
rely on our previous DMaaS approach [5]. This ap-
proach analyzes semantically described data, using a
decentralized (peer to peer) repository of mediation
services3. The DMaaS approach classifies data hetero-
geneity issues according to the syntactic, structural and
semantic levels, and provides adapted mediation along
these levels.

4.2.6 Filtering Resources

In our architecture, when data is processed in one
resource or another, noise and inconsistencies may ap-
pear, as well as duplicate values or instances. The
cleaning and filtering resource handles different data
cleaning tasks, including data duplicate removal, in-
complete data removal, formatting and encoding issue
processing and data removal when an issue cannot be
solved (damaged data).

In addition to these resources, the user has the
possibility to provide specific filtering rules, to ignore
specific data values, or to limit fields to range domains.
Therefore, the cleaning and filtering resource has a
management API, where users can manage their specific
rules. Listing 4 presents filtering rules samples.

{
"@context":{

"@vocab": "http://example.com/filter/",
"vcard": "http://www.w3.org/TR/vcard-rdf/",},

{ "@id": "http://example.com/filter/r1",
"data": "vcard:email", "operator": "not-contain",
"value": ".org" },

{ "@id": "http://example.com/filter/r2",
"data": "vcard:age", "operator": "more-than",
"value": "20" }

}

Listing 4. Filtering rules example

4.2.7 Reasoner

Our architecture also integrates an inference engine
called reasoner. The reasoner runs in background, reg-
ularly analyzes data and generates rules and statistical
knowledge. It updates a internal database with the
statistical data. We integrate such an engine to improve
user query response time, by statistically updating
data source descriptions, and adapt with changing data
source status. We also use the inference engine to
generate facts and deal with complex user queries. We
use classical AI mechanisms and algorithms such as col-
laborative filtering (Apache Mahout) and semantic Web
inference engine (Jena, Pellet, Euler EYE, HermiT)4.
This resource has a management API that allows users
to manually add specific business rules and facts, that
will drive the inference engine.

3. Mediation services are Web services dedicated to data con-
version.

4. See http://www.semantic-web-journal.net/sites/default/
files/swj120 2.pdf for a comparison of reasoners.



10

4.2.8 Authentication and Data Security

In order to secure the access to resources and data, we
overlay our architecture with an authentication system,
relying on the oAuth [14] authentication framework.
OAuth relies on a authorization server which authen-
ticates user access upon a resource from a server. The
framework relies on authentication tokens generated by
an authentication server. These tokens can be used to
access the resources owned by an information system.
The decentralized scheme of the architecture involves
authentication of each resource exchange.

Figure 8. Architecture authentication process

As illustrated in Figure 8, the user connects to the
architecture interface (1), the architecture redirects him
to the authentication server interface (2). The user logs
in through this interface (3). The authentication server
generates a token (4) that authorizes the Web interface
component to access the different resources on behalf of
the user (5), each layer verifies with the authentication
server the token freshness and validity (6).

4.3 Management Resources

In order to make architecture management and ad-
ministration easier, and to avoid manual configurations
as much as possible, we provide our architecture with
management resources, accessible via a set of APIs.
Through these APIs, users can modify resource behav-
iors and settings, add or remove data sources, request
the generation of a mapping for these data sources, plug
or unplug core components from the plugin registry,
define specific business-oriented rules. We present these
management resources in the following.

4.3.1 Data Source Handler Configuration

This resource provides an API that allows to perform
the four CRUD operations (Create, Read, Update and
Delete) over data sources. Data sources are retrieved
and manipulated with their ids and according to the
model instance that describes their characteristics. As
an example, a GET request over the data source con-
figuration resource with the id of a data source :
GET /datasource/1 returns the JSON object rep-

resenting the data source with the id 1 described in
Listing 3. Data sources can be published in the archi-
tecture with POST requests, providing the JSON data
source description as request body.

4.3.2 Management of Semantic Mappings

In order to manage mappings for each data source, we
provide our architecture with management resources to

create, modify, and delete mapping files and semantic
mapping information. Mapping file generation relies on
existing third party approaches for semantic annotation
and transformation, depending on the type of document
or data source we want to annotate or transform into a
semantically explicit representation (see Section 4.2.4).

In order to manipulates semantic mappings, we rely
on the id identifiers of the data sources they enrich.
As an example, the mapping information for a data
source can be retrieved by a GET request over the
semantic resource with the id of this data source :
GET /semantics/#id returns the required mapping file
in order to add semantics to data extracted from data
source #id. A POST request at the same URI is used
to submit a new mapping file, DELETE and PUT to
destroy and update. Depending on the data sources, the
mapping contains different sets of rules, and the URI
of the semantic transformation or annotation service.
In order to process the data source to extract the
corresponding mapping, when available, the following
POST request : GET /semantics/extract/\#1 will
to generate and return the mapping file.

4.3.3 Cleaning and Filtering Rules

In addition to cleaning and filtering resources, we pro-
vide a management resource allowing users to publish
their own cleaning rules. These specific rules allow
to ignore specific data values, or to limit the range
domain of a concept. We define an API to publish,
search and remove these rules as follows : The URI
/filter allows to create, retrieve, delete and update
rules according to their id, an example of rule creation
is shown below. In addition, /filters allows to retrieve
a set of rules for a specified data source id, through GET
requests. Listing 5 shows an example of HTTP POST
request that publishes the filtering rule introduced in
section 4.2.6.

POST /filter HTTP/1.1
Content−type:application/x−www−form−urlencoded;charset=utf

−8
Host: restful .alabs. io
Content−length:200
id=r1&data=vcard:email&op=not−contain&val=.org

Listing 5. Sample of HTTP request to publish a filtering
rules

4.3.4 Business Rules for Reasoning

We defined a management resource for the reasoner,
which gives the ability to publish, delete, and update
business rules that change the behavior of the reasoner.
Business rules are defined as specific links between
domain concepts. As an example, it is possible to
specify hierarchical (rdfs : subClassOf) or similarity
(owl : sameAs) relations between interests or concepts.
These rules are published as RDF/N3 resources with
reasoner’s API.

4.4 Example of data flow in the architecture

Figure 9 illustrates an example of data flow during a
scenario request. Firstly, the system user creates a data
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Figure 9. Use Case Data Flow Representation

request through the Web interface (1). The request
is sent to the orchestrator (2) that calls the query
parser, which returns a resource composition with the
data sources involved to cover the query (3). With
help from the data source handler, which processes the
data source description (4), data is extracted from the
sources, could it be a database (5a), a Web source (5b)
or a data file (5c). The filtering resource performs the
data cleaning and filtering tasks, including duplicate
removal, user specific rules, etc. (6). Data is annotated
with semantics, i.e. linked data concepts through the
semantic resource (7). If needed, another cleaning task
is performed to clean data that have been identified
as noise after the semantic annotation process (8).
Data integration is performed and the multi origin data
pieces are combined (9). Data is again cleaned and
filtered (10). The generated data set is finally returned
to the user through the Web interface (11, 12).

5 Tests and Evaluations

In order to answer the challenges introduced in this
paper, the different models to be created based on our
meta-model allow for dynamic and transparent data
source management and processing. These objectives,
as well as the data consistency objective, have been
evaluated with the implementation of our Architecture
for Integration of Multi-Origin Data Sources (ArchI-
MODS).

The scalability to a large number of data source
cannot be guaranteed a priori by our model nor our
implementation. We answer the scalability challenge by
evaluating the evolution of request response time over
a growing number of data sources. We evaluate our
architecture in terms of performance (response time)
when answering to a set of complex semantic queries
over multiple data sources. We regularly increase the
number of data sources and measure the response time.

Relying on our scenario presented above, we create
two requests, involving subgraphs containing four con-
cepts. We populate our scenario with a set of data
sources covering the different subgraphs. Query 6 in-
volves four subgraphs, implying data sources with dif-
ferent characteristics such as high volume (big database

in our scenario) and privacy sensitive information
(linked service in our scenario).

PREFIX al: <http://restful.alabs.io/concepts/0.1/>
SELECT ?email value ?campaign WHERE {

?email a al :email ;
al :has email value ?email value .

?email value a al :email value .
? clic a al : clic ;

al : clic email ?email ;
al :clic campaign ?campaign .

?campaign a al :campaign .
}

Listing 6. Query 1 involving four concepts

Query 7 involves only three subgraphs, but includes
user specific filters. This query introduces freshness
sensitive data sources (streams in our scenario).

PREFIX al: <http://restful.alabs.io/concepts/0.1/>
PREFIX xsd: <http://www.w3.org/TR/xmlschema−2/>
SELECT ?email value ?campaign WHERE {

?email a al :email ;
al :has email value ?email value ;
al : blacklist status ?status .

? clic a al : clic ;
al : clic email ?email ;
al : clic date ?date .

FILTER (?status != 1 && ?date >= "1411477450"ˆˆxsd:date)
}

Listing 7. Query 2 introducing user specific filters

Fig. 10 shows the evolution of our architecture re-
sponse time, when the number of data source grows.
The graph also presents different composition tech-
niques, that clearly shows the importance of adaptive
composition. Workflow WF1 composes the steps of
integration in a static way, which is quite well adapted
for small data source sets, but does not scale when data
source number grows. The second workflow WF2 intro-
duces a dynamic composition, where the architecture is
provided with the possibility to permute components,
performing the filtering process before combining data.
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Figure 10. Average response time for Query 1

This graphs shows that our architecture can handle
the growth of data source number, as long as we use
a dynamic composition model. In the case of the first
composition model wf1 the combination of data be-
come a time-consuming process, as response time grows
exponentially. For more than 20 data sources, with the
first workflow, architecture takes minutes to answer the
query. With a dynamic composition workflow, avoid
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composing duplicates and non well formed data severely
improves the process.
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Figure 11. Average response time for Query 2

The second query involves less concepts, and allows
the architecture to give better responses with the first
workflow, but it still takes more than a minute to answer
Query 1 with 20 data sources. The second workflow
adapts to the request and provides good results.

6 Related Work
The study and design of architectures to automatically
integrate data from diverse resources and produce smart
data is currently a hot research topic explored by the
community. Smart data has caught the interest of the
community as a natural development after the interest
around big data. The objective with smart data is
focused on producing high-quality data that is directly
useful to the users, instead of big data approaches that
focused on building solutions to process massive data
quantities.

Dustdar et al. present a peer data network archi-
tecture in [15], where data sources are independent
databases. They propose an infrastructure relying on
data services where tasks are separated into levels, iso-
lating data management and service integration. Their
solution focuses on quality of data and provides service-
based optimization, such as peer replication, to resolve
data issues. However, the paper does not address data
heterogeneity problems, assuming that schema mapping
is sufficient.

QuerioCity [16] presents a smart platform to cat-
alog, index and query heterogeneous information from
complex systems such as city data portals5. They focus
on data integration and semantic annotation problems,
mainly on issues related to scalability, unpredictability
of changing data and impossibility to fully automate
the integration process. The proposed approach clearly
distinguishes between the data integration and data
consumption tasks. In order to harmonize data usage,
data fields are converted to a standard format, anno-
tated with metadata and aligned with public ontologies

5. Such as Dublinked http://www.dublinked.ie/

(Dublin Core [17] or FOAF [18]). The effort is placed in
management of extracted data, data access challenges
and the needs which arise are not part of the scope. The
approach focus essentially on extraction of meaning and
semantics from datasets as well as provenance in order
to provide a harmonized dataset. They do not provide
any information about data source classification, and
assume that sources have to meet the request format
that the architecture supports.

With a more functional and industrial point of
view, Atos Worldline propose a solution for the auto-
matic management of data coming from heterogeneous
sources called SmartData.io [19]. The solution pro-
vides a RESTful API through which it is possible to
publish data sources and data streams presented in
several formats, such as CSV, PDF or RSS. Data is then
extracted from files, converted into a pivot language
(which is JSON) and then preprocessed by specific
applications, which can be internally developed by the
company or externally developed by third parties. De-
pending on the application, the extracted data is filtered
by applying patterns or by combining it with additional
data. Doing so, only the necessary and correct data
is stored into the infrastructure. The presented archi-
tecture has very interesting aspects especially about
automatic data processing. However, it does not pro-
vide any clues about the semantic enrichment of data,
neither about how heterogeneities are handled during
the integration process.

Apache Metamodel [20] proposes a data access
framework, which offers a transparent rich query inter-
face to different types of datastores, which does or does
not usually provide this kind of request abilities. The
framework provide a uniform connector to many types
of datastore types, including several type of databases,
data files or objects. They proposes a scripting language
for processing updates and transactions via APIs. The
architecture provides a uniform driver approach for
requesting data sources, but acts as a static process
where each source type has a particular adapter. The
approach does not address challenges related to data
combination and data source configuration at runtime,
it provides a universal access to each data source and a
language to request these endpoints.

We have been taking into account the strengths and
weaknesses of these different approaches to build our
proposal, improving the reusability and loose coupling
through usage of linked data services, automating the
linked data efforts by proposing a distributed approach
for the different tasks to perform on data.

In another context, some approaches propose tech-
niques for semantically annotating raw data from het-
erogeneous sources.

Furth et Al. [21] propose an approach for the
semantification (enrichment with semantic description)
of technical documents. It relies on different working
steps over the document to be enriched. First, it con-
verts the document into a standard format, then it
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splits the document into segments, and applies natural
language processing techniques to the document parts
in order to extract a set of ranked concepts. This set of
concepts represents the main subject of the document.
The strength of this approach is that it does not require
a huge set of training data to provide a classification.
They provide a performance evaluation tool by adding a
manual step allowing domain experts to review results.

Venetis et Al. [22] describe a system that recovers
semantics from tables existing on the Web. Their solu-
tion relies on the help of a set of millions of other tables
to identify the role (or subject) of each column/at-
tribute. The solution stands on performing similarity
computation with the corpus of tables and extracting
entities with the help of natural language processing
over table values. The main drawback of this approach
is that it requires a huge amount of objects in the corpus
to analyze. Moreover they rely on millions of English-
speaking documents to build their relation and entity
extractor, which severely decreases the scalability of
their approach.

In TARTAR [23], Pivk proposes a solution for ex-
tracting knowledge from tables picked up from the web.
The solution, based on Hurst’s table model[24], relies on
the analysis of table accross diffferent points, including
physical, structural, functional and semantical dimen-
sions. The first step is a regular matrix extraction from
physical dimensions. Analyzing the structure allows to
determine table reading orientation, to dismember a
table into logical subpart and to resolve types. The
functional table model helps to deduce the role of
each cell. A last step provides semantic concepts and
label for each column, using tools such as WordNet.
These models and concepts allows to populate a domain
ontology from table rows.

The previously introduced approaches show the ef-
fort made towards automatic semantic annotation of
data. For the sake of simplicity and effectiveness in
our approach, we decided to rely on a semi-automated
technology in order to add semantics to our data pieces.
We present in the following different solutions that rely
on the design of map files in order to generate Linked
Data directly from data sources. There are different
approaches in this area, technical approaches as well
as theoretical approaches.

Han et Al. present in RDF123 [12] an open-source
tool for translating spreadsheet data to RDF. They rely
on a column-based mapping, where a set of expressions
represents the structure and orchestration of cells in a
tabular row. They define a whole language to describe
these expressions, allowing to define control branches
and data manipulations. The generated mapping file
containing the set of expressions can be serialized as
RDF and placed as a link in spreadsheet metadata, for
reusability.

The Triplify [25] solution proposed by Auer et Al.
allows to attach to a pre-existing system a module that
will publish data as a Linked Data store. The solu-

tion creates a set of configuration files and associates
semantic concepts (URIs) with SQL requests. Once the
configuration has been created and the module has been
integrated to the system, the module is accessible as a
web page within the application and will be registered
with a central repositories of data sets. This solution
does not allow any flexibility, since each configuration
is hard coded in the system. Otherwise, the system does
not provide any computational access, and access is only
accessible as a generated HTML/JS interface. Accessing
the generated linked data pieces in order to manipulate
them is not possible without changing the core of the
product.

Bizer et Al. propose the D2R [13] platform, gives
access to relational databases through a SPARQL end-
point. The platform rely on a virtual RDF graph, which
associates concepts and relations to SQL requests. D2R
gives access to databases relying on a n3 mapping files
which can be generated by one of the platform tool.
This tool rely on inherent database structure (foreign
keys and relations), to deduce relations between fields
of tables. In order to make a database available, the
configuration has to be generated and the platform
launched through an application server.

We rely on these latter approaches to perform our
semantic annotation task, improving it by automating
the creation of the mapping expression with help from
external and third party services for semantics extrac-
tion and concept recognition.

7 Conclusion
In this work, we propose an architecture and models to
improve smart data management when data comes from
different sources with heterogeneity issues, malformed
data and duplicates. We propose a flexible solution
to model data sources and data according to their
characteristics, allowing the use of different data ac-
cess and processing strategies. To handle data manage-
ment, we define a scalable and responsive architecture
that orchestrates RESTful resources, accessible through
their uniform interface to enhance interoperability. Our
architecture allows converting and semantically anno-
tating multi-origin data sources in order to produce a
smart data set. It aims at being as generic as possi-
ble, independent from data sources, and adaptable to
any use case. We demonstrate the applicability of our
architecture in the context of a scenario that answers
the needs of our partner company. We also show its
scalability with experiments in real situation. Future
work includes performing additional evaluation over
large data sets and exploring issues related to data
management such as data quality and freshness issues,
and reasoning about inconsistent or imprecise data.
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