
Programming Framework Based on Change-centric Web
Service Evolution Model

Wei ZUO, Youssef Amghar, Aïcha-Nabila Benharkat

Université de Lyon, CNRS INSA-Lyon, LIRIS UMR5205,
20 Avenue Albert Einstein 69621, F-69621 Villeurbanne

Cedex, France
{wei.zuo, nabila.benharkat, youssef.amghar} @insa-lyon.fr

Abstract. A Web service always evolves during its lifecycle through continu-
ously publishing new versions. Web service evolution is theoretically modeled
in the community to help Web service stakeholders trigger and react to Web
service evolution in a better way. From a technical perspective, the tasks in
Web service evolution such as design, detection, execution, and adaptation to
the Web service changes are undertaken by Web service developers. Unfortu-
nately, few of the works, especially tools and methodologies, were specially
taken to help the developers deal with dynamic evolutionary changes at pro-
gramming level. In this article, we propose a framework based on our previous
change-centric model to facilitate the developers to treat with Web service evo-
lution. The framework supports the developers to execute, detect, and react to
Web service changes at programming level.

Keywords: Web service; programming; evolution; adaptation

1 Introduction

A Web service evolves constantly during its lifecycle for two reasons: the consumers’
changing requirements and the providers’ improvements. As a result, the Web ser-
vices are frequently changed by adding or updating new functions, new business pro-
cesses, and new non-functional properties through publishing new versions. Especial-
ly in the systems which are built based on Service-Oriented Architecture (SOA), the
Web services evolve even more quickly and frequently due to the large distributed
scale and dynamic environment. In this case, it raises great pressure to treat with Web
service evolution efficiently for all the stakeholders (consumers or clients, providers,
developers, and brokers).

To face these challenges, the community tries to work out new models, tools, and
frameworks to help the stakeholders manage, analyze, and adapt to the evolution of
Web service. From a technical perspective, the tasks in Web service evolution such as
design, detection, execution, and adaptation to the Web service changes are undertak-
en by the Web service developers who work at the programming level when dealing
with Web service evolutions. Unfortunately, few of the works, especially tools and
methodologies, were specially taken to help the developers deal with dynamic evolu-

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

tionary changes. In another word, the Web service developers need to be well
equipped for updating and maintaining Web services in order to implement Web ser-
vice evolution.

In this article, we focus on the development process in the evolution of the Web
services and their client applications. We propose a new programming framework
based on which it enables change-centric coding and client adaptation for Web ser-
vice evolution. The main purpose of this programming framework is to reduce manual
coding and reconfiguration when Web service evolves.

1.1 Change-centric Web Service evolution model

In our previous work [15], we have proposed a change-centric model for modeling
Web service evolution at theoretical level. It defines 1) the roles and their behaviors
during Web Service evolution, 2) the change specification which represents the
changes between two versions, 3) the architecture of the system for change-centric
Web Service evolution.

In change-centric model, the stakeholders in SOA concern different actions to cope
with Web Service changes. The provider designs, applies the changes and them pub-
lishes the changes on the registry of broker. The consumer maintains the client appli-
cations of Web services and adapts to Web service evolution. The broker is responsi-
ble to maintain a registry of Web services and notify the consumers with the changes
that they are interested in.

The change specification (CS) in change-centric model is built for formally de-
scribing Web Service changes. CS focuses on the changes of different aspects of Web
Service which are included in Fig 1.

Fig. 1. Changes types of Web Service [15]

An instance of CS is so called delta in change-centric model. It is designed by pro-
vider, applied to a Web service by the developer, published on broker by provider,
distributed by broker, and invoked or adapted by consumer.

Change-centric model is built at theoretical level to define the roles and behaviors
in Web service evolution. However, two issues have not been taken into account: 1)
what are the behaviors of the developers when the Web services evolve; 2) the imple-
mentation of programming methodologies has not been addressed.

1.2 Web Service adaptation

Adapting Web service stakeholders to the changes is one of the targets of research on
Web service evolution. Proposals on Web service adaptation concern how to achieve
backward-compatibility between the Web services and the client applications [6, 13].
Two types of adaptation are proposed: 1) adaptation at service side (or provider side)
and 2) adaptation at client side. Adaptation at service side is limited by the usages of
their consumers. So this article tries to follow the second type. When Web service
evolves, the client applications are also required to take reactions to the evolution, or
not they will fail in benefiting from the evolution. However, the developers who are
responsible for the Web service client applications suffer from pain of manual adapta-
tion when the Web services evolve frequently. And such manual adaptations are al-
ways invading into the modules that are related to the business. To achieve self-
adaptation to the Web service evolution, they are also in short of support from the
programming framework.

To deal with the issue, researchers are facing two challenges that are not well
solved, including 1) to determine the compatibility between Web service and its client
application and 2) to perform runtime and non-invasive adaptation dynamically.

Generally concluding the research situation, in this article, we present our pro-
gramming framework based on change-centric Web service evolution model to pro-
vide a complete solution dealing with the technical problems in Web service evolu-
tion: 1) changes execution during Web service evolution at the service side; 2) client
adaptation according to evolved Web services at the consumer side.

The following chapters will be organized as follows. In Chapter 2 we will intro-
duce the related works on programming evolution of Web services. In Chapter 3 we
will present our programming framework based on change-centric model. In Chapter
4 we give the implementation of our model. In Chapter 5 we conclude the contribu-
tions and bring out the future perspectives.

2 Related works

We address our work in the field of Web service development and evolution.
Treiber M [8, 9] develops a programming model for evolvable Web services. The

main purpose of this model is to provide support for automatic adaptation through a
dynamic modification framework for Web service based on Gensis. They apply self-
adaptation by developers [9]. However, they do not have a complete evolution model
to explain when and how to perform self-adaptation. Moreover, it lacks of an event
propagation mechanism to publish and notify their modifications to Web Services.

Kaminski P [1] introduces their adapter chain solution to manage Web service evo-
lutions and to ensure backward-compatibility. However, the proposed solution re-
quires the service provider to develop adapter for each version of Web service, which
is a hard task for the developers in the current fast evolved service-oriented systems.

Fokaefs M [13] presents a similar solution to our framework to implement client
adaptation at runtime. The authors have categorized the web service changes into
different types and gave the adaptation algorithm for incompatible changes. However,

they did not explain how to build the mutual perception between the Web service and
the client to ensure adaptation, and they also did not explain the way to monitor the
changes.

Generally speaking, previous works lack of a complete solution to explain: 1) why,
when and how the Web service evolves; 2) how to build the evolution model with
considering the cooperation and conversation among different stakeholders of Web
service; 3) how to implement Web service evolution and client adaptation.

3 Programming model

Firstly, we define the behaviors of the Web service developer in Table 1 as a supple-
ment to change-centric Web service evolution model.

Table 1. Behaviors of the Web service developers

Type of developers Behaviors

Developer at service (provider)
side

• Execute Web service changes
• Publish the versions of Web service

Developer at client side • Develop client applications
• Adapt client applications to the Web service evolutions

Then, we introduce the architecture of the system based on change-centric model
in Fig 2. At the service side, the provider performs the actions of design Web service
changes. The developer at the service side executes and publishes versions of Web
service. At the consumer side, the developer at the client side adapts the client appli-
cations to the Web service evolution. The steps of the client adaptation include the
actions of subscription for new version events, impact analysis, and adaptation. At the
broker side, the broker maintains a Web service registry and a database which stores
the consumers’ interests on the Web service evolution. The consumers’ interests indi-
cates the evolution events that the consumers concern.

Fig. 2. System architecture for the programming framework in change-centric model [15]

The Changes Description at the provider side is a set of scripts that are designed for
describing Web service changes, which follows the change specification of change-
centric model. The Web Service Instance at the provider side is a set of primitives that
are defined by change-centric model. The Web Service Execution Engine at the pro-
vider side executes the Web service changes that are described by Changes Descrip-
tion, generates new instances of Web services, and publishes Web services in both of
the Web Service Container and the Web Service Registry at the broker side at
runtime.

The Event Monitor at the consumer side subscribes and handles the events of Web
service changes from the broker. The Impact Analysis at the consumer side analyzes
the impact of the Web service changes to determine the compatibility between the
client applications and the Web service. The Strategy Engine provides a set of strate-
gies to adapt the client applications to the Web service changes. The Object Factory
generates dynamically references to the Web services. The Client Business Module
contains the client applications.

The programming framework for Web service evolution supports the two types of
development in both Web service and the client sides. At the Web service side, Web
service developer executes the changes to produce new versions of Web services. At
the consumer side, the client application performs client adaptation to the Web service
during Web service evolution.

Our contribution includes execution engine and adaptation engine at the service
side, and the event monitor and adaptation engine at the client side. The other mod-
ules such as impact analysis will be treated in future.

3.1 Changes execution programming

In the change-centric model, if the provider wants to evolve a Web service, he al-
ways follows the steps of: 1) design changes, 2) apply or execute changes, and 3) de-
ploy the new versions.

In the first step, the Web service provider specifies the targets and actions of the
changes according to a model of a version of the Web service. We have defined the
changes specification in an xml format which is used for network transferring and
distribution.

For example, we have a change description of adding an operation as shown in Fig
3. It describes a change of adding an operation “bookTicketFromStarAlliance” to a
existing Web Service in a new version 2.0.

And a change description of changing the XML Schema is shown as Fig 4. It de-
scribes a change of modification to the complex type Ticket.

Fig. 3. Change specification of adding an operation

Fig. 4. XML schema change.

Fig 3 and Fig 4 show the changes description in change-centric model. They work
as the requests of changing a Web service. For the developer at service side, they im-
plement the changes by a set of scripting API as Fig 5 when they are informed by the
requests. The API is designed for the Web service developers to modify one version of
a Web service at runtime and publish the new version.

Fig. 5. Classes of service model in the framework

<operation action="modify">
<xs:complexType name="Ticket">
 <xs:Sequence>
 <xs:element name="date" type="xs:string"/>
 <xs:element name="flightNumber" type="xs:string">
 <xs:element name="seatNumber" type="xs:int">
 </xs:Sequence>
</xs:complexType>
<operation>

<versionId=”2.0” previousVersion=”1.0” majorVersion=”1”/>
<change:interface type=”add”>
 <addSequence>
 <wsdl:operation name="bookTicketFromStarAlliance">
 <wsdl:input message="BookTicketInput"/>
 <wsdl:output message="BookTicketOutput"/>
 </wsdl:operation>
 </addSequence>
</change>

Fig. 6. Example of Web service change description script

A part of the classes and operations that included in the API is shown in Fig 6.

The second step is to apply the changes and generate the new version of Web ser-
vice. We provide an execution engine to analyze and execute the scripts described in
the first step. The execution will be performed on both the description and implementa-
tion aspects of Web services based on Java platform and JAVASSIST framework de-
veloped by Shigeru Chiba.

The Web service instance is generated by the code weaving module of the execu-
tion engine. The input of the execution engine includes a complete Web service in-
stance and the designed scripts from the first step. The output of the execution is a
complete Web service instance identified with a new minor version including the doc-
uments, the source code and the byte code.

When a new version is generated by the execution engine, a change description will
be also published on the broker. The broker maintains the registry of the Web services
from different providers and stores the subscription information with the Web service
consumers and the Web service evolution event that they are interested in. The data
structure of the Web service registry in the Web service broker can be considered as a
list of Web service descriptions. When a new version is published, the broker inserts a
new element to the registry and posts an event to all the consumers who are interested
in the new version.

3.2 Client adaptation

The programming framework at the service side generates the versions of a Web
service and publishes the WSDLs or change descriptions into the registry of the Web
service broker. To finish the evolution of the Web service, the client applications must

//get a copy of a service reference by specifying the director
y of the Web service with version 1.0.
Service s=copyof(“/TransportService/V1.0”);
//get the interface aspect reference
Interface i=s.getInterface();
//get the schema reference
Schema Sch=i.getSchemas().get(0);
//apply the changing actions of adding a new operation
Operation o=i.createNewOperation();
o.setName(“bookTicketFromStarAlliance”);
o.createInputMsg(“BookTicketInput”);
o.createOutputMsg(“BookTicketOutput”);
//modify the changing action of modifying a XML schema
Sequnce Seq= Sch.getComplexType(“Ticket”);
Seq.clear();
Seq.createElement(“date” ,“xs:string”);
Seq.createElement(“flightNumber”, “xs:string”);
//publish a new version of a Web service
s.publish(“http://localhost:8080/TransportService/V1.1”);

also take some actions to the Web service evolution. At the consumer side, the main
behaviors of the client application include: 1) registering interests, 2) monitoring the
new version event and analyze the impacts, 3) performing client adaptation.

The first behavior requires the system to build a conversation mode (Event Monitor)
in a controlled way between the client and the broker. The second behavior requires the
client to build extra modules (Impact Analysis, Strategy Engines) to deal with the
changes descriptions which are notified by the broker. The third behavior requires
another extra module (Object Factory) to support Web service invocation for the busi-
ness modules of the client application. To sum up, an extra module at the client side
similar as the adapters for adaptation at the service side is necessary. We call it client
adaptation agent (CAA) as shown in Fig 7.

Fig. 7. Client adaptation.

CAA is mainly used for 1) producing Web service references for client application
as an object factory, 2) communicating with Web service broker to subscribe interests
and receive new version events, and 3) analyzing change impacts and perform client
adaptation.

As shown in the Fig 7 above, Event Monitor is a communication module which
subscribes and receives Web service evolution events. Strategy engine provides adap-
tation strategies according to each type of change in Web service. Object Factory pro-
duces the adapted Web service reference dynamically to ensure the Client Business
Module works normally without manual adjustment or recoding.

The adaptation in the CAA generates a new proxy (also called stub or adapter) in
Fig 8 at runtime which implements the interface to the old version of the Web service.

The strategy engine extracts adaptation suggestions from delta which are provided
by the provider to assist the consumer with adaptation. The adaptation suggestions that
can be provided by Web Service provider is shown in Table 2.

We emphasize that the adaptation is performed at runtime and is non-invasive into
modules business of the client application. The adaptation process is totally transpar-
ent to the business modules. However, two things must be noticed: 1) it requires the
client application to be organized based on our framework and Java platform and
designed strictly in a principle of interface-implementation separation, 2) adaptation is
only performed for temporary adjustment instead of manual operations which ensures

the normal functioning of the client application. The further work must be done if the
client wants to be more compatible to the new versions of the Web services in its
business process.

Fig. 8. Proxy generation

Table 2. Adaptation strategy at client side

Type of changes Adaptation Strategy
Adding new elements to a complex type of Web

service
Set default values for each elements

Deleting an operation from the Web service Redirect the request to another optional
Web service or set null.

Modifying the name of an operation Redirect the request to the new operation
Modifying the XML schema Modify the schema at the client side

4 Implementation

In this section, we introduce our initiative solution to implement the programming
framework described in the previous sections.

4.1 Changes execution implementation

In section 3.1, the source code, byte code, QoS, interface, and semantics are under the
control of Web execution engine. They are included in the Web service instance. The
input of the execution includes the changes scripts designed by the developer and the
version which need to be evolved. The output of the execution engine is another in-
stance of Web service. The documental changes such as changes in WSDL or OWL-S
are applied by a XML generator of deltas. We focus on the byte code execution.

In the programming framework, it is allowed to modify the fields, methods, parent,
and interfaces of the Web service interfaces and implementation classes. Execution of
changes follows the steps of:

1. Copy the WSDL of the specified major version and rename it to a new name space.

2. Modify the WSDL according to the change description and rename it into a new
name space. (Depend on ow2-easywsdl).

3. Load the class or interface of the specified major version of the Web service and
copy it to a new name <classname>+<versionId>.

4. Modify the class or interface according to the changes description by designer.
(Depend on Javassist and only interface changes are available). If the change de-
scription includes changing an operation’s body or adding an operation to a class,
copy the necessary class.

5. Generate a new instance of the modified class and publish it to an address with a
name identifying the new version. (Depend on apache-cxf and jax-ws).

6. Notify the broker with the changes and the address of the new version.

Notice that the generated service class is compiled and instantiate at runtime, the
source code of the new version of the Web service is untouchable to the service de-
velopers, they are managed by the programming framework.

4.2 Client adaptation implementation

The client adaptation produces new class proxies which refer to the new versions
of Web services.

1. Generate a new class which implements the current client stub of the Web service.
2. Generate a new interface to the new version of the Web service according to the

changes.
3. Create a new member with the type of the new interface in step 2 for the new class

in step 1 which refers to the new versions of Web service with correct format.
4. Set the body of the modified operation as calling the new operation.
5. Return a reference of a new instance of the generated class to consumer.

For example, assume that we have an interface as Fig 9:

Fig. 9. Original interface class for TransportService

Now we want to rename the bookTicket operation to bookAirTicket. The generated
new interface is as Fig 10:

Fig. 10. Generated interface for the new version of TransportService

package zw.provider;
@javax.jws.WebService
public interface ITransportService$v11 {
 public Ticket bookAirTicket(String date);
}

package zw.provider;
@javax.jws.WebService
public interface ITransportService {
 public Ticket bookTicket(String date);
}

The generated new proxy class is shown as the following Fig 11.

Fig. 11. Generated proxy class for the new version of TransportService

5 Conclusion

In this article, we introduce a programming framework which supports the Web ser-
vice development at the service side and the adaptation at the client side. The features
of the framework include:

Change-centric development: Evolving the Web services in a change-centric style
can obviously reduce the side-effect caused by code duplication. It can also simplify
the development process and make the developers focus on changes. The maintenance
of changes instead of complete instances also reduces the pressure of version man-
agement.

Client self-adaptation: The programming framework supports the client application
to adapt to the new versions of Web services even meet the incompatible changes.
This can make the client application functioning continuously without shutdown or
manual adjusting.

Transparency: The change execution engine is transparent to the Web service de-
veloper when modifying Web services. The client adaptation process is also transpar-
ent to the business modules of the client applications.

Non-invasive: The programming framework endows the Web service the ability of
monitoring Web service at runtime without invasion into the development stage of
Web service.

In future work, the most challenging topic is to ensure stateful evolution. Keeping
the conversation between the client and the service uninterrupted during Web service
evolution is crucial to the Web service evolution issue. It can reduce cost of Web
service evolution for business and save time.

package zw.provider;
import org.apache.cxf.frontend.ClientProxyFactoryBean;
public class ITransportService$v11$classProxy implements
ITransportService {
 public ITransportService$v11 ref;
 public Ticket bookTicket(String date)
 {
 return ref.bookAirTicket(String date);
 }
 public ITransportService$v11$classProxy(String serviceAddress)
 {

ClientProxyFactoryBean factory = new
ClientProxyFactoryBean();
factory.setServiceClass(ITransportService$v11.class);

 factory.setAddress(serviceAddress);
 ref = (ITransportService$v11) factory.create();
 }
}

6 Reference

1. Kaminski P, Müller H, Litoiu M. A design for adaptive web service evolu-
tion[C]//Proceedings of the 2006 international workshop on Self-adaptation and self-
managing systems. ACM, 2006: 86-92.

2. Wang S, Capretz M A M. A dependency impact analysis model for web services evolu-
tion[C]//Web Services, 2009. ICWS 2009. IEEE International Conference on. IEEE, 2009:
359-365.

3. Kajko-Mattsson M, Lewis G A, Smith D B. A framework for roles for development, evo-
lution and maintenance of soa-based systems[C]//Systems Development in SOA Environ-
ments, 2007. SDSOA'07: ICSE Workshops 2007. International Workshop on. IEEE, 2007:
7-7.

4. Psaier H, Skopik F, Schall D, et al. A programming model for self-adaptive open enter-
prise systems[C]//Proceedings of the 5th International Workshop on Middleware for Ser-
vice Oriented Computing. ACM, 2010: 27-32.

5. Feng Z, He K, Ma Y, et al. A Requirements-Driven and Aspect-Oriented Approach for
Evolution of Web Services Composition[C]//Web Mining and Web-based Application,
2009. WMWA'09. Second Pacific-Asia Conference on. IEEE, 2009: 201-204.

6. Khater M, Malki M. An approach for adapting web services[C]//Multimedia Computing
and Systems, 2009. ICMCS'09. International Conference on. IEEE, 2009: 56-61.

7. Na J, Gao Y, Zhang B, et al. Improved adaptation of Web service composition based on
change impact probability[C]//Dependability (DEPEND), 2010 Third International Con-
ference on. IEEE, 2010: 146-153.

8. Treiber M, Truong H L, Dustdar S. On analyzing evolutionary changes of web ser-
vices[C]//Service-Oriented Computing–ICSOC 2008 Workshops. Springer Berlin
Heidelberg, 2009: 284-297.

9. Treiber M, Juszczyk L, Schall D, et al. Programming evolvable web ser-
vices[C]//Proceedings of the 2nd International Workshop on Principles of Engineering
Service-Oriented Systems. ACM, 2010: 43-49.

10. Xie Q, Wu K, Xu J. QoS Driven Web Services Evolution[C]//Complex, Intelligent and
Software Intensive Systems (CISIS), 2011 International Conference on. IEEE, 2011: 329-
334.

11. Treiber M, Truong H L, Dustdar S. Semf-service evolution management frame-
work[C]//Software Engineering and Advanced Applications, 2008. SEAA'08. 34th
Euromicro Conference. IEEE, 2008: 329-336.

12. Fokaefs M, Stroulia E. WSDARWIN: A Decision-Support Tool for Web-Service Evolu-
tion[C]//Software Maintenance (ICSM), 2013 29th IEEE International Conference on.
IEEE, 2013: 444-447.

13. Fokaefs M, Stroulia E. WSDarwin: automatic web service client adaptation[C]//CASCON.
2012: 176-191.

14. Banati H, Bedi P, Marwaha P. WSDL-temporal: An approach for change management in
web services[C]//Uncertainty Reasoning and Knowledge Engineering (URKE), 2012 2nd
International Conference on. IEEE, 2012: 44-49.

15. Wei Zuo; Benharkat, A.N.; Amghar, Y., "Holistic and Change-centric Model for Web Ser-
vice Evolution," Services (SERVICES), 2014 IEEE World Congress on Services, vol., no.,
pp.250,253, June 27 2014-July 2 2014.

	1 Introduction
	1.1 Change-centric Web Service evolution model
	1.2 Web Service adaptation

	2 Related works
	3 Programming model
	3.1 Changes execution programming
	3.2 Client adaptation

	4 Implementation
	4.1 Changes execution implementation
	4.2 Client adaptation implementation
	The client adaptation produces new class proxies which refer to the new versions of Web services.

	5 Conclusion
	6 Reference

