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Abstract. We propose in this paper a graph-based unsupervised segmentation
approach that combines superpixels, sparse representation, and a new mid-level
feature to describe superpixels. Given an input image, we first extract a set of
interest points either by sampling or using a local feature detector, and we com-
pute a set of low-level features associated with the patches centered at the interest
points. We define a low-level dictionary as the collection of all these low-level
features. We call superpixel a region of an oversegmented image obtained from
the input image, and we compute the low-level features associated with it. Then
we compute for each superpixel a mid-level feature defined as the sparse cod-
ing of its low-level features in the aforementioned dictionary. These mid-level
features not only carry the same information as the initial low-level features,
but also carry additional contextual cue. We use the superpixels at several seg-
mentation scales, their associated mid-level features, and the sparse representa-
tion coefficients to build graphs at several scales. Merging these graphs leads to
a bipartite graph that can be partitioned using the Transfer Cut algorithm. We
validate the proposed mid-level feature framework on the MSRC dataset, and
the segmented results show improvements from both qualitative and quantitative
viewpoints compared with other state-of-the-art methods.

Keywords: image segmentation, sparse coding, superpixels, mid-level features,
{y-graph.

1 Introduction

Most unsupervised image segmentation methods, which are frequently used for high-
level vision tasks like object recognition or image annotation, involve low level fea-
tures such as color, boundary or texture. In particular, several methods using graphs
and spectral clustering have been proposed in recent years [[13] [8], however it remains
challenging for those methods to provide desirable visually semantic partitions.
Generally, for those methods, building a faithful graph is critical to the final quality.
The graph nodes can be pixels or regions, and the graph affinity matrix encodes the
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similarity between either low level features or top down features associated with the
nodes. Low level features capture object basic properties and they can be obtained with
various descriptors or operators, such as color histograms, histogram of oriented gradi-
ents (HOG), scale invariant feature transform (SIFT), local binary patterns (LBP), etc.
Despite progresses in the design of more informative low-level features, performances
remain limited. Top down features usually convey semantic or prior knowledge about
the segmented regions or objects. Many works treat the output of trained classifiers
and object detectors [7]], or semantic segmentation algorithm [3]] as top down informa-
tion to guide the low level unsupervised segmentation. However, all these top-down
semantic methods require non-trivial amounts of human-labeled training data, which is
unrealistic in practical situation.

In recent years, successful applications of mid-level features (e.g., bag of features)
to content-based image retrieval and object categorization have motivated their intro-
duction for other computer vision tasks such as image segmentation. Yu et al.[17] pro-
posed bag of textons combined with clustering for image segmentation. The baseline of
a mid-level feature mainly involves low-level feature extraction, representation (using
hard assignments with k-means, or soft assignments via sparse coding) and pooling. In
this paper, we focus on mid-level features based on sparse coding, as in [[18]] where first
a dictionary is built by learning or human labeling, then the coefficients of the sparse
representation in this dictionary are used to define mid-level features for classification
or grouping. In contrast to [[18], we build the dictionary from informative patches cen-
tered at interest points detected without any supervision, and each mid-level feature is
the sparse coding in the dictionary of the low level feature associated with a super-
pixel. This way, the contextual information, which has been proved an efficient cue to
discriminate two objects or images [6], is added to the original low-level features to im-
prove the robustness of the similarity coefficient between two superpixels in the graph
construction, whose quality plays a critical role to the segmentation result.

More precisely, the whole segmentation model starts by extracting interest points
from the image, associating with them a set of low-level features whose collection forms
a dictionary, and over-segmenting the input image into multi-layer superpixels. Then,
each superpixel is associated with a sparse representation of its low level feature in the
previously built dictionary. This proposed feature inherits of the original descriptors’
property and covers also adaptive contextual information. Compared with related works
and other benchmark algorithms on the MSRC dataset [[14], the key contribution of this
paper is that our new mid-level feature is able to describe better the superpixels. The
similarities between superpixels are then computed based on ¢y graph construction in
the spirit of [[16] (where only low-level features were used). Finally, the constructed
graph is plugged into a robust unsupervised segmentation framework introduced in [8].
The proposed method can segment visually semantic regions, and can be used in many
high-level computer vision tasks.

The organization of the paper is as follows: in Section 2 we introduce the proposed
mid-level features based on the sparse coding and the segmentation framework, and in
Section 3 we present and comment a few segmentation results on the MSRC dataset.
We conclude in Section 4.
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2 Superpixels, Mid-Level Features, and Sparse Representation

Our approach consists of three steps: 1) interest points extraction, low-level features
computation, and dictionary building; 2) over-segmentation of the original image, ex-
traction of superpixels (defined as the over-segmented regions), computation of a low-
level feature for each superpixel, and sparse representation in the dictionary of step 1;
3) graph construction and partitioning.

2.1 Low-Level Features Detection and Extraction

We use low-level features extraction to build a meaningful dictionary to represent a
given image. First, we extract a set of key points from the image. The meaningfulness
of the low-level dictionary is highly dependent on the choice of the key points. If they
capture the main structural information of the input image, then the derived dictionary
will be highly meaningful. In practice, we have tested various approaches, see Fig. [It
either the interest points are randomly or densely sampled, or they are obtained using a
feature descriptor, e.g., the Harris detector, the Difference of Gaussians (DoG), or the
Hessian detector. The respective performances are discussed in Section 3.

~

(d) Random sampling (e) Dense sampling (d) Zooming

Fig. 1. Illustration of different types of interest points

Once interest points have been extracted, we consider the local image patches around
them, from which low-level features can be computed (we use in this paper RGB color
histograms for its strong discriminative skill, but other features as LBP histogram or
SIFT may be used). Finally, our low-level dictionary is defined as the collection of all
these low-level features, see Fig.

2.2 Mid-Level Features Extraction over Superpixels

We call superpixel a region of an over-segmentation of the original image. In prac-
tice, we compute several over-segmentations, and we associate with each superpixel
a low-level feature (in our experiments, we used RGB color histograms for its strong
discriminative skill). Then we define the mid-level feature associated with a superpixel
as the sparse representation of its low-level feature in the dictionary built previously,
see Fig.[3l for an illustration of the whole process. More precisely, given a superpixel,
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Fig. 2. Illustration of low-level features computation

suppose x € R™ is the low-level feature associated with it, and let D = [d, - - - d),] € R"™*"
be the low-level dictionary built in section 2.1l The sparse representation of x in D is
obtained by solving the following optimization problem:

min||x— Dol st |lo|jo <L, (1)
o

where o € R”, and ||et||o := ||et||¢, is the number of its non-zero coefficients. Suppose
0 is a solution of the problem and Ay = {j|é&(j) # 0} is the index set of non-zero
coefficients of ¢, then the mid-level feature associated with the low-level feature x is
defined as

£=Doa= Y d;o(j). 2
JEA

Therefore, the mid-level feature £ is a linear combination of several low-level features,

thus not only carries the same information as the original low-level features, but also
carries additional contextual cue.
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Fig. 3. Illustration of mid-level features computation
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2.3 Graph Construction and Partitioning

Once mid-level features have been computed, we build the graph that will be plugged
into a spectral clustering algorithm to perform image segmentation. This is done as fol-
lows: For each scale of over-segmentation (i.e. for each instance of over-segmentation),
we construct a graph whose nodes are the superpixels at that scale, and whose graph
edges and weights are computed using £y-sparse representation. More precisely, we
consider as dictionary the mid-level features associated with the superpixels. Then, as
in Equation (2), each mid-level feature £; can be represented as a sparse linear com-
bination £; = ; a}ﬁ ; of the other mid-level features. The similarity coefficient of any
1 ifi=j
L= (rij+rji)/2 ifi# .
the sparse representation error of £; and £}, i.e. r;j = || % — Oc;-)?jH%.

We collect all ¢ affinity matrices obtained from all over-segmented images, and we
concatenate them diagonally into a unique matrix denoted as Wgg, together with the
pixel-superpixels affinity matrix W;s. Then we consider the bipartite graph associated

pair £;,£; of superpixels is defined as w;; = { where r;; is

with the matrix B = {VV‘[:’S } and the Transfer Cut algorithm [8]] is applied to partition the
ss

bipartite graph into K clusters by solving the following generalized eigenvalue problem
over superpixels only Ly f = A Dyf, where Ly = Dy — Wy, Dy = diag(B"1), and Wy =
BTD{/IB, Dy = diag(B1), see [8] for more details.

3 Experimental Results

3.1 Database and Parameter Settings

We evaluate our approach on the Microsoft Research Cambridge (MSRC) database,
which contains 591 images from 23 object classes, and we use for the evaluation the
accurate ground-truth segmentations of [9]. To quantitatively evaluate the performance,
we apply four popular measurements : 1) Probabilistic Rand Index (PRI) [[15]; 2) Varia-
tion of Information (VOI) [L1]]; 3) Global Consistency Error (GCE) [10]; and 4) Bound-
ary Displacement Error (BDE) [4]. A segmentation result is better if PRI is higher and
the other three ones are lower. For low-level features extraction, we only use the color
feature in RGB space, and the feature dimension is reduced from 256 x 3 to 64 by PCA.
For mid-level dictionary building via sparse coding, we use the Orthogonal Matching
Pursuit (OMP) algorithm [[12] to solve Eqn.[Iland set the sparsity number L = 4 accord-
ing to the experimental results.

On the step of graph construction and partitioning, we proceed as in our previous
work [16]], i.e. we derive from the original image 5 or 6 oversegmented images (this
number of scales being experimentally satisfactory) obtained by the Mean Shift (MS)
method [2]] and by the FH method [3]]. More precisely, we derive three images by
the MS method using the sets of parameters (ks, hr, M)= {(7,7,100), (7,9,100), and
(7,11,100)}, respectively, where hs and hr are bandwidth parameters in the spatial and
range domains, and M is the minimum size of each segment. Either two of three over-
segmented images are provided by the FH method using as parameters (o, ¢, M) either
{(0.5,100,50),(0.8,200,100)}, or {(0.8,150,50),(0.8,200,100),(0.8,300,100)}.
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Table 1. Comparison of different feature detectors on the whole MSRC database (red color
indicates the best result)

Detector PRIt Vol GCE| BDE]
Harris detector ~ 0.8195 1.4214 0.1694 9.4530
Hessian detector 0.8177 1.4366 0.1691 9.9951
DoG detector 0.8226 1.3900 0.1670 9.3955
Random sampling 0.8069 1.5578 0.1781 10.1746
Dense sampling  0.8280 1.3452 0.1633 9.4403

To build the ¢y graph, the sparsity number L = 3 is used for all the experiments, see [16]
for more details. We organize our experimental results as follows: first, we compare the
performances of the five different kinds of low-level feature detectors introduced in
section I then, we list the quantitative results of our proposed method on different
subsets of MSRC database and compare it with several state-of-the-art methods; finally,
we show some visual examples of our method.

Table 2. Performances of our method on MSRC and comparison with state-of-the-art methods

Metric PRIT Vol| GCE| BDE|

Object class baseline new baseline new baseline new baseline new
1. grass, cow 0.8889 0.8978 0.7927 0.8417 0.1006 0.1059 4.8316 4.9181
2. tree, grass, sky 0.7865 0.7963 1.2569 1.3664 0.1727 0.1990 18.6141 13.6065
3. building, sky 0.8429 0.8697 1.2660 1.3768 0.1670 0.1755 8.0268 8.3904
4. aeroplane, grass, sky 0.9083 0.9202 1.3133 1.2662 0.1463 0.1649 4.1802 4.3369
5. cow, grass, mount 0.9038 0.8647 0.5641 0.7804 0.0752 0.0889 4.2286 4.8817
6. face, body 0.7176 0.7277 2.2429 2.3892 0.2601 0.2669 16.1357 15.2383
7. car, building 0.7423 0.7624 22676 2.1879 0.2044 0.2546 12.3907 12.3268
8. bike, building 0.7037 0.7196 2.0662 2.1575 0.2729 0.2854 10.7725 10.9580
9. sheep, grass 0.8837 0.8867 0.7287 0.7166 0.0853 0.0874 4.7323 4.9983
10. flower 0.8712 0.8766 0.6368 0.7172 0.0836 0.0927 6.8501 5.7331
11. sign 0.8581 0.8839 0.7668 0.7591 0.0929 0.0940 6.4911 6.3972
12. bird, sky, grass, water  0.8820 0.8932 0.6977 0.7215 0.0963 0.0831 5.6918 5.9985
13. book 0.6714 0.6613 1.7574 1.9669 0.1596 0.1633 18.9275 17.7393
14. chair 0.7395 0.7806 1.3144 1.6839 0.1862 0.1807 11.7096 7.7027
15. cat 0.7532 0.7483 1.3479 1.2819 0.1272 0.1240 12.0134 11.8589
16. dog 0.8030 0.8029 1.2856 1.2436 0.1394 0.1613 9.7475 9.5381
17. road, building 0.8439 0.8610 1.6346 1.7412 0.2002 0.2025 9.0031 8.4299
18. water, boat 0.8548 0.8424 1.0310 1.0947 0.0935 0.1088 9.1329 12.4533
19. body, face 0.8376 0.8275 1.6961 1.9347 0.1931 0.2124 7.4399 8.8790

20. water, boat, sky, mount 0.8884 0.9154 1.1942 1.0002 0.1602 0.1279 6.3682 5.6792
Average performance

Method PRIt Vol GCEJ BDE|
Our new method 0.8269 1.3614 0.1590 9.0032
Baseline [16] 0.8190 1.2930 0.1508 9.3644
NCut [13] 0.8052 1.2516 - -
LRR(CH)[1] 0.7912 1.3002 - -

MS[2] 0.7307 1.7472 . .
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3.2 Experimental Results

As mentioned in section 2.1] the property of the low-level dictionary is highly depen-
dent on the selection of the key points. Therefore, we compared the Harris detector,
Difference of Gaussian (DoG), Hessian detector, random sampling, and the dense sam-
pling (see Fig. [[). The results are shown in Tab. [Il from which we can deduce that
dense sampling is the most efficient way to extract interest points. The main reason is
that dense sampling can capture almost all information of the image and is well-suited
for sparse coding that requires an over-complete dictionary.

We compare in Table [2] the performances of our method on the MSRC database
and the performances of the method we proposed in [16] (limiting to RGB histogram
as superpixel feature, and calling baseline this reference algorithm). Obviously, our
new method can achieve excellent performances on segmenting object classes such as
cow, building, sheep, flower, sign, bird, road, and boat, but is less efficient for tree,
face, cat, dog, bike, etc. The visual results are also shown in Figll The reasons for the

Fig. 4. Examples of segmented results on the MRSC dataset (for each experiment, we show the
segmentation result, and the segmentation superimposed with the original image)
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difference performances are various: 1) objects like face, cat, and dog usually have
complex backgrounds mainly associated with indoor scene which makes the evalua-
tion unfair for the machine algorithms since the ground-truth does not label the indoor
objects. On the other side, in the case of objects without complex backgrounds, our
method can segment them correctly even if the object itself presents obvious color vari-
ations like on cow, building and flower; 2) objects like face or bike can be subject to
strong illumination changes which prevent the machine algorithms from grouping ob-
ject correctly if only color is used as low level descriptor. Results should be improved if
other descriptors as LBP were used, and this is the purpose of future work. 3) the quality
of segmentation can also be influenced greatly by the way superpixels are extracted.

We compare the performances of our approach with other state-of-the-arts algo-
rithms in Tab. 2l We used the scores given in [[1], observing that GCE and BDE were
not reported. Our method ranks first according to PRI and BDE, which makes it one of
the most competitive algorithms.

4 Conclusion

We introduced a new unsupervised image segmentation method based on ¢y-graph, su-
perpixels, mid-level features, and sparse coding. An nice property of the mid-level fea-
ture we propose is that it can capture adaptive contextual information and carries as
well the original low level feature information. Quantitative comparison with the state-
of-art methods, as well as visual results, indicate that our new algorithm is a competitive
image segmentation method.
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