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Hand-Dorsa Vein Recognition by Matching Local
Features of Multisource Keypoints
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Abstract—As an emerging biometric for people identification,
the dorsal hand vein has received increasing attention in recent
years due to the properties of being universal, unique, permanent,
and contactless, and especially its simplicity of liveness detection
and difficulty of forging. However, the dorsal hand vein is usually
captured by near-infrared (NIR) sensors and the resulting image
is of low contrast and shows a very sparse subcutaneous vascu-
lar network. Therefore, it does not offer sufficient distinctiveness
in recognition particularly in the presence of large population.
This paper proposes a novel approach to hand-dorsa vein recog-
nition through matching local features of multiple sources. In
contrast to current studies only concentrating on the hand vein
network, we also make use of person dependent optical char-
acteristics of the skin and subcutaneous tissue revealed by NIR
hand-dorsa images and encode geometrical attributes of their
landscapes, e.g., ridges, valleys, etc., through different quantities,
such as cornerness and blobness, closely related to differential
geometry. Specifically, the proposed method adopts an effective
keypoint detection strategy to localize features on dorsal hand
images, where the speciality of absorption and scattering of the
entire dorsal hand is modeled as a combination of multiple (first-,
second-, and third-) order gradients. These features comprehen-
sively describe the discriminative clues of each dorsal hand. This
method further robustly associates the corresponding keypoints
between gallery and probe samples, and finally predicts the iden-
tity. Evaluated by extensive experiments, the proposed method
achieves the best performance so far known on the North China
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University of Technology (NCUT) Part A dataset, showing its
effectiveness. Additional results on NCUT Part B illustrate its
generalization ability and robustness to low quality data.

Index Terms—Hand-dorsa vein recognition, multilevel key-
point detection, optical properties of dorsa hand subcutaneous
tissue, oriented gradient maps (OGMs).

I. INTRODUCTION

DRIVEN mainly by increasing requirements in public
security against terrorist activities, sophisticated crimes,

and electronic frauds, biometric solutions have witnessed an
accelerated pace of growth in the global market of secu-
rity over the past several decades. Recently, the vein has
emerged as a new biometric trait for the purpose of people
identification, and has received growing attention within the
community.

Anatomically, veins are blood carrying vessels interweaved
with muscles and bones, and the key function of the vascular
system is to supply oxygen to each part of the body. The spatial
arrangement of vascular network in the human body is stable
and unique, and vein patterns of individuals are different, even
between identical twins [1]. In this paper, we focus on the vein
pattern of the back of the hand (i.e., dorsal hand) because it
is distinctly visible, easy to acquire, and efficient to process.
As compared with other popular biometric traits, such as face
or fingerprint, the hand vein has several distinguished merits,
in particular the following ones.

1) Direct Liveness Detection: Hand veins are sensed using
far or near-infrared (NIR) lighting to capture the tem-
perature difference between hot blood flow inside vein
vessels and the surrounding skin, therefore, they can
only be imaged on the live body and the images taken
on nonlive bodies do not contain their spatial vein
arrangement.

2) Safety: Blood vessel patterns are hardwired underneath
the skin at birth; they are hence much harder for
intruders to forge.

The pattern of vein as a biometric trait is relatively recent. It
was not presented until 1990 when MacGregor and Welford [2]
came up with the system named “vein check” for identifica-
tion. Despite the vast vascular network in the human body,
hand veins are favored for their simplicity in terms of acqui-
sition and processing. In last decades, there exist increasing
amount of research works focusing on hand vein recognition
using the vein pattern in the palm part [3]–[5], the back of the
hand [6]–[8], or fingers [9].
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Fig. 1. Framework of the proposed approach, including comprehensive representation of optical properties through multiorder gradient quantities and robust
matching with scale-invariant feature transform (SIFT) based features.

Although there have been already several attempts on hand
vein recognition by adopting holistic techniques, e.g., prin-
cipal component analysis (PCA) [10], linear discriminant
analysis (LDA) [11], etc., the changes of viewpoint, lighting
intensity, distortion, and occlusion largely imped their devel-
opment. In contrast, local feature based approaches become
dominant due to its robustness to the aforementioned dis-
turbing factors. Most of the methods in the literature follow
the framework that first segments the region of interest and
the hand subcutaneous vascular network from the hand vein
image, and then extracts local geometric features for matching
such as the positions and angles of short straight vectors [12],
vein minutiae and knuckle shapes [1], endpoints and cross-
ing points [13], dominant points [3], etc. All these methods
demonstrate reasonable recognition rates on small databases
ranging from 32 [3] to 100 subjects [1], [7]. However,
when regarding the problem of dorsal hand vein recognition,
the above techniques suffer from very limited local features
because compared with the palm and finger part, the num-
ber of vein minutiae on the dorsal hand is really few, directly
leading to the deficiency in capturing the difference of hand
vein networks between subjects. Hand dorsa vein images are
mostly sensed by the NIR imaging system, irradiating the hand
dorsa with the NIR light. In delivering the vein pattern of
the hand dorsa, these images hence also convey the optical
properties, i.e., the absorption and scattering speciality, of the
skin and subcutaneous tissue which mainly consists of three
different layers, namely epidermis, dermis, and hypodermis.
The randomly inhomogeneous distribution of blood and vari-
ous chromophores and pigments produces variations of optical
properties of these skin layers that are subject dependent [14].
These optical properties are investigated as such in medicine
for various purposes, e.g., diagnostics, surgery, therapy. In this
paper, we propose to make full use of these optical properties
of the hand dorsa for people identification.

Specifically, in this paper, we propose a novel and effec-
tive approach to hand-dorsa vein recognition based on local

feature matching. Unlike the overwhelming majority of state
of the art techniques which only focus on the venous net-
work, the proposed method makes full use of discriminative
clues as offered by the optical properties of NIR dorsal hand
images that cover not only the vein areas but also their sur-
rounding skin and subcutaneous regions. In the same way
as the retinal image [15], the optical properties conveyed by
NIR dorsal hand images are interpreted as landscapes or sur-
faces, consisting of geometric features like ridges, valleys,
summits, etc. Their properties are comprehensively analyzed
using differential geometry quantities, resulting in a set of
keypoints of multiple-order gradient cues (from the first to
third order). More precisely, we introduce the Harris–Laplace
detector to characterize the elasticity, i.e., length and angle
variations, of the underlying surface, through the corner-
ness measurement of the first order gradients [16]. We then
describe the hand-dorsa vein areas which coincide with the
valley regions of the underlying landscape because of their
absorption and scattering properties. They are identified using
the Hessian–Laplace detector [17] which relies on the blob-
ness measurement of the Hessian matrix of the second order
gradients. In order to further thoroughly highlight shape
changes, i.e., the changes in optical properties, of the whole
hand dorsa skin and subcutaneous tissue, we also compute a
human vision inspired representation, namely oriented gradi-
ent maps (OGMs) [18], of the original image and then identify
feature points through the difference of Gaussian (DoG) [19].
Because OGMs are first order gradient based and DoG (an
approximation of Laplace of Gaussian, LoG) is second order
gradient based, these features are essentially third order gra-
dient based and correspond to the points whose curvatures
change most on the surfaces. Finally, the keypoints as detected
by the previous process between the hand-dorsa images of
the same subject are robustly associated using local feature
matching for decision making, accounting for moderate geo-
metrical transformations and possible lighting variations that
often occur in image acquisition. See Fig. 1 for the approach
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framework. The proposed approach is extensively evaluated
on North China University of Technology (NCUT) Part A
and NCUT Part B, both of which are among the largest dorsal
hand vein datasets so far known in the literature. Experimental
results clearly demonstrate the effectiveness of the proposed
method.

The contributions of this paper can be summarized as
follows.

1) We prove that dorsal hand vein based people identifica-
tion can not only rely on the vascular network, but also
depend on the optical characteristics, i.e., the absorption
and scattering properties, of surrounding skin as well
as subcutaneous tissue, since the randomly inhomoge-
neous distribution of blood and various chromophores
and pigments is subject dependent.

2) We interpret NIR dorsal hand images as landscapes
and surfaces and identify these keypoints of their optical
properties using geometric features through the quantities
of multiorder (i.e., the first-, second-, and third-order)
gradient cues, namely Harris cornerness measurement,
Hessian blobness measurement, and curvature extrema
by operating the DoG detector on a human vision inspired
image representation, OGMs, which are closely related
to the quantities in differential geometry.

3) We demonstrate that these keypoints as localized by
the aforementioned multiorder gradient based quantities
capture different geometric attributes corresponding to
complementary facets of the optical properties of the
vein network as well as its surrounding skin and subcuta-
neous tissue. As a result, we further propose to combine
these local features for identification and achieve the best
recognition accuracy so far known on the NCUT Part A
dataset.

Preliminary results appear in [20] and [21]. This paper
includes previous results but significantly extends them in the
following ways. Firstly, according to recent studies of optical
techniques for medicine, we state the motivation and the rational
of using both the hand vein area and the optical properties
of the surrounding skin and subcutaneous tissue in people
identification. Secondly, in the same way as retinal images, we
interpret hand dorsa vein images as landscapes or surfaces and
explain why the different facets of the optical properties of
the skin and subcutaneous tissue can be captured by geometric
features through quantities related with differential geometry.
Thirdly, because the keypoints are localized by multiorder
gradient quantities, i.e., Harris cornerness and Hessian blobness
measurements and OGMs with DoG, to represent different
optical characteristics of dorsal hand images, we further propose
an effective fusion approach that integrates and associates
these local features for matching. Fourthly, we comprehensively
evaluate the approach considering not only the identification
scenario as did in [20] and [21], but also the verification scenario,
thereby illustrating the general nature of the proposed method
for the most common applicative conditions. Finally, we also
assess and discuss the time complexity of the system.

The remainder of this paper is organized as follows.
Section II introduces the acquisition process of NIR dorsal
hand vein images. Section III presents the multilevel keypoint

Fig. 2. Illustration of the NIR imaging system.

Fig. 3. Hand-dorsa vein images. From the NCUT (a) Part A dataset and
(b) Part B dataset.

detection method and Section IV describes the OGMs based
dorsal hand representation. The local matching step is shown
in Section V. The experimental results of both scenarios in dor-
sal hand vein recognition and verification are displayed and
analyzed in Section VI. Section VII concludes this paper.

II. VEIN IMAGE ACQUISITION

Fig. 2 illustrates the system setup where an LED array
lamp is exploited to shine infrared light onto the back
of the hand. The incident infrared light can penetrate into
the biological tissue with an approximate depth of 3 mm,
and the randomly inhomogeneous distribution of blood and
various chromophores and pigments produces optical char-
acteristics, i.e., absorption and scattering properties that are
subject dependent [14]. Since the flow of hot blood inside
the vein network generally absorbs and scatters more infrared
radiation than the surrounding skin and subcutaneous tissue,
its curvilinear structures are imaged through a CCD camera
associated with an IR filter where the veins appear darker val-
leys whereas the surrounding skin and subcutaneous tissue
displays a landscape or surface, containing various features,
e.g., cliffs, ridges, plateaux, basins, etc., (see Fig. 3). The spec-
tral responses or the variations of these optical attributes of the
hand-dorsa skin and the subcutaneous tissue, including in par-
ticular the vascular network, are thus perfectly modeled by
using differential geometric quantities.

Using such a hardware setup depicted in Fig. 2, a database
of 2040 dorsal hand vein images of both hands of 102 subjects
was built by North China University of Technology in 2010,
and it was marked as the NCUT Part A database. In order to
make the device more practical, another sensor was proposed
by NCUT, in which a trade-off was considered between the
expenditure of hardware and the quality of hand vein images.
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The CCD camera and IR optical filter were substituted, leading
to around half reduction in total cost. Another dataset, namely
NCUT Part B, was collected through this novel device in 2011.
It consists of 2020 dorsal hand vein images of 101 subjects,
each of which owns 20 images; half for the left hand and half
for the right hand. In contrast to the NCUT Part A database,
NCUT Part B dataset is composed of dorsal hand vein images
under different acquisition conditions, and the images are more
noisy. Since the vein patterns are best described when the skin
on the dorsal hand is taut, a handle was mounted at the bottom
of the device to position the hand, and the images were thereby
roughly aligned. Fig. 3 shows samples of NCUT Part A and
Part B captured with a resolution of 640 by 480 pixels. There
were no major illumination variations, but moderate changes
in viewpoint (i.e., differing by rotations as well as translations)
still can occur since these images were collected in different
periods and environmental situations.

As we can see from Fig. 3, the pattern of the dorsal hand
vein is captured and it appears darker within the NIR image.
The widths of these vein profiles change in the range of
30 to 50 pixels. Even though the vein spatial arrangement
is visible, it is not very distinguishable from the surround-
ing bio-tissue. Furthermore, the number of local features,
e.g., endpoints and crossing points, is quite limited and usu-
ally varies from 5 to 10, thereby making local feature-based
approach questionable for the discriminative power as directly
applied to these dorsal hand images. On the other hand, the
spectral response of the surrounding skin as well as subcuta-
neous tissue translates the subject-dependent inhomogeneous
compositions of blood and various chromophores and pig-
ments, and their variations are also imaged by the NIR sensor.
In interpreting the hand vein image as a landscape or a sur-
face in the same way as retinal images [15], the key features of
these variations in absorption and scattering characteristics can
be perfectly captured through differential geometric properties,
e.g., cliffs, ridges, plateaux, basins, including in particular the
valley which corresponds to the vascular network. In order to
localize these geometric features and hence increase the num-
ber of local features for more distinctiveness, we propose to
make use of quantities closely related to differential geometry,
namely Harris cornerness and Hessian blobness measurements
grouped under the multilevel keypoint detection on the dorsal
hand image, and DoG based curvature extrema on a human
vision inspired representation, i.e., OGMs. They describe com-
plementary geometric attributes, and we introduce them in the
subsequent two sections, respectively.

III. MULTILEVEL KEYPOINT DETECTION

For local feature-based matching approaches, keypoint
detection is a critical step which is expected to locate a suf-
ficient number of local feature points for a comprehensive
description of the target image while providing some prop-
erties of invariance, e.g., scale, translation, rotation, etc. There
exist several state of the art keypoint detection methods, such
as DoG, Harris, Hessian, Harris–Laplace, Hessian–Laplace,
whose properties on textured gray level images have been
explicitly investigated by Roth and Winter [22] in object

TABLE I
COMPARISON OF DIFFERENT LOCAL FEATURE DETECTORS

retrieval (see Table I). However, due to the optical properties,
the dorsal hand vein image contains very few texture details.
In this section, we are interested in the geometric attributes of
these keypoint detectors when the underlying hand vein images
are interpreted as surfaces. This geometric analysis results in
the design of our multilevel keypoint detection for hand vein
images.

A. DoG Detector

DoG, proposed by Lowe [19], is one of the most widely
used detectors, and it serves the scale-invariant feature trans-
form (SIFT) feature extraction and matching.

The image is first repeatedly convolved with Gaussian filters
of different scales separated by a constant factor, k, to generate
an octave in the scale space. As for an input image, I(x, y),
its scale space is defined as a function, L(x, y, α), produced
by a convolution of a variable scale Gaussian G(x, y, α) with
the input image I, and the DoG function D(x, y, α) can be
computed from the difference of two nearby scales

D(x, y, α) = (G(x, y, kα) − G(x, y, α)) × I(x, y)

= L(x, y, kα) − L(x, y, α). (1)

The extrema of D(x, y, α) can be detected by compar-
ing each pixel value with those of its 26 neighbors within
a 3 × 3 area at the current and adjacent scales. At each
scale, gradient magnitude and orientation, m(x, y) and θ(x, y)
[as shown in (2) and (3)], are computed by exploiting pixel
differences. The confirmed stable extremes are regarded as the
scale-invariant keypoints located by DoG

m2(x, y) = (L(x + 1, y) − L(x − 1, y))2

+ (L(x, y + 1) − L(x, y − 1))2 (2)

θ(x, y) = tan−1 L(x + 1, y) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)
. (3)

DoG has proved competent at blob detection on gray level
images. In hand vein analysis, the optical properties of the vein
and its nearby tissue result in images with very limited texture
details. Therefore, DoG locates very few feature points which
are not located on hand vein regions [see Fig. 4(a)]. However,
when the dorsal hand image is considered as a surface, we can
give a geometric interpretation of these local features detected
by using DoG. In our implementation, DoG can be regarded
as an approximation of the Laplacian of Gaussian (LoG) with
the ratio of the scales equal to 1.6. In this case, the Laplacian
calculates the addition of these second partial derivatives and
delivers the sum of both the curvatures in the x and y direction.
Keeping this property in mind, we can see from Fig. 4(a) that
DoG has actually located a few points on the surface displayed
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Fig. 4. Distribution of keypoints detected by (a) DoG, (b) Harris–Laplace,
and (c) Hessian–Laplace (1000 clusters), on a hand-dorsa surface. DoG locates
very few feature points whose sums of x and y curvatures are extrema;
Harris–Laplace identifies the keypoints whose elasticities are greater than a
threshold; Hessian–Laplace detects the keypoints which carry shape informa-
tion in terms of curvatures, and localizes in particular the ones which densely
populate the valley regions corresponding to veins.

through the dorsal hand image whose sums of the curvatures in
the x and y directions are extrema either on ridges or on basins.
Of course, the number of these feature points is not sufficient
to comprehensively capture the whole geometric attributes of
the underlying surface. We therefore study other state of the art
local feature detection techniques and analyze their geometric
properties.

B. Harris and Hessian Keypoint Detection

From Table I, we can see that compared with DoG, the
other detectors, i.e., Harris, Hessian, Harris–Laplace, and
Hessian–Laplace, not only have high repeatability, but also
locate more keypoints on the gray level image. Both the
Harris–Laplace and Hessian–Laplace are similar with DoG
in the performance of scale invariance. Instead of Laplacian
approximation, Harris- and Hessian–Laplace apply the scale
normalized Laplacian to create the scale space which gives
the benefit to local feature extraction and matching.

Specifically, the Harris detector was proposed by
Harris and Stephens who defined the product of two
first derivation matrices [22]

μ =
[

I2
x (p) IxIy(p)

IxIy(p) I2
y (p)

]
=

[
A B
B C

]
(4)

and it responds to corner features on gray level images.
Ix and Iy denote the first derivation of the image I at posi-
tion p in the x and y direction, respectively. The corner
response threshold c calculated by avoiding the eigenvalue
decomposition of the second moment matrix above by

c =Det(μ) − k × Tr(μ)2 = (AC − B2) − k × (A + C)2. (5)

The Hessian matrix-based detector is similar with the
Harris detector but presents strong responses on blob features,
instead of the corner ones, because the Hessian matrix-based
detector replaces the elements of (4) with the second
derivation

MHe =
[

Ixx(p) Ixy(p)

Ixy(p) Iyy(p)

]
(6)

where Ixx and Iyy are the second derivatives of the image I at
the position p in the x and y direction, respectively; and Ixy is
the mixed derivative in both directions.

The two detectors above, i.e., Harris and Hessian, only
own the property of rotation invariance. To achieve scale
invariance, the scale normalized Laplacian S defined in (7) is
introduced as a scale selection criterion by Harris–Laplace and
Hessian–Laplace, and both detectors thus possess the property
of scale invariant as DoG does

S = s2 × ∣∣Ixx(p) + Iyy(p)
∣∣. (7)

While the Harris and Hessian keypoint detectors are mostly
analyzed in terms of properties of cornerness and blobness
on gray level images, they can also be described as geometri-
cal attributes on surfaces because of their close relationships
with the first and second fundamental forms in differential
geometry [23]. Indeed, the matrix of the Harris detector as
defined in (4) is related to the symmetric matrix of the fun-
damental form which characterizes the metric properties of
a surface, i.e., how the length and area are changed on the
surface with regard to the ambient space. In other words, the
matrix of Harris in (4) and the cornerness response in (5) char-
acterize somehow the elasticity of a surface as we can see in
Fig. 4(b). In this figure, the Harris–Laplacian detector locates
much more keypoints in comparison with DoG. Furthermore,
these keypoints cover the whole hand vein image and iden-
tify those points on the hand-dorsa surface whose elasticity is
greater than a given threshold. They can thereby contribute to
people identification using the optical properties of the hand
dorsa subcutaneous tissue.

In regard to the Hessian–Laplace detector, the matrix in (6)
with the second derivatives is related to the matrix of the sec-
ond fundamental form which characterizes how an embedded
surface is curved in the ambient space using curvature met-
rics, e.g., principal curvatures, mean, and Gaussian curvatures.
The Hessian–Laplace detector hence delivers keypoints on the
hand dorsa surface with shape clues in terms of curvatures.
As we can see in Fig. 4(c), the keypoints densely populate the
valley regions, i.e., the hand vein regions.

C. Design of Multilevel Keypoint Detection

Given the fact that both the vein and the optical attributes
of the surrounding subcutaneous tissue are subject dependent,
an effective way to characterize a person is to adopt the key-
points localized by the Harris–Laplace and Hessian–Laplace
detectors. The former captures the elasticity of the underly-
ing surface of the dorsal hand whereas the latter delivers the
points of shape information, in particular those populating the
valley regions of hand veins. The resulting method for locating
these keypoints is called in the subsequent multilevel keypoint
detector.

Some statistical analysis has been conducted along with
the experiments in this paper using the images on the NCUT
Part A database. DoG only detects less than ten keypoints on
each hand-dorsa image, and such a sparsity in local features
cannot provide sufficient distinctiveness and thus fails to result
in a reasonable recognition accuracy. When exploiting the
Harris–Laplace detector, we can averagely locate 640 keypoints,
and this number is indeed much larger than that of DoG.

Regarding Hessian–Laplace, around 3000 local features can
be found on each dorsal hand image, and this amount causes
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Fig. 5. 1000 selected keypoints located by the Hessian–Laplace detector,
based on (a) clustering and (b) strongest responses.

a sharp increase of computational cost in matching. We hence
consider selecting a subset of the most representative features.
Generally, it is straightforward to choose the strongest points
in terms of their responses in detection. However, those points,
achieved in this operation whose responses are higher than the
others, only distribute on the partial dorsal hand vein network
[as in Fig. 5(b)], leading to a loss in discriminative power. As a
result, to reduce the number of Hessian–Laplace based points
while keeping the distinctiveness, the number of keypoints is
reduced through clustering [as shown in Fig. 5(a)], where only
their locations (i.e., x and y coordinates) are considered. In our
case, the k-means algorithm is employed to randomly cluster
the points into 500, 700, and 1000, respectively, to balance
the performance and efficiency.

IV. OGMS BASED REPRESENTATION

In the previous section, we analyze the geometric proper-
ties of several state of the art keypoint detectors when dorsal
hand vein images are interpreted as surfaces, and propose a
multilevel keypoint detector to localize features not only on the
vein but also on its surrounding subcutaneous tissue. In this
section, we further increase the descriptive completeness of
these local features through an approach inspired by human
vision, using OGMs which are originally applied to repre-
sent the texture as well as shape information for 3-D face
recognition [24].

The objective of the OGMs is to provide a visual description
simulating the operation of human complex cells in the visual
cortex [25]. These complex neurons respond to a gradient at
a particular orientation and spatial frequency, but the location
of the gradient is allowed to shift over a small receptive field
rather than being precisely localized.

A. Representation of Complex Neuron Response

The proposed OGM based representation simulates the
response of complex neurons through a convolution of gradi-
ents in specific directions within a predefined neighborhood.
Since the scale of the dorsal hand vein image changes slightly
thanks to the hardware setup, we only employ a circular neigh-
borhood R, as demonstrated in Fig. 6. The precise radius value
of the circular area needs to be fixed experimentally. The
response of a complex neuron at a given pixel location is a
set of gradient maps in different orientations convolved by a
Gaussian kernel.

Specifically, given an input image (a dorsal hand vein
image in our case) I, a certain number of gradient maps

Fig. 6. Neighborhood of the complex neutrons is a circular area and its
radius can be changed according to the scale.

G1, G2,. . . ,Go, one for each quantized direction o, are firstly
computed. They are defined as

Go =
(

∂I

∂o

)+
. (8)

The “+” sign indicates that only the positive values are
kept to preserve the polarity of the intensity changes, and the
negative ones are set to zero.

Each of gradient maps describes gradient norms of the input
image in an orientation o at every pixel. We further simulate
the response of the complex neurons by convolving its gradient
maps with a Gaussian kernel G, and its standard deviation is
proportional to the radius value of the given neighborhood, R,
as in

ρR
o = GR ∗ Go. (9)

The purpose of the convolution with Gaussian kernels is to
allow the gradients to shift in a neighborhood without abrupt
changes.

At a given pixel location (x, y), we collect all values of
the convolved gradient maps at that location and form the
vector ρR(x, y), and it hence possesses a response value of
complex neurons for each orientation o

ρR(x, y) = [
ρR

1 (x, y), . . . , ρR
O(x, y)

]t
. (10)

ρR(x, y), is then normalized to an unit norm vector, which
is called response vector and denoted by ρR.

B. OGMs by Response Vectors

According to the definition of the response vector, the dor-
sal hand vein image can be represented by its perceived values
of complex neurons. Specifically, given a hand vein image I,
we generate an OGM Jo using complex neurons for each
orientation o defined as in

Jo(x, y) = ρR
o
(x, y). (11)

Fig. 7 depicts such a process applied to a dorsal hand vein
image. In this paper, we generate eight OGMs for eight pre-
defined quantized directions. Instead of the original NIR hand
dorsa images, these OGMs are thus exploited in the subsequent
local feature extraction and matching for identification.
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Fig. 7. OGMs describe a perceived near-infrared hand-dorsa vein image in
eight orientations.

C. Properties of Distinctiveness and Invariance

The OGMs potentially offer high distinctiveness since they
highlight the details of local texture changes. Meanwhile, they
also possess some interesting properties of robustness to affine
lighting variations.

When applied OGMs to dorsal hand vein images, they offer
the property of being robust to affine illumination transforma-
tions. Indeed, each OGM, Jo, is simply normalized convolved
gradient maps at the orientation o, while monotonic illumina-
tion change often adds a constant intensity value, as a result,
it does not affect the computation of gradients. Furthermore, a
change in image contrast in which the intensities of all pixels
are multiplied by a constant will lead to the multiplication of
gradient computation; however, such a contrast change will be
canceled by the normalization of response vectors.

OGMs can be made even rotation invariant if we choose to
quantize directions starting from that of the principal gradient
of all the gradients within the neighborhood, and the tolerance
to scale variations can also be largely improved by embedding
the multiscale strategy. Nevertheless, we do not perform such
steps to save computational cost as the dorsal hand vein images
in our study were already roughly aligned.

D. Design of the OGM Based Keypoint Detector

After the OGMs of a dorsal hand vein image are computed
to highlight the details of optical properties of the underly-
ing vein network and its nearby subcutaneous tissue, they are
then interpreted as retinal images [15], i.e., surfaces or land-
scapes, and their geometric attributes can be further analyzed.
In this paper, we concentrate on the variations of shape of
these OGM-based surfaces and employ DoG which identi-
fies the keypoints whose sums of curvatures in the x and y
directions change the most.

Fig. 8 demonstrates the distribution of the keypoints
detected by DoG, from the hand-dorsa vein image and its
corresponding OGMs, respectively. Because OGMs simulate
the operation of complex cells of the visual cortex and
therefore highlight the details of the vein patterns and their
surrounding subcutaneous tissue, DoG locates much more key-
points, including in particular the dorsal hand vein minutia,
on these OGM-based surfaces in comparison with the smooth

Fig. 8. Comparison in keypoint detection by DoG in the raw hand-dorsa vein
image (center) and its corresponding OGMs in the eight predefined quantized
orientations (around).

raw hand-dorsa vein surface, which comprehensively describe
these optical characteristics. The statistics that we computed
show that the average number of keypoints extracted from each
of OGM can rise up to 627, while that from the original dorsal
hand vein image is less than ten as stated in Section III. Fig. 8
illustrates this phenomenon.

Recall that the Harris–Laplace detector locates the key-
points whose elasticities are greater than a threshold from the
hand-dorsa surface and the Hessian–Laplace detector mostly
localizes the keypoints in the valley regions, i.e., the vein
areas. As compared to these features located by the multi-
level detector, i.e., Harris–Laplace as well as Hessian–Laplace,
DoG identifies the keypoints whose shape changes the most
at a given OGM-based surface. In the viewpoint of differen-
tial calculus, Harris–Laplace provides the first order gradient
information; Hessian–Laplace offers the second order gradient
information; whereas DoG associated with OGMs generates
the third order gradient information from an input hand-
dorsa surface. These keypoints are thus complementary for a
comprehensive description of the hand-dorsa vein image and
can be used for people identification through a local feature
matching process.

V. LOCAL FEATURE MATCHING

Once identified the keypoints using the multilevel keypoint
detection and DoG with OGM as described in the previous two
sections, we further extract the widely-used SIFT features [19]
at these positions to enable the matching between two dorsal
hand vein images for similarity measure computation and final
decision making.

A. SIFT-Feature Based Matching

For each detected keypoint, a feature vector is extracted as
a descriptor from these gradients of sampling points within its
neighborhood. In order to obtain the orientation invariance, the
coordinates and gradient orientations of sampling points in the
neighborhood are rotated relative with the keypoint orientation.
Then a Gaussian function is employed to assign a weight to the
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gradient magnitude of each point. Points close to the keypoint
are given more emphasis than the ones far from it (see [19] for
more details about the SIFT parameter setting). The orientation
histograms of 4×4 sampling regions are calculated, each with
eight orientation bins. Thus, a feature vector with a dimension
of 128 (4 × 4 × 8) is produced.

Given these local features extracted from the original image
pair or each of their corresponding OGM pairs in the gallery
and probe sets, respectively, the two sets of keypoints on dorsal
hands can be associated. Matching one keypoint to another is
accepted only if the similarity distance is below a predefined
threshold t times the distance to the second closest match. In
this paper, t is empirically set at 0.6 as in [19]. The number of
matched keypoints is accounted as the similarity measurement
between the gallery and probe samples, and a larger matching
score indicates a bigger probability that the hand-dorsa images
are from the same hand.

B. Score Level Fusion

For a hand-dorsa vein image, we extract a set of keypoints
of multiple sources, i.e., the multilevel detection based ones
directly localized on the original image by the Harris–Laplace
and Hessian–Laplace detectors as well as the ones detected by
DoG on its corresponding OGMs at different orientations. As
a result, multisource keypoint matches can be associated for
identification. We then combine their similarity measurements
at the matching score level to take all these contributions into
account for final decision making.

Specifically, we denote the number of the matched key-
points by NHarr for the ones localized using Harris–Laplace
and by NHess for the ones detected employing Hessian–Laplace
from the original hand-dorsa vein image pair; and by NOGMo

for the ones found exploiting DoG from each of their corre-
sponding OGM pairs at the oth direction. The bigger the value
of N is, the more likely that the two dorsal hand images belong
to the same subject, indicating that the similarity measure-
ments, i.e., NHarr, NHess, and NOGMo , are all with the positive
polarity (a bigger value means a better matching relationship).
A dorsal hand vein image in the probe set is compared with
the ones in the gallery set, respectively, leading to a matching
score vector. The nth element in a matching score vector corre-
sponds to the similarity between the probe and the nth gallery
sample. The score vectors from multiple sources are further
normalized to the interval of [0, 1] using the max-min rule.
These matching scores are finally fused by a basic weighted
sum rule

S =
o+2∑
i=1

wi · Si. (12)

There are totally o + 2 similarity scores including the one
of SHarr, the one of SHess, and the ones (o) of SOGMo . The
corresponding weight wi is calculated dynamically during the
online step using the scheme as in [26]

wi = max1(Si) − mean(Si)

max2(Si) − mean(Si)
(13)

where the operators max1(S) and max2(S) produce the first
and second maximum values of the score S, respectively. The

Fig. 9. Matching example between the dorsal hand vein images belonging to
the same person based on these keypoints detected using (a) Harris–Laplace
and (b) Hessian–Laplace. The matched keypoints marked in yellow boxes are
located in the vein region and the ones in red boxes are located in the nearby
subcutaneous tissue.

gallery dorsal hand vein image that holds the maximum value
is declared as the identity of the probe image.

C. Illustration of Matching Samples

Fig. 9 displays a matching example adopting multilevel
keypoint detection applied directly to the dorsal hand vein
image: i.e., Harris–Laplace [Fig. 9(a)] and Hessian–Laplace
[Fig. 9(b)]. According to the locations of the matched key-
points, they are highlighted by using two different colors. The
ones in the vein area are marked in yellow whilst the ones in
the surrounding subcutaneous tissue are marked in red. This
figure highlights the following facts: 1) the positions of the
keypoints provided by both the detectors, i.e., Harris–Laplace
and Hessian–Laplace, are different and the two sets of points
are complementary to each other and 2) these details out-
side the vein regions, i.e., these matched keypoints in the red
boxes, are as important as those within the vein regions in
final decision making.

Fig. 10 depicts a matching example between two hand-dorsa
images of the same subject utilizing OGMs with DoG. We
can observe a similar phenomenon and draw the same conclu-
sion, i.e., the clues conveyed within the vein region (marked
in yellow) and its surrounding subcutaneous tissue (marked
in red) are both discriminative; meanwhile, these OGMs at
different orientations contain complementary information.

VI. EXPERIMENTAL RESULTS

In order to comprehensively evaluate the proposed method,
we designed several experiments that are explicitly introduced
in the subsequent. The experiments (in Sections VI-A–VI-F)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: HAND-DORSA VEIN RECOGNITION BY MATCHING LOCAL FEATURES OF MULTISOURCE KEYPOINTS 9

Fig. 10. Matching example using these OGM pairs of two left hands of the
same person. The left column from top to bottom: OGM1 to OGM4; while the
right column with the same order: OGM5 to OGM8. The matched keypoints
marked in yellow are located in the vein area and the ones marked in red are
detected in the nearby subcutaneous tissue.

were mainly conducted both in the scenarios of identification
and verification as in the state-of-the-art work using the NCUT
Part A database. In the meantime, to check the generalization
ability of the proposed approach, we also carried out additional
experiments (in Section VI-G) on NCUT Part B collected by
a device whose cost is only a half as that for Part A, and its
images are thus with more noise. Recall that both databases
are among the largest ones of NIR hand-dorsa vein images.
Part A contains ten right and ten left dorsal hand images,
respectively, for each of the 102 subjects (totally 2040 sam-
ples), while Part B consists of the same number of images from
both hands of 101 subjects (totally 2020 samples). All the hand
images were roughly aligned thanks to the hardware config-
uration, but they still have moderate viewpoint (i.e., rotation
and translation) and slight lighting intensity variations.

A. Effectiveness of Multilevel Keypoint Detection

We evaluated the effectiveness of the proposed multilevel
keypoint detection approach in terms of the rank-one recog-
nition rate in the scenario of identification. For experimental
setup, the first five images of a subject were used in the gallery
set and the remaining five images were exploited as probes.
Because it was found out that the hand vein pattern is unique
to some level for each person and each hand [27], we con-
sidered the left and right hand-dorsa vein images separately
as if we had 204 different subjects each of which possesses
ten samples in the dataset.

From the results in Table II, we can conclude in these points.
1) When we increase the number of these clustered cen-

ters (i.e., from 500 to 1000) for the keypoints detected
by Hessian–Laplace, the rank-one recognition rate is
improved, indicating that more keypoints lead to better
accuracy. As we continue to increase it, the improve-
ment is more and more limited. We thus set this number
at 1000 to balance the accuracy and time cost in the
following experiments to compute the performance of
Hessian–Laplace.

TABLE II
RESULTS OF DIFFERENT DETECTORS, i.e., HARRIS–LAPLACE AND

HESSIAN–LAPLACE AND THEIR DIFFERENT FUSION SCHEMES

FOR THE MULTILEVEL KEYPOINT DETECTION BASED

METHOD ON NCUT PART A

TABLE III
PERFORMANCE OF EACH OGM AND THEIR COMBINATION IN THE SETUP

OF LEFT-HAND ONLY, RIGHT-HAND ONLY, AND BOTH-HANDS

ON THE NCUT PART A DATABASE

2) Making use of a comparable number of detected
keypoints, the performance achieved by Harris–Laplace
is superior to that of Hessian–Laplace, demonstrat-
ing that the keypoints localized by Harris–Laplace,
including in particular the ones outside the vein areas,
provide more discriminative information than those
detected by Hessian–Laplace which mainly focuses on
the vein regions. This phenomenon further illustrates
the fact that these optical properties of subcutaneous
tissue surrounding the vein network convey subject
dependent cues.

3) No matter which score level fusion scheme (sum,
product, max, and min rule) we take, the recogni-
tion rate is better than either of the Harris–Laplace or
Hessian–Laplace, proving that the two detectors pro-
vide complementary clues to each other and highlighting
the effectiveness of the multilevel keypoint detection
approach. To keep the consistency in our approach,
the sum rule was used in the following experiments to
combine the results of Harris- and Hessian–Laplace.

B. Discriminative Power of OGMs

We then tested the discriminative power of the OGM based
image representation in terms of the rank-one recognition rate
in the identification scenario as well, following the same pro-
tocol as in the previous experiment. We calculated recognition
rates of each OGM (for different quantized orientations) and
their combination as displayed in Table III.

As we discussed in Section IV, each dorsal hand image has
quite limited number of keypoints if DoG is directly applied to
the original data, thus leading to a very partial description for
the following matching step. This observation was our major
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Fig. 11. Accuracy curves based on multilevel keypoint detection with respect
to the gallery size of each subject on NCUT Part A.

motivation to develop OGMs which simulate the response of
complex cells in the visual cortex in highlighting the gradients
at different orientations. In Table III, we can see that the fusion
of all these OGMs reaches a much better result than any of the
single one. Such a fact accords with our preliminary study for
this issue in adopting subspace techniques [28]. Unfortunately,
in that work, due to the sensitivity of holistic methods to NIR
intensity variations and hand geometric transformations, only
about 70%–80% rank-one recognition rates were reported even
with an easier experimental setup. Obviously, that performance
is not accurate enough for a biometric system.

Meanwhile, we can see that the results of these OGMs are
different, and the ones of OGM-1 and 5 are largely better
than the others. The reason lies in that most of the dorsal
hand veins are vertically distributed as shown in Fig. 8, which
can be best highlighted by the horizontal gradient responses,
i.e., OGM-1 and 5. Moreover, there exist a few horizontal and
oblique vein furcations, and their corresponding best gradient
responses are also necessary to comprehensively represent the
entire venous network. As a result, the joint use of all these
OGMs leads to the final highest score, indicated by the fusion
performance.

On the other hand, we compared these results in the three
columns of Table III, and found out that the performance only
using left hand images was comparable to that only using right
hand images. When left and right hand vein images were both
used and considered as captured from different subjects, the
result generally remains stable, showing that our method works
well as the class size is doubled.

C. Impact of Gallery Size

An important property of a biometric system is its sta-
bility when the gallery size changes. For this purpose, we
varied the number of gallery samples of each person from
1 to 9 (since at least one sample per person should be used
in the probe set) to analyze the impact of the gallery size
on the proposed method, employing the predefined experi-
mental setup in identification. We can find that the rank-
one recognition rate based on multilevel keypoint detection
decreases from 97.55% to 85.57% (as in Fig. 11) and the
accuracy by combining these OGMs at all orientations falls

Fig. 12. Accuracy curves based on individual OGMs and their combination
with respect to the gallery size of each subject on NCUT Part A.

TABLE IV
RANK-ONE RECOGNITION RATES OF KEYPOINT MATCHING IN EACH

SOURCE AS WELL AS THEIR COMBINATION, i.e., MULTIPLE

SOURCES, WITH RESPECT TO THE GALLERY SIZE OF

EACH SUBJECT ON NCUT PART A

from 99.02% to 83.88% (as in Fig. 12) when the gallery size
drops from 5 to 1. It indicates that the problem of limited
enrolled samples seriously challenges the biometric system.
In the meantime, we can also see that they both display cer-
tain robustness to such a challenge, and achieve acceptable
rank-one recognition rates at 92.52% and 91.42%, respec-
tively, when only two samples were enrolled as gallery for
each subject.

We highlighted in the previous sections the complementarity
of the two solutions proposed in this paper, i.e., the detection of
multilevel keypoints which focuses on the elasticity and shape
changes on the original hand-dorsa surface and DoG applied to
its OGMs which simulate the response of complex cells in the
visual cortex in highlighting these details through gradients at
different orientations. A natural alternative to further improve
the accuracy of the approach is to combine these scores of the
two solutions to account for both their descriptive power. We
adopt the weighted sum rule as defined in (12) for fusion, and
final performance is significantly improved. The entire system
reports a rank-one recognition rate up to 91.29% (as shown in
Fig. 13 and Table IV) with only one image of each subject in
the gallery set. As we can see in Table. IV and Fig. 13, these
multisource keypoints are consistently complementary.

These cumulative match characteristic (CMC) curves related
to different numbers (from 1 to 9) of enrolled samples in the
gallery set of each subject are provided in Fig. 14.
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Fig. 13. Accuracy curves based on different sources of keypoint matching
with respect to the gallery size of each subject on NCUT Part A.

Fig. 14. CMC curves based on multisource keypoint matching of different
numbers of gallery samples of each subject on NCUT Part A.

TABLE V
PERFORMANCE IN THE SCENARIO OF VERIFICATION OF THE

PROPOSED METHOD ON THE NCUT PART A DATASET

D. Verification Validation

We also performed experiments in the scenario of veri-
fication with the three modalities, i.e., multilevel keypoint
detection on the original images, DoG based keypoint detec-
tion on these OGMs of the images, as well as the combination
of the previous two modalities. For each subject, the first
image was regarded as the gallery and the remaining images
were treated as the probe samples to calculate the verification
rates (VR) at the false acceptance rate (FAR) of 0.001 and the
equal error rate (EER). Table V and Figs. 15 and 16 display
these results, from which we can draw similar conclusions as
in identification.

E. Comparison with the State of the Art

We compared the proposed method with the state of the art
ones on NCUT Part A as illustrated in Table VI. Specifically,
Wang et al. [29] firstly localized the vein network on the

Fig. 15. Receiver operating characteristic (ROC) curves between FAR and
VR of the proposed method on the NCUT Part A dataset.

Fig. 16. ROC curves between FAR and false rejection rate (FRR) of the
proposed method on the NCUT Part A dataset.

TABLE VI
COMPARISON WITH THE STATE OF THE ART IN RANK-ONE

RECOGNITION RATE ON THE NCUT PART A DATASET

dorsal hand; then represented the detection result as a binary
image, and finally applied SIFT for the matching step. Such
an approach was originally introduced by Ladoux et al. [5] for
the purpose of hand-palm vein identification. As we can see
from that table, when only the vein regions are used as in [29],
the accuracy is only 78.68% with the first four samples in the
gallery and the other six as probes, thereby far behind the per-
formance achieved by the proposed approach. This comparison
confirms once more the importance of considering the optical
properties of the whole hand-dorsa image. Our result is also
higher than the best one reported in [29] that was achieved
by adopting the relationship of multiple gallery samples of
each subject. Wang et al. [8] employed an improved version
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TABLE VII
COMPARATIVE SUMMARY OF RELATED WORK ON DORSAL HAND VEIN BASED IDENTIFICATION AND VERIFICATION ON DIFFERENT DATABASES

TABLE VIII
RESULTS OF LEFT HAND ONLY, RIGHT HAND ONLY, AND THEIR

FUSION USING DIFFERENT NUMBERS OF GALLERY SAMPLES

ON THE NCUT PART A DATASET

of the local binary patterns (LBP), namely circular partition
local binary patterns (CP-LBP), and achieved a recognition
rate of 90.88% with five hand vein images in the gallery set
and the remaining 5 ones used as probes. With this protocol,
Zhu and Huang [30] evaluated their approach via hierarchi-
cally combining the LBP based texture features and graph
matching based geometric features, and a rank-one recogni-
tion rate of 97.67% was reported. In our case, a better result
is obtained by using such an experimental setup. A compara-
ble performance was generated in [6], but in their experiments
only a subset of the dataset (150 gallery and probe images of
15 persons) was exploited for evaluation. These facts clearly
demonstrate the effectiveness of the proposed approach for
dorsal hand vein recognition.

For further information and comparison, Table VII summa-
rizes major state of the art approaches for the issue of dorsal
hand vein based people identification and verification. As we
can see, the proposed method achieves competitive results in
both the scenarios of identification and verification while using
a more comprehensive dataset.

F. Complementarity of Left and Right Hands

Since vein patterns are different to some level for both hands
of the same individual [27], intuitively, the left and right hands
of one person should possess complementary information for
recognition. In the experiment, we further investigated such
an answer to this problem by fusing the similarity measure-
ment of each hand using the weighted sum rule as the other
fusion steps in this paper. We can see from Table VIII that the
accuracy based on the fusion of both hands (in the third col-
umn) always outperforms that based on either of single hand

TABLE IX
RANK-ONE RECOGNITION RATES OF KEYPOINT MATCHING IN

EACH SOURCE AS WELL AS THEIR COMBINATION, i.e.,
MULTIPLE SOURCES, WITH RESPECT TO THE GALLERY

SIZE OF EACH SUBJECT ON NCUT PART B

TABLE X
PERFORMANCE IN THE SCENARIO OF VERIFICATION OF THE

PROPOSED METHOD ON THE NCUT PART B DATASET

(in the first and second columns), and we can achieve a rank-
one recognition rate of 98.15% even using one enrolled sample
per hand for each subject. These results thus suggest that the
use of left and right hands can further reinforce the robust-
ness and the performance of the proposed hand vein based
biometric system.

G. Evaluation on Generalization Ability

The previous experimental results suggest that the proposed
method achieves very good performance on the NCUT Part A
dataset. A key question, nevertheless, is whether it generalizes
to other databases. We aim to answer this question using the
novel NCUT Part B dataset. It roughly keeps the same size as
NCUT Part A, but the hand vein images are more noisy since
they were captured using a low cost device. We conducted both
scenarios of identification as well as verification, and adopted
the same protocols as in Tables IV and V, respectively.

We can observe from Tables IX and X that the conclu-
sions achieved on NCUT Part B are consistent with the
ones on Part A, i.e., the joint utilization of multiple key-
points to characterize these optical attributes of entire dor-
sal hand images improves the performance in comparison
with those local feature-based approaches using single ones.
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Fig. 17. Matching the keypoints across (a) scale variations and (b) translations (in both sub-figures, left column from top to bottom: Harris–Laplace, DoG
on OGM1, DoG on OGM3, DoG on OGM5, and DoG on OGM7 and right column from top to bottom: Hessian–Laplace, DoG on OGM2, DoG on OGM4,
DoG on OGM6, and DoG on OGM8).

TABLE XI
AVERAGE CONSUMED TIME OF EACH COMPONENT OF THE

DORSAL HAND VEIN RECOGNITION SYSTEM

Furthermore, when we compare the accuracies on NCUT
Part A and NCUT Part B (i.e., Table IV versus Table IX and
Table V versus Table X), it can be seen that the proposed
method reports competitive accuracies on NCUT Part B as
well, quite close to the ones achieved on NCUT Part A. These
results thereby suggest a quite good generalization skill of
the proposed approach to dorsal hand vein recognition which
further displays the robustness to noise caused by the cost
decrease in the device of data acquisition.

H. Complexity Analysis

Real-life applications require a fast runtime in field deploy-
ment. The major cost centers in our system lie in multisource
keypoint detection, SIFT feature extraction, and matching. We
therefore focused our attention on optimizing these procedures.
Primarily, we optimally coded them using C++. Given the fact
that each process on a single type of keypoints, i.e., the ones
provided by Harris–Laplace, Hessian–Laplace, and OGMs, is
separated, we then utilized multithreading implementation of
the entire system so that they can operate in parallel. In each
process, the matching stage was further optimized and made
20 times faster in efficiency through GPU. Finally, the overall
time cost is the maximum of the individual processes (i.e., the
Hessian–Laplace based process). Table XI shows the details.

As we can see in Table XI, the method currently costs about
128 ms to achieve a 1-to-1 verification, including multisource
keypoint detection (72 ms for the Hessian–Laplace based step)
and SIFT feature extraction (52 ms) on the given probe and
its matching with the gallery (4 ms), by using a machine
equipped with two Intel (R) Xeon E5-2620 v2 CPUs (12-core,
2.6 GHz), 16 GB RAM, and a GTX 780 graphics card. When
dealing with recognition, keypoint detection and local feature
extraction on the probe are conducted online only once, while
the time cost in matching is multiplied by the number of the
gallery samples (1-to-N matching), leading to the computation
cost of 524 ms (72 + 52 + 100 × 4 ms) of a 1-to-100 system.

I. Discussion

According to the experimental results, the proposed method
outperforms its counterparts, thus proving more discriminative
to distinguish NIR dorsal hand vein images, which is supported
by two principal theoretical foundations. On the one hand, it
depends on recent investigations in optical health science [14],
presenting that people identification using hand vein images
should not only focus on the vein network but also make use
of these optical properties of the surrounding skin regions
whose spectral response conveys subject-dependent inhomo-
geneous composition of blood and various chromophores
and pigments. On the other hand, based on the progress
achieved in psycho-visual studies [15], we interpret dorsal
hand vein images as surfaces whose geometric characteristics,
i.e., plateau, cliffs, ridges, valleys, etc., capture the subject-
dependent variations of absorption and scattering attributes
and could be perfectly characterized through curvature related
quantities in differential geometry.

From the experimental viewpoint, local feature-based meth-
ods, see [8], [20], [21], [29], outperform holistic techniques,
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such as PCA and LDA based subspace analysis [28], by a gap
reaching more than 15 points on the NCUT Part A database.
When we only focus on local feature-based methods, because
we interpret hand vein images as surfaces to characterize their
optical properties of hand skin as well as subcutaneous tissue
in addition to vein network, the proposed approach employs
multiorder (first, second, third) differential quantities closely
related to differential geometry and hence provides a more
comprehensive description of geometric properties in compar-
ison with several existing local based methods that only exploit
single type of features. The performance is hence better than
that of SIFT [29], CP-LBP (an LBP variant) [8], or even a
hybrid one by combining local and global features [30].

Additionally, the proposed approach employs the SIFT-like
matching framework, and inherits the reputed robustness to in-
plane rotation, scale changes, and translations, hence showing
the potential to be competent in more difficult and complicated
scenarios. Unfortunately, to the best of our knowledge, there is
no publicly available database which contains these challenges.
As such, we illustrate the robustness using artificial examples.
For instance, Fig. 17 depicts the matching results across scale
variation and translation. The two dorsal hand vein images
are from the same subject in NCUT Part A. In Fig. 17(a), the
left is of the original size while the right is resized to 90%.
In Fig. 17(b), the left is fixed while half of the right is occluded
due to translation. From the figure, we can see that even if in
different scales or with large translations, the points detected
on two images can still be correctly associated.

VII. CONCLUSION

This paper proposed a novel local feature-based approach
to hand-dorsa vein recognition via matching keypoints local-
ized through quantities of first to third order gradients closely
related to differential geometry. In contrast to the state of
the art work that only concentrates on the vein area, we
demonstrated a key finding that the discrimination of a per-
son by the dorsal hand vein image should focus not only
on the vein network but also on the surrounding subcuta-
neous tissue whose optical properties are subject dependant as
well. Furthermore, we interpreted the dorsal hand vein images
and their distinctiveness enhanced representation, i.e., OGMs,
as landscapes or surfaces, and generated a comprehensive
description of their optical attributes by adopting geometric
characteristics, modeled by Harris–Laplace, Hessian–Laplace
and DoG based detectors and SIFT features. Extensive experi-
ments conducted on NCUT Part A illustrated the effectiveness
of the proposed approach, reaching the best performance so
far reported on this database, both in identification and ver-
ification. Additional experimental results achieved on NCUT
Part B also highlighted its robustness to low quality data.

In future work, we will investigate this issue in going one
step further through a deep geometric approach which casts the
matching of local features into a problem of surface registra-
tion, making use of full geometrical and topological properties
of two dorsal hand vein surfaces. Furthermore, we will apply
more powerful techniques [38] to improve the fusion of the
matching results of multisource keypoints or even to combine

with other hand biometrics (see [39]). In addition, we will
also dedicate to building a representative dataset of the dorsal
hand vein images containing significant variations in rotation,
scale, illumination, etc., and experimentally test the robustness
of the method to these factors.
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