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Abstract Registration algorithms performed on point
clouds or range images of face scans have been success-
fully used for automatic 3D face recognition under expres-
sion variations, but have rarely been investigated to solve
pose changes and occlusions mainly since that the basic
landmarks to initialize coarse alignment are not always
available. Recently, local feature-based SIFT-like match-
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ing proves competent to handle all such variations without
registration. In this paper, towards 3D face recognition for
real-life biometric applications, we significantly extend the
SIFT-like matching framework to mesh data and propose a
novel approach using fine-grained matching of 3D keypoint
descriptors. First, two principal curvature-based 3D keypoint
detectors are provided, which can repeatedly identify com-
plementary locations on a face scan where local curvatures
are high. Then, a robust 3D local coordinate system is built
at each keypoint, which allows extraction of pose-invariant
features. Three keypoint descriptors, corresponding to three
surface differential quantities, are designed, and their feature-
level fusion is employed to comprehensively describe local
shapes of detected keypoints. Finally, we propose a multi-
task sparse representation based fine-grained matching algo-
rithm, which accounts for the average reconstruction error of
probe face descriptors sparsely represented by a large dic-
tionary of gallery descriptors in identification. Our approach
is evaluated on the Bosphorus database and achieves rank-
one recognition rates of 96.56, 98.82, 91.14, and 99.21 % on
the entire database, and the expression, pose, and occlusion
subsets, respectively. To the best of our knowledge, these
are the best results reported so far on this database. Addi-
tionally, good generalization ability is also exhibited by the
experiments on the FRGC v2.0 database.

Keywords Registration-free 3D face recognition ·
Expression, pose and occlusion · 3D keypoint descriptors ·
Fine-grained matching

1 Introduction

As it is natural, non-intrusive, and allows easy collection
of face data, machine-based face recognition has received
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significant attention from the biometrics community over
the past several decades (Zhao et al. 2003). However, auto-
matic face recognition in unconstrained environments with-
out users’ cooperation is currently a far more unsolved prob-
lem and a very challenging task (Li and Jain 2005). The main
difficulties lie in the strong inter-subject similarities in facial
appearance and the large intra-subject variations caused by
severe illumination changes, large pose variations, partial
occlusions and make up utilization (e.g. facial cosmetics)
(Zhao et al. 2003; Li and Jain 2005).

Concerning these difficulties and along with the rapid
development of 3D imaging systems, shape-based (3D) face
recognition has been recently investigated as an alternative
or complementary solution to traditional appearance-based
(2D) face recognition. This research trend has been largely
promoted by the release of benchmark databases like the
Face Recognition Grand Challenge (FRGC v2.0) (Phillips
et al. 2005), and a large number of 3D face recognition
approaches have emerged in the past decade. See the early
survey in Bowyer et al. (2006), and a thorough discussion
in Spreeuwers (2011), Smeets et al. (2012), Huang et al.
(2012), and Drira et al. (2013) for more recent contributions.
However, the majority of these approaches are evaluated on
face scans assumed to be captured with users’ cooperation
in constrained environments. In such a case, only frontal
face scans with moderate expression variations are consid-
ered. Although high accuracies have been achieved, very
sophisticated registration algorithms are usually indispens-
able (Kakadiaris et al. 2007; Faltemier et al. 2008; Al-Osaimi
et al. 2009; Wang et al. 2010; Alyüz et al. 2010; Queirolo et
al. 2010; Spreeuwers 2011; Mohammadzade and Hatzinakos
2013). More recently, 3D face recognition in real biometric
applications using scans captured in less controlled or uncon-
strained conditions has received increasing interests (Passalis
et al. 2011; Alyüz et al. 2013; Drira et al. 2013). In this
scenario, 3D face recognition methods are expected to auto-
matically and simultaneously deal with expression changes,
occlusions, as well as pose variations. This directly leads to
many uneasy issues such as automatic occlusion detection
and restoration, pose normalization and fiducial point local-
ization on partial face scans. All these difficulties suggest that
developing 3D face recognition methods for real applications
is a very challenging task.

1.1 Related Work

The literature does propose a few methods dealing with spe-
cific challenges of 3D face recognition in less controlled con-
ditions. For example, in Passalis et al. (2011), facial symme-
try is used to handle large pose variations for 3D face recog-
nition in the real world; in Alyüz et al. (2013), a masked pro-
jection based on subspace analysis techniques is proposed for
3D face recognition under occlusions; in Drira et al. (2013),

a curve-based shape analysis framework is presented for 3D
face recognition under expression changes, occlusions and
pose variations. However, all these methods require very
sophisticated registration algorithms for automatic pose nor-
malization (Passalis et al. 2011) or occlusion detection and
restoration (Alyüz et al. 2013; Drira et al. 2013).

Fortunately, the well-known 2D SIFT matching frame-
work and its 3D extensions, offer promising solutions to the
above difficulties. The primary work of 3D SIFT-like match-
ing framework performed on point cloud data is proposed in
Mian et al. (2008), where 3D keypoints are first automati-
cally determined on face scans by analyzing the differences
between the principal axes of each local region. Then, a ten-
sor representation based pose-invariant local shape descrip-
tor is extracted at each keypoint. Finally, 2D SIFT matching
under global graph constraint is used for keypoint match-
ing. However, the tensor-based descriptor simply encodes the
information of point coordinates and lacks of person depen-
dent distinctiveness, thus limiting its performance in 3D face
recognition. In Huang et al. (2012), facial range images are
first represented by a group of extended local binary pattern
(eLBP) maps, and the 2D SIFT matching framework is then
performed on these images for keypoint detection, local fea-
ture extraction, and matching. Although this approach proves
very discriminative and is registration-free for nearly frontal
face scans, it cannot deal with large pose variations without
manually labeled facial landmarks.

Considering the above limitations, it’s necessary to extend
the 2D SIFT matching framework to 3D mesh data. Since
containing topological information, mesh data are more con-
venient for local operations (e.g. estimation of differential
operators) than point cloud data, and thus have larger possi-
bility to express more informative shape information, which
directly leads to more discriminative local shape descriptors.
Moreover, compared with 2.5D range images, pose-invariant
local shape descriptors can be naturally constructed on full
3D free-form mesh data, and mesh-based 3D face recognition
methods hence have the potential to simultaneously deal with
expression changes, occlusions, as well as large pose varia-
tions. Recently, a few mesh data based SIFT-like matching
methods have been proposed for 3D face recognition. How-
ever, their performance are still not sufficiently competitive
(Li et al. 2011; Smeets et al. 2013; Berretti et al. 2013).

1.2 Contribution

Motivated by the main challenging issues and inspired by
the 2D/3D SIFT methodology, we propose a mesh-based
registration-free 3D face recognition approach that can uni-
formly and robustly deal with expression changes, occlu-
sions, and pose variations. As shown in Fig. 1, our approach
includes three basic modules: i.e. 3D keypoint detection,

123



Int J Comput Vis

Fig. 1 Overview of the proposed method. 3D keypoint detection: from
top to bottom, the original face scan and three smoothed face scans, their
corresponding minimum principal curvature, Differences of Gaussian
maps, and the detected 3D keypoints. The same procedures are also
carried out for maximum principal curvature; 3D keypoint description:

canonical direction assignment, quasi-daisy descriptor configuration,
and descriptor representation by multi-order surface differential quan-
tities; 3D keypoint matching: SIFT-like coarse-grained matching (top)
and multi-task sparse representation-based fine-grained matching (bot-
tom)

3D keypoint description, and 3D keypoint matching. Their
details are presented as follows.

Our 3D keypoint detection algorithm starts by performing
a sequence of Gaussian filters on a face scan, and continues
by computing some scalar functions (e.g. curvatures) on the
sequence of smoothed scans. The differences of Gaussian
(DOG) operators are further computed in terms of these
scalar functions and, finally, the local extrema of the DOG
across scales are defined as keypoints. To locate more mean-
ingful 3D keypoints, we propose using the two principal cur-
vatures as the scalar functions.

For 3D keypoint description, to generate a descriptor
with strong discriminative power, we propose building the
weighted histograms of multiple order surface differential
quantities, including the histograms of the surface gradient
(1st order), the surface shape index (2nd order), the gradi-
ent of shape index (3rd order), as well as their early fusion
(multi-order). Our experimental results show that different
orders of differential quantities have strong complementar-
ity in descriptiveness, and their feature-level fusion can pro-
vide a comprehensive description of the 3D keypoint, thus
ensuring very strong discriminative power.

For keypoint matching, instead of using the conventional
SIFT matcher, which simply counts the pairs of correspond-
ing keypoints, we propose a more precise matcher based
on multi-task sparse representation. The proposed matcher
first finds the sparsest representation of each probe descriptor
from the complete dictionary set of all the descriptors asso-
ciated with all the keypoints of the gallery scans. Then, the
average reconstruction errors of sparse representation for the
descriptor set, associated with all the keypoints of the probe
scan, are computed as the similarity measurements between
the probe scan and all the gallery scans. Finally, the gallery

subject corresponding to the minimal error labels the identity
of the probe.

Overall, our contributions involve all the above three mod-
ules and can be briefly summarized as follows.

(1) We introduce a principal curvature-based 3D keypoint
detection algorithm, which can repeatedly identify com-
plementary locations on the face scan where local cur-
vatures are high (see Sect. 2).

(2) We present three novel pose-invariant 3D keypoint
descriptors by computing the weighted histograms of
different surface differential quantities, and their feature-
level fusion for a comprehensive local shape description
(see Sect. 3).

(3) A multi-task sparse representation-based fine-grained
matching scheme is proposed, which makes use of
the average sparse reconstruction error-based similarity
measurement to significantly enlarge intra-subject simi-
larity and reduce inter-subject similarity (see Sect. 4).

(4) We conduct comprehensive experiments on both the
Bosphorus and FRGC v2.0 databases. Our approach
achieves very competitive performance and shows good
generalization ability (see Sects. 5 and 6).

It is worth distinguishing the main differences between
the proposed approach and the very relevant work, meshSIFT
(Maes et al. 2010; Smeets et al. 2013). On the keypoint detec-
tion module, both methods locate keypoints by finding local
extrema of the DOG operator defined on curvature-based
scale spaces. The meshSIFT algorithm uses the mean curva-
ture to measure the saliency of keypoints, while we jointly
use the two principal curvatures for saliency measurement.
This strategy can largely increase the probability of locat-
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ing more meaningful keypoints distributed at complemen-
tary facial positions and finding more informative geometry
structures.

On the keypoint description module, the meshSIFT algo-
rithm builds a histogram-based descriptor by combining the
quantities of shape index and slant angle like Lo and Siebert
(2009). In contrast, inspired by the daisy descriptor (Tola et al.
2010), we build four quasi-daisy histogram-based descriptors
using three different surface differential quantities (mesh gra-
dient, shape index, and the gradient of shape index) and their
fusion. Experimental results based on the same setting show
that our descriptor (the one with fusion) has much stronger
discriminative power than meshSIFT.

On the keypoint matching module, the simple SIFT
matcher is used by meshSIFT, while we propose a multi-
task sparse representation based fine-grained matcher. The
sparse representation based classifier was first introduced by
Wright et al. (2009) for 2D face recognition. Recently, it has
also been extended to expression-insensitive 3D face recog-
nition (Li et al. 2009, 2014) and multi-pose 3D face recog-
nition (Guo et al. 2013). In all these studies, the 2D face
image or 3D face scan is generally represented by a single
feature vector or multiple vectors with different scales. How-
ever, in our case, a 3D face scan is described by hundreds of
unordered 3D keypoint descriptors: comparing two sets of
these local descriptors using sparse representation is more
complex. More recently, Liao et al. (2013) used multi-task
sparse representation to compare two sets of local descriptors
for 2D partial face recognition. Inspired by Liao et al. (2013);
Wright et al. (2009), we build the fine-grained matcher for
registration-free 3D face recognition. A similar matching
scheme is also used for 3D-aided 2D face recognition, where
the dictionary feature set is constructed by the different views
of the gallery faces (Masi et al. 2013).

Preliminary results of our approach have been published
in Li et al. (2011) and Veltkamp et al. (2011). However, sig-
nificant extensions have been made since then, with notable
improvement in the accuracy and robustness of the algorithm
dealing with expression changes, occlusions, and pose vari-
ations. These extensions include testing the repeatability of
the detected 3D keypoints, analyzing and comparing the dis-
criminative power of different keypoint descriptors, using
an SRC-based fine-grained matching scheme, performing
detailed validation and comparisons on the entire Bospho-
rus database and its various subsets, conducting experiments
on the entire FRGC v2.0 database, and evaluating time cost.

2 3D Keypoint Detection

Our 3D keypoint detection method is inspired by Lowe’s
SIFT (Lowe 2004) and some related work (Zaharescu et al.

2009, 2012; Maes et al. 2010; Smeets et al. 2013), but with
targeted improvements. The details are introduced as follows.

2.1 Principal Curvature-Based 3D Keypoint Detectors

(i) Scale-Space Construction Keypoint detection starts by
performing a sequence of Gaussian filters Gσs with different
scales σs over a face mesh S. For a generic point p ∈ S,
the Gaussian filter modifies the geometry structure of S by
updating the coordinates of p as follows:

ps =
∑

q∈N (p,1) ws(p, q) · q
∑

q∈N (p,1) ws(p, q)
, (1)

where ps represents the updated point at scale σs , N (p, 1)

represents the point set of the one-ring neighbor of p, and

ws(p, q) = Gσs (de(p, q)) = exp(−‖p − q‖2/2σs
2). (2)

(ii) Scale-Space Extrema Once the scale-space is con-
structed, a scalar function f , used for measuring the saliency
of a keypoint, is computed for each point at each scale. In the-
ory, this function could be any scalar function f (p) : S → R
defined on a face mesh. However, 3D face scans are discrete
approximations of facial surfaces and surface curvatures, the
fundamental differential geometry quantities for the descrip-
tion of local shapes, naturally come into sight. In order to
detect more meaningful 3D keypoints located around areas
with high local curvatures, we propose to use both of the
two principal curvatures as the scalar functions. According
to Goldfeather and Interrante (2004), the principal curvatures
are computed by fitting a cubic-order surface patch:

f (x, y) = A

2
x2+ Bxy+ C

2
y2+ Dx3+Ex2 y+Fxy2+Gy3

(3)

and its normal vectors ( fx (x, y), fy(x, y),−1) using both
the 3D coordinates and the normal vectors of the associ-
ated local neighbor points (two-ring). The maximum princi-
pal curvatures CM (p) and the minimum principal curvatures
Cm(p) at a given point p are computed as the eigenvalues of
the Weingarten matrix. With the choice of two principal cur-
vatures, the differences of Gaussian operators (approxima-
tions of the Laplacian operators) are then defined as follows:

ρ(CM , ps) = CM (ps) − CM (ps−1), (4)

ρ(Cm, ps) = Cm(ps) − Cm(ps−1). (5)

3D keypoints are detected by finding the extrema of
ρ(CM , ps) and ρ(Cm, ps) across scales using a one-ring
neighborhood of each point, respectively.

As mentioned above, the mean curvature function CH (p)

is used as the scalar function in the meshSIFT algorithm
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Fig. 2 The detected 3D keypoints by CM (top) and Cm (bottom) for a neutral face, a happy face, a 45◦ rotated face, and a face with mouth occlusion

(Maes et al. 2010; Smeets et al. 2013). In this paper, we will
show that the joint use of two principal curvatures can locate
more meaningful 3D keypoints, and thus achieve much better
identification performance than the mean curvature.

2.2 Keypoint Distribution

As shown in Fig. 2, for both principal curvatures (CM and
Cm) in the faces with different expressions, poses, and occlu-
sions, the keypoints mainly locate in the eye, nose, and mouth
(or occluded mouth) regions, and sparsely distribute over
other regions like the forehead, cheekbone, and chin. In gen-
eral, the principal curvature-based detectors tend to extract
keypoints located around areas characterized by high local
curvatures. We can see that the keypoints detected by CM

and Cm distribute at many complementary positions, such as
the lip, nasal, and eye regions. Our main idea is that joint
use of two principal curvatures increases the probability of
locating more meaningful facial points with different shape
structures, such as the elliptic points (CM (p) · Cm(p) > 0),
hyperbolic points (CM (p) · Cm(p) < 0) as well as par-
abolic points (CM (p) · Cm(p) = 0). Moreover, the key-
points sparsely distribute over the entire facial local regions
(rigid or non-rigid, frontal or rotated, occluded or non-
occluded), which provides the possibility of dealing with the
expression, pose and occlusion problems at a unified frame-
work.

2.3 Keypoint Repeatability

Besides the keypoint distribution, repeatability is another
main feature of a 3D keypoint detector (Tombari et al. 2013).
Given two arbitrary face scans of the same subject, repeata-
bility of detected 3D keypoints implies that the two sets of
keypoints extracted from the two face scans at the same pose
are roughly located at the same position. However, there is no
ground truth to check such repeatability over 3D face scans
of the same subject. In this paper, we adopt the same method
as in Mian et al. (2008) and evaluate on the Bosphrous data-
base. As shown in Fig. 3, the repeatability of CM (-Max) and
Cm(-Min) reaches 68 % (61 %, resp.) and 75 % (68 %, resp.)
respectively for faces with neutral expression (non-neutral,
resp.) at an error of 6 mm. This is expected as the degradation
between neutral samples and non-neutral ones is mainly due
to the fact that facial expressions elastically deform surfaces
and thereby induce different keypoints. However, repeatabil-
ity in such a case still remains as high as 68 % for Cm (61 %
for CM , resp.), indicating that much information within local
regions around keypoints can be used for matching.

3 3D Keypoint Description

Globally, distribution and repeatability of 3D keypoints are
crucial as introduced in the previous sections; while, locally,
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Fig. 3 Repeatability of 3D keypoints on the Bosphorus database

the discriminative power of each 3D keypoint representation
(i.e. keypoint descriptor) is also crucial for the following face
matching and recognition.

Based on this consideration, we propose three keypoint
descriptors, namely the Histogram of Gradient (HOG), the
Histogram of Shape index (HOS), and the Histogram of Gra-
dient of Shape index (HOGS). Intuitively, HOG describes the
point-level bending pattern of the local shape around a key-
point; HOS indicates the distribution of different shape cat-
egories; and HOGS depicts the changing pattern of different
shape categories. These three descriptors comprise different
orders of surface differential quantities, and thus have strong
complementarity in descriptiveness. We further build a more
comprehensive keypoint descriptor, namely the Histogram
of Multiple surface differential Quantities (HOMQ) by com-
bining HOG, HOS, and HOGS at feature level.

Our proposed descriptor, i.e. HOMQ, is similar in spirit
to the 2D SIFT (Lowe 2004), 2.5D SIFT (Lo and Siebert
2009), meshHOG (Zaharescu et al. 2009, 2012), and mesh-
SIFT (Maes et al. 2010; Smeets et al. 2013), but encodes
more shape characteristics, since it includes the histograms
of three different surface differential quantities. The details
are introduced as follows.

(i) Canonical direction assignment The local descriptors
for keypoint p ∈ S are computed within a geodesic disc of
radius R:

N (p) = {q|dg(p, q) < R}, (6)

where dg(p, q) denotes the geodesic distance between p and
q (computed by the Toolbox Fast Marching). To achieve rota-
tion invariance, a canonical direction (see Fig. 4) is necessary
for each keypoint, which can be robustly assigned based on a
translation and rotation invariant local coordinate system as
in Skellya and Sclaroffb (2007). First, all points q ∈ N (p)

and their normal vectors n(q) are transformed to the follow-
ing temporary local coordinate system:

C = {t(p′), t(p′) × n(p′), n(p′)}, (7)

where p′ (transformed point of p) is the origin, its unit normal
n(p′) is the z-axis, and t(p′) is the x-axis, which is a randomly
selected initial unit vector in the tangent plane Tp′ of surface
S at p′. Then, the transformed points q′ and their normal
vectors n(q′) are projected to the tangent plane Tp′ . Their
gradients θ(q′) and corresponding magnitudes mag(q′) are
computed as:

θ(q′) = arctan[ny(q′)/nx (q′)], (8)

mag(q′) =
√

n2
x (q′) + n2

y(q′), (9)

where nx (q′) = t(p′) · n(q′), ny(q′) = t(p′) × n(p′) · n(q′).
Here, n(·) is simply computed by averaging the triangles’
normals within the one-ring neighborhood of the associated
point.

Finally, a Gaussian weighted gradient histogram of 360
bins (1 bin per degree) is constructed on the tangent plane
Tp′ of the temporary local coordinate system. The Gaussian
(see (2)) weights are represented as:

w(p′, q′) = mag(q′) · Gσ (dg(p′, q′)), (10)

where the standard deviation σ is set to half of the radius R.
Similar to the SIFT descriptor (Lowe 2004), the canonical

Fig. 4 Canonical direction assignment. From left to right a detected
keypoint (in red) and its geodesic disk patch points (in blue); normal
vectors (in yellow) of the associated points; projected normal vectors

and the initial direction (in yellow); projected points and two assigned
canonical directions (in red) (Color figure online)
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Fig. 5 The quasi-daisy spatial configuration.The cross sign represents
a 3D keypoints and its 8 neighboring points. Each circle represents a
region where we compute the descriptor. By overlapping the regions
we achieve smooth shifting between regions. The ’red vector’ denotes
the canonical direction for rotation invariance

direction d(p′) of p′ is assigned by the peak of the weighted
gradient histogram. Noting that more than one canonical
direction may be assigned to a keypoint, for simplicity, we
assume that only one canonical direction can be assigned to
each keypoint in the subsequent. Once d(p′) is assigned, all
the neighbor points are transformed to a new local coordinate
system:

C ′ = {d(p′), d(p′) × n(p′), n(p′)} (11)

for the following processes.
(ii) Descriptor Configuration Descriptor configuration is

performed on the tangent plane Tp′ of the new local coordi-
nate system C ′. Inspired by the 2D daisy descriptor (Tola
et al. 2010), 9 overlapping circular regions with a radius of
r2 are assigned centering at the keypoint p′ and its 8 neigh-
boring points, respectively (see Fig. 5). This kind of quasi-
daisy radial flower pattern of overlapping circles simulates
the functioning of human complex cells in the visual cortex
(Hubel and Wiesel 1962). Therefore, it tends to be robust to
small transformations, e.g. spatial shifting, non-rigid defor-
mations. The 8 neighboring points are localized by perform-
ing uniform sampling over a circle centered at p′ with a radius
of r1, starting from the canonical direction d(p′).

(iii) Descriptor Representation In each circular region
ci (i = 1, 2, · · · , 9), we construct the local weighted his-
tograms of different surface differential quantities, including
the values of surface gradient (see (9)), shape index, as well
as the gradient of shape index. The shape index SI (p) at point
p can be computed based on its two principal curvatures as
follows,

SI (p) = 1

2
− 1

π
arctan

CM (p) + Cm(p)

CM (p) − Cm(p)
. (12)

According to Meyer et al. (2001)), the gradient of the shape
index function ∇SI (p) can be computed by solving the fol-
lowing optimization problem:

arg min∇SI (p)

∑

q∈N (p,1)

|∇SI (p)T proj(−→pq) − SI (p) − SI (q)

‖p − q‖ |,

(13)

where proj(−→pq) represents a vector computed by projecting
the unit vector −→pq to the tangent plane Tp. Their correspond-
ing histograms are referred to as the histogram of gradient
(hogi ), histogram of shape index (hosi ) and histogram of
gradient of shape index (hogsi ), respectively. For hogi and
hogsi , the histograms of gradient angles with 8 bins repre-
senting 8 main orientations ranging from 0◦ to 360◦ are com-
puted and weighted by their corresponding gradient magni-
tudes. For hosi , the shape index values ranging from 0 to
1 are also equally quantized to 8 bins, and weighted by a
Gaussian kernel Gσ , where the standard deviation is set as
the Euclidian distance between the current point and the cen-
ter point of the circle region. The final histograms at keypoint
p are constructed by concatenating hogi , hosi and hogsi in
a clockwise direction, represented as:

HOG = (hog1, hog2, . . . , hog9), (14)

HOS = (hos1, hos2, . . . , hos9), (15)

HOGS = (hogs1, hogs2, . . . , hogs9). (16)

The above sub-histograms (e.g. hogi ) and histograms (e.g.
HOG) are all normalized to unit vectors to eliminate the
influence of non-uniform mesh sampling. This generates
three 3D keypoint descriptors with the same dimension of
72. As mentioned above, these three local descriptors con-
tain strong complementarity information in descriptiveness.
Finally, we build a more comprehensive and discriminative
keypoint descriptor HOMQ, which is obtained by feature-
level fusion of the above three descriptors, and thus has a
dimension of 216.

4 3D Keypoint Matching

According to the framework of keypoint detection, descrip-
tion and matching, the most direct similarity measurement
between a pair of probe-gallery face shapes is the total num-
ber of their corresponding keypoints. Here, the one-to-one
keypoint correspondence can be established using the clas-
sical SIFT matcher proposed by Lowe (2004). The SIFT
matcher uses the angle as the similarity measurement of
descriptors. The smaller the angle, the more similar the
descriptors and vice versa. A match is accepted if the ratio
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between the arcos distance of the best match (i.e. the minimal
angle) and the second best match is lower than a threshold μ.
Due to its simplicity, the SIFT matcher has been widely used
in 3D face recognition such as Mian et al. (2007, 2008), Maes
et al. (2010), Li et al. (2011), Huang et al. (2012), Smeets et al.
(2013) and so on. To improve its robustness, holistic spatial
constraints or the RANdom SAmple Consensus (RANSAC)
algorithm are commonly used, see Mian et al. (2008), Huang
et al. (2012), Smeets et al. (2013) and Berretti et al. (2013)
for the specific details.

However, the number of corresponding keypoints in nature
is a coarse-grained similarity measurement, and the SIFT
matcher has thus proved sensitive to missing data (e.g. caused
by large pose variations of face scans). Based on this con-
sideration and inspired by the Sparse Representation based
Classifier (SRC) (Wright et al. 2009; Liao et al. 2013), we
propose a new SRC-based matching scheme. A similar SRC-
based matcher has also been developed in Masi et al. (2013)
for 3D-aided 2D face recognition in the wild. In comparison
with the SIFT matcher, which coarsely counts the number of
matched keypoints, the SRC-based matcher precisely com-
putes the normalized (average) accumulative sparse recon-
struction error for all the keypoints of a probe face. For
this reason, we call the SRC-based matcher as the Fine-
Grained Matcher (FGM) in the subsequent. In contrast, the
SIFT matcher is subsequently denoted as the Coarse-Grained
Matcher (CGM). The FGM includes two main procedures:
the construction of a gallery dictionary and the computation
of sparse reconstruction errors, which are introduced as fol-
lows.

4.1 Gallery Dictionary Construction

Given a gallery set of N subjects, each subject has a single 3D
face scan. Assume that ni 3D keypoints are detected for i-th
subject. Let the corresponding ni 3D keypoint descriptors be
the following sub-dictionary:

Di = [di, 1, di, 2, · · · , di, ni ] ∈ Rm×ni , (17)

where m represents the descriptor dimension. In our case,
m = 72 for HOG, HOS, and HOGS; m = 216 for HOMQ.
Then, the dictionary for all the N subjects of the gallery can
be built by simply concatenating all the sub-dictionaries as:

D = [D1, D2, · · · , DN ] ∈ Rm×K , (18)

where K = n1 + n2 + · · · + nN represents the total number
of keypoint descriptors in the gallery. In practice, since hun-
dreds of keypoints can be detected for each 3D face scan, K is
very large, making D an over-complete dictionary containing
informative local shape atoms of all the N subjects.

4.2 Multi-task Sparse Representation

Given a probe face scan with n 3D keypoint descriptors

Y = (y1, y2, · · · , yn). (19)

Then multi-task sparse representation of Y by D can be for-
mulated as:

X̂ = arg min
X

n∑

i=1

‖xi‖0, s.t. Y = DX, (20)

where X = (x1, x2, · · · , xn) ∈ RK×n is the sparse coef-
ficient matrix, and ‖ · ‖0 denotes the l0 norm of a vector,
defined as the number of non-zero elements of the vector. As
the probe descriptors are independent from each other, we
can equivalently solve the following nl0-minimization prob-
lems:

x̂i = arg min
xi

‖yi−Dxi‖2 s.t. ‖xi‖0 ≤ L , i = 1, 2, · · · , n,

(21)

where L is the sparsity parameter, which controls the sparsity
of the solution. To solve (21), we make use of the Orthogonal
Matching Pursuit (OMP) algorithm proposed by Pati et al.
(1993). Inspired by Wright et al. (2009), we introduce the
following multi-task SRC to determine the identity of the
probe face scan,

identity(Y) = arg min
j

1

n

n∑

i=1

‖yi − Dδ j (x̂i )‖2
2, (22)

where δ j (·) is a characteristic function which selects only
the coefficients associated with the j-th subject. As mentioned
above, (22) computes the normalized (average) accumulative
sparse reconstruction error for all the keypoints of a given
probe face scan.

Intuitively, if a probe face scan and a gallery face scan
belong to the same identity, they should share a large set
of similar keypoints whose local geometric characteristics
are also similar to each other. Thus, for any descriptor of
the probe face, there is a high probability of selecting the
descriptors of the gallery face. That means that most of the
errors are close to 0, and only a few are equal to 1. So, the
accumulative sparse reconstruction error will still be very
small. In this case, the probe face can be probably recognized.

5 Performance Evaluation

5.1 Database

We mainly evaluate the effectiveness of the proposed 3D face
recognition approach on the Bosphorus database (Savran et
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al. 2008). It consists of 4,666 3D face scans of 105 subjects
made up of 61 men and 44 women. For each subject, there are
around 34 expressions, 13 poses, and 4 occlusions. Accord-
ing to different variations, we divide the entire database into
three subsets: (i) Expressions This subset contains 6 basic
expressions (Anger, Disgust, Fear, Happiness, Sadness, and
Surprise) along with Neutral; 28 facial Action Units (AUs):
20 Lower AUs (LAU), 5 Upper AUs (UAU), 3 Combined AUs
(CAU). (ii) Poses This subset includes 7 Yaw Rotations (YR):
+10◦, +20◦, +30◦, ±45◦, ±90◦; 4 Pitch Rotations (PR):
strong upwards/downwards, slight upwards /downwards; 2
Cross Rotations (CR): +45◦ yaw and approximately ±20
pitch. (iii) Occlusions This subset comprises occlusions of
eyes by hand (E-Hand), mouth by hand (M-Hand), eyes by
glasses (E-Glasse), and facial regions by hair (F-Hair), e.g.
long hair for females and facial hair like beards and mous-
taches for males. Moreover, a subset of 18 unlabeled frontal
expression scans without any occlusions is included. The 3D
face scans are acquired using structure-light based 3D scan-
ning system. The sensor resolution in x, y, and z (depth)
dimensions are 0.3 mm, 0.3 mm, and 0.4 mm respectively.
After preprocessing by the providers, facial regions without
clutter are cropped from the raw data, and each face scan
approximately contains 35,000 points. In our experiments,
all the face scans are first down-sampled and then triangu-
lated by simply connecting the neighboring vertices. For per-
formance evaluation, the first neutral scan of each subject is
used to construct the gallery, and the remaining scans or their
subsets are used as probes.

5.2 Parameters

In our experiments, we empirically choose the parameters of
each module as follows. For 3D keypoint detection, 3 scales
are used, and the scale parameters σs are set as 1.83, 2.50, and
4.80 mm, respectively. For 3D keypoint description, we set
the radius R of the geodesic disc to 22.5 mm. The parameters
for descriptor configuration r1 and r2 are set to 15 and 10 mm,
respectively. For 3D keypoint matching, the SIFT match-
ing ratio μ for CGM is set at 0.70 for the HOG descriptor,
and at 0.75 for the other descriptors. Moreover, the sparsity
parameter L for FGM is set to 1. That is to say, we seek
the sparsest representation of a probe descriptor among all
the corresponding gallery descriptors. However, the match-
ing algorithm is not sensitive to this parameter, and small
changes in the value (e.g. L = 5) reach similar performance.

5.3 Performance

Table 1 reports rank-one recognition rates of the proposed
approach on the entire Bosphorus database and its various
subsets, containing the performance comparison of the pro-
posed descriptors (HOG, HOS, HOGS, and HOMQ) and

matchers (CGM and FGM). All the results are achieved by
performing score-level fusion of CM and Cm based 3D key-
point detectors. For CGM, the sum of their matched numbers
is used for the similarity measurement, whereas for FGM the
sum of their normalized reconstruction errors is adopted. We
can interpret these results from the following three aspects:

(i) Discriminability of descriptors in terms of the discrim-
inative power of descriptors, HOMQ generally performs bet-
ter than the others over two matchers and across all face varia-
tions (subsets). This indicates that HOMQ, which fuses three
different kinds of surface differential quantities, can provide
a comprehensive description of local shape, and thus has
the strongest discriminative power. Moreover, HOS performs
much better than HOG and HOGS over CGM matcher and
across all face variations, especially for the pose subset (e.g.
YR45◦). However, this superiority becomes unconspicuous
over FGM matcher, and the difference is compensated by the
advantage of FGM. We can therefore conclude that HOS has
stronger discriminative power than HOG and HOGS, while
HOG and HOGS are comparable to each other.

(ii) Effectiveness of Matchers concerning the effectiveness
of matchers, FGM clearly outperforms CGM over all descrip-
tors and across all subsets. This advantage is very significant
for the HOG and HOGS descriptors, and, in both cases, more
than 10 % improvements are achieved over the entire Bospho-
rus database. Meanwhile, this superiority becomes more sig-
nificant over subsets with large pose variations. For example,
there are more than 40 % improvements on the YR45◦ sub-
set for HOG and the CR subset for HOGS. Moreover, the
performance improvements for HOS and HOMQ descrip-
tors are particularly significant on some very difficult sub-
sets. For example, there are more than 10 % improvements
on the Anger, Disgust, Happy, YR45◦ and CR subsets for
HOS; and on the Disgust and YR90◦ subsets for HOMQ. All
these results prove that the SRC-based fine-grained matcher
(FGM) is more efficient than the SIFT-like coarse-grained
matcher (CGM). It indicates that, the finer the similarity
measurement, the stronger the matcher. It is worth noting
that FGM is not sensitive to descriptors. For example, HOG,
HOS, and HOGS achieve very similar results on many sub-
sets although they have different discriminative powers as
pointed out above. As shown in Yang et al. (2007), the reason
is if sparsity in the recognition problem is properly harnessed,
the choice of features is no longer critical. What is critical,
however, is whether the number of features is sufficient and
whether the sparse representation is correctly found.

(iii) Robustness to Variations regarding the robustness of
our approach to different variations, we consider the com-
bination of the HOMQ descriptor and the FGM matcher.
On the expression subset, our approach achieves very com-
petitive rank-one recognition rates, and even 100 % on the
Neutral, Sad, UAU, and CAU subsets. On the pose subset,
most of the accuracies are more than 97 %, and even 100 %
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Table 1 Performance in terms of rank-one recognition rates on the subsets of expressions, poses, occlusions, unlabeled, and the entire Bosphorus
database

HOG (%) HOS (%) HOGS (%) HOMQ (%)

CGM FGM CGM FGM CGM FGM CGM FGM

Neutral (105 scans) vs. expressions (2,797 scans)

Neutral (194) 99.48 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Anger (71) 69.01 91.55 87.32 98.59 76.06 94.37 88.73 97.18

Disgust (69) 50.72 84.06 56.52 78.26 60.87 88.41 76.81 86.96

Fear (70) 71.43 92.86 88.57 92.86 84.29 94.29 92.86 98.57

Happiness (106) 79.25 91.51 85.85 96.23 75.47 98.11 95.28 98.11

Sadness (66) 80.30 95.45 90.91 96.97 86.36 96.97 95.45 100.0

Surprise (71) 81.69 100.0 97.18 100.0 84.51 97.18 98.59 98.59

LAU (1,549) 88.96 96.97 95.09 98.13 90.70 98.52 97.22 98.84

UAU (432) 94.21 99.07 98.15 100.0 95.14 99.54 99.07 100.0

CAU (169) 92.90 100.0 97.04 99.41 95.86 100.0 98.82 100.0

All (2,797) 88.09 96.96 94.32 97.96 90.24 98.32 96.89 98.82

Neutral (105 scans) vs. poses (1,365 scans)

YR10 (105) 98.10 100.0 100.0 100.0 96.19 100.0 100.0 100.0

YR20 (105) 90.48 99.05 96.19 99.05 87.62 98.10 99.05 100.0

YR30 (105) 84.76 98.10 92.38 100.0 75.24 96.19 98.10 99.05

YR45 (210) 49.52 89.05 80.48 91.90 49.05 84.76 90.95 97.62

YR90 (210) 07.62 16.67 17.62 25.24 02.86 10.00 33.33 47.14

YR (735) 55.37 72.65 69.25 76.19 51.84 71.43 77.96 84.08

PR (419) 94.27 99.28 96.90 98.57 84.73 99.28 98.81 99.52

CR (211) 60.66 90.05 79.62 94.79 48.34 89.10 94.31 99.05

All (1,365) 68.13 83.52 79.34 85.93 61.39 81.47 86.89 91.14

Neutral (105 scans) vs. occlusions (381 scans)

E-Hand (105) 96.19 100.0 100.0 100.0 96.19 100.0 100.0 100.0

M-Hand (105) 90.48 100.0 97.14 98.10 93.33 99.05 99.05 100.0

E-Glasses (104) 95.19 100.0 97.12 97.12 97.12 97.12 100.0 100.0

F-Hair (67) 86.57 94.03 94.03 91.04 86.57 82.09 97.01 95.52

All (381) 92.65 98.95 97.38 97.90 93.96 96.59 99.21 99.21

Neutral (105 scans) vs. unlabeled scans (18 scans)

All (18) 88.89 100.0 100.0 100.0 94.44 100.0 100.0 100.0

Neutral (105 scans) vs. all meshes except yaw 90 (4,351 scans)

All (4,351) 86.12 96.81 93.61 97.70 85.75 97.15 97.04 98.94

Neutral (105 scans) vs. all scans (4,561 scans)

All (4,561) 82.50 93.12 90.11 94.37 81.93 93.14 94.10 96.56

Four proposed keypoint descriptors (HOG, HOS, HOGS, and HOMQ) combined with two keypoint matchers (CGM and FGM) are compared with
each other. The names and the number of probe scans for each subset are listed in the left-hand column

on the YR10◦ and YR20◦ subsets. The most challenging sub-
set is YR90◦, where only half of the face scan (left or right
profile) is available. In this case, our framework can still cor-
rectly recognize about half of the face scans (47.14 %). On
the occlusion subset, our approach can correctly classify all
the probes, except for three which are heavily occluded by
hair. All these results consistently demonstrate that the pro-
posed approach is very robust for 3D face recognition under
expression changes, occlusions, and pose variations.

5.4 Comparison

Table 2 shows the performance comparison between our
approach (HOMQ+FGM) and the state-of-the-art ones on
the Bosphorus database and its various subsets. For a fair
comparison, the same experimental protocol of Table 1 is
used. It is worth noting that the probe subsets differ slightly
according to the method. For the expression subset, 2,797
expression scans plus 18 unlabeled scans are used in Alyüz
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et al. (2010); and 3,186 frontal scans are used in Smeets et
al. (2013). For the occlusion subset, 360 scans rather than
all the 381 occluded probe scans are used in Colombo et al.
(2011).

From Table 2, we can see that our proposed method sig-
nificantly outperforms all the other methods, especially on
the subsets of occlusions and pose variations, and achieves
the best rank-one recognition rates on the entire database and
these defined subsets. It should be noted that the high per-
formance in Alyüz et al. (2010) and Ocegueda et al. (2011)
achieved on the expression subset relies heavily on sophisti-
cated face registration algorithms. Similarly, the registration-
based methods Alyüz et al. (2008), Colombo et al. (2011), and
Drira et al. (2013) deal with the occlusion problem with the
help of additional face data and subspace learning techniques
such as PCA (Principal Component Analysis). In contrast, the
registration-free methods in Smeets et al. (2013), Berretti
et al. (2013) and this paper, which are based on the SIFT-
like framework, can simultaneously handle facial expression
changes, occlusions, and pose variations.

To sum up, from Table 2, we can conclude that, as a result
of capturing more meaningful keypoints, extracting more dis-
criminative descriptors, and building more efficient matcher,
the method we propose has proved more effective and robust
than the high related counterpart, i.e. Smeets et al. (2013),
Berretti et al. (2013) although they derive from the same
framework. Moreover, our result on the YR90◦ subset indi-
cates that this scenario is still a very challenging issue in 3D
face recognition.

6 Discussion

6.1 3D Keypoint Detectors: Choice of Scalar Function

As mentioned in Sect. 2, in theory, the scalar function, defined
as f (p) : S → R on the mesh, of the scale-space used for
keypoint detection, has various choices, and is expected to
be able to capture some structure information on the mesh.
Thus, surface curvatures, as the most important differential
geometry quantities for shape characterization, become the
main a major alternative in the literature. An interesting ques-
tion to ask is which curvature is better? The mean curvature is
used in the meshSIFT algorithm (Maes et al. 2010; Smeets et
al. 2013) and the meshHOG based 3D face recognition algo-
rithm (Berretti et al. 2013). However, in this study, we suggest
using both the maximum and minimum principal curvatures
instead of the mean curvature. This is mainly due to the fact
that, for a given surface, the combination of two principal
curvatures can provide more complete local shape character-
ization, and thus find more meaningful 3D keypoints.

The results shown in Table 3 support the above conclusion.
In Table 3, different curvatures are used as the scalar func-
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Table 3 Performance
comparison of different scalar
functions used for 3D keypoint
detection on the entire
Bosphorus database

Avg. number HOG (%) HOS (%) HOGS (%) HOMQ (%)

CH (p) 322 76.2 83.6 74.6 88.5

CM (p) 293 69.6 82.5 71.3 87.3

Cm(p) 355 76.2 85.5 75.5 91.0

CM (p) + Cm(p) 648 82.5 90.1 81.9 94.1

Table 4 Evaluation the detector
fusion using the fine-grained
matcher (FGM) and evaluated
on the entire Bosphorus
database

Avg. number HOG (%) HOS (%) HOGS (%) HOMQ (%)

CM (p) 293 86.7 91.8 91.9 94.8

Cm(p) 355 90.8 92.8 88.8 95.4

CM (p) + Cm(p) 648 93.1 94.4 93.1 96.6

Table 5 Performance comparison of different 3D keypoint descriptors: Spin Image (Johnson and Hebert 1999), 3D Tensor (Mian et al. 2008),
meshSIFT (Smeets et al. 2013) and HOMQ (this paper) on the entire Bosphorus database

Spin Image 3D Tensor meshSIFT HOMQ

CM (p) 57.4 % 64.1 % 83.6 % 87.3 %

Cm(p) 58.0 % 69.0 % 86.7 % 91.0 %

CM (p) + Cm(p) 68.5 % 79.7 % 90.2 % 94.1 %

tions in 3D keypoint detection, and their accuracies are com-
pared on the whole Bosphorous database. For a fair compari-
son, their corresponding descriptors are matched by the same
CGM. From Table 3, we can find that the keypoint detector
Cm(p) using the minimum principal curvature locates more
keypoints on average than CH (p) using the mean curvature
which, in turn, beats CM (p) using the maximum principal
curvature. Moreover, regardless of the local shape descrip-
tor used, the 3D face recognition framework using Cm(p)

outperforms CH (p) which, in turn, beats CM (p). Finally,
the score-level fusion of two principal curvature detectors,
CM (p) and Cm(p), significantly outperforms the results of
the mean curvature detector, CH (p), while making use of
648 keypoints on average which doubles the averaged num-
ber, 322, located by the CH (p) detector. A possible reason
is that when using the mean curvature as in meshSIFT, the
keypoint detector fails to locate some elliptic and hyperbolic
points with large principal curvatures but their mean curva-
tures are close to 0. It’s worth noting that this effectiveness
of the score-level fusion, CM (p) + Cm(p), is also valid for
FGM. For example, the performance of HOG descriptor is
improved from 86.7 % for CM (p) and 90.8 % for Cm(p), to
93.1 % for their fusion (see Table 4).

6.2 3D Keypoint Descriptors: Discriminative Power

As shown in Table 1, we can see that the HOMQ descriptor,
which encodes the local shape properties through feature-
level fusion of HOG, HOS, and HOGS, achieves the best
matching performance and thus has the strongest discrimi-

native power. Meanwhile, we also compare its discriminative
power to other state-of-art 3D keypoint descriptors, includ-
ing the spin image (Johnson and Hebert 1999), Mian’s 3D
tensor descriptor (Mian et al. 2008), as well as the meshSIFT
descriptor (Smeets et al. 2013). To be fair, the comparison is
conducted under a common framework. We apply the same
3D keypoint detector (i.e. two principal curvatures individu-
ally, and their score-level fusion), and the same 3D keypoint
matcher (CGM) with the same parameters.

For the spin image, we directly use the code calcSpinIm-
ages.m1.; for Mian’s 3D tensor descriptor, we reproduce the
method according to Mian et al. (2008); and for the mesh-
SIFT descriptor, we adopt the code meshSIFT2. The compar-
ative results are shown in Table 5. From this table, we can see
that the proposed HOMQ descriptor always achieves the best
results, with an improvement of about 4 % over the meshSIFT
descriptor, which takes the second place. The spin image
obtains the lowest performance. These results, once more,
prove that the proposed HOMQ descriptor, which comprises
multi-order surface differential quantities, has very strong
discriminative power.

6.3 3D Keypoint Matchers: Similarity Measurements

To further analyze in depth the intuitive impression that FGM
is better than CGM (i.e. the finer the similarity measurement,
the stronger the matcher), we consider two groups of typical

1 http://www.csse.uwa.edu.au/~ajmal/code.html.
2 https://perswww.kuleuven.be/~u0059456/meshSIFT.html.
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Table 6 Comparison of the normalized similarity measurements between CGM and FGM

CGM FGM CGM FGM
Probe A1 Probe A1 Probe A2 Probe A2

Gallery A 0.11 0.13 0.35 0.64

Gallery B 0.14 0.05 0.08 0.04

Gallery A, Probes A1 and A2 are three different scans of the same person, and Gallery B belongs to another person

Table 7 Estimated computational costs in seconds for identification of a single probe using a gallery set of 105 subjects from the Bosphorus
database

Detection Description Matching
CM (p)(s) or Cm(p) (s) HOMQ (s) CGM vs. FGM (s)

Total time: CM (p) 10.2 51.0 2.1 vs. 3.9

Total time: Cm(p) 10.2 59.5 2.5 vs. 4.6

matching examples as shown in Table 6. In the first group,
CGM fails to recognize Probe A1, while FGM succeeds. In
contrast, both CGM and FGM correctly recognize Probe A2
in the second group. Their normalized similarity measure-
ments are reported in Table 6, based on the score-level fusion
of two principal curvature detectors and the HOMQ descrip-
tor. The normalized similarity measurements range from 0 to
1, and the larger the score, the more similar the faces. Note
that the average reconstruction errors in FGM should be fur-
ther subtracted by 1 after normalization. From Table 6, we
can find out that, compared with CGM, FGM significantly
enlarges intra-class similarity (Gallery A vs. Probe A2) and
reduces inter-class similarity (Gallery B vs. Probe A1).

6.4 Generalization Ability

To evaluate the generalization ability of the proposed method,
we test our method on the FRGC v2.0 database (Phillips et
al. 2005), which contains 4007 nearly frontal 3D face scans
of 466 subjects with different expressions: neutral, anger,
happiness, surprise, sadness, disgust, and puffy faces. The
face scans are captured by the Minolta Vivid 900 laser scan-
ner under controlled lighting conditions. Compared with the
Bosphorus database, the FRGC v2.0 is the first largest public
3D face database, and has been widely used for the assess-
ment of 3D face recognition algorithms, especially with
respect to facial expression variations. All the scans of FRGC
v2.0 are first preprocessed using the 3D Face Preprocessing
Tools developed by Szeptycki et al. (2009). The preprocess-
ing pipeline contains: spike and noise removing, hole filling,
nose tip localization, face cropping and triangulation.

To ensure a fair comparison, we use the same experi-
mental protocol as in Smeets et al. (2013) (i.e. first vs. all).
By using the score-level fusion of two principal curvature
detectors and the HOMQ descriptor, our algorithm achieves
identification rates of 93.3 and 96.3 % for CGM and FGM,

respectively. These results largely outperform the score of
89.6 % of the meshSIFT reported in Smeets et al. (2013).
Note that both methods are registration-free and based on the
SIFT-like framework of 3D keypoint detection, description
and matching. These results demonstrated that the proposed
method has a good ability of generalization in different data-
bases.

6.5 Time Cost

The proposed method is currently developed using MATLB
on the Windows 7 platform, and all the experiments are
implemented on a PC with the CPU by Intel 950, 3.07 GHz,
8GB RAM. Table 7 lists the estimated computational costs
of individual steps of our method for identifying a single
probe from a gallery set of 105 subjects from the Bosphorus
database. Notice that the total expenditure for recognizing
a probe face generally depends on the number of keypoints
detected and used for the following description and match-
ing. Here, for the detection module, we assume that for each
probe, 300 and 350 keypoints are detected by CM (p) and
Cm(p), respectively (see Table 3).

From Table 7, we can find that the description module is
the most time-consuming part, taking nearly 1 min (59.5 s)
in the case when Cm(p) is used. This is mainly due to the
computation of neighboring points in a geodesic disc with a
radius of 22.5 mm when building the HOMQ descriptor. The
main time cost for the detection module is the computation
of principal curvatures in different scale spaces, which takes
about 10 s. For the matching module, CGM roughly runs
two times faster than FGM. It is worth noting that the expen-
ditures reported here for CGM and FGM are those used to
match a probe face scan to all the 105 gallery face scans. In
practice, parallel computation can be investigated for CM (p)

and Cm(p), and, in this case, our method can finish the task
of identifying a single probe in around 1.25 mins.
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7 Conclusion

We present a novel mesh version of the SIFT-like algo-
rithm for registration-free 3D face recognition under expres-
sion changes, occlusions, and pose variations. We propose a
principal curvature-based 3D keypoint detection algorithm,
which can repeatedly identify complementary locations on
a face scan where local curvatures are high. Moreover, a
robust 3D local coordinate system is built at each key-
point allowing extraction of rotation and translation invari-
ant 3D keypoint descriptors. Three local descriptors, cor-
responding to three different surface differential quantities,
and their feature-level fusion, are proposed and compared.
These single-quantity based descriptors contain strong com-
plementarity information, enabling their fusion to provide
a comprehensive and discriminative description of local
shape. We also propose a multi-task SRC based fine-grained
3D keypoint matching algorithm and compare it with the
SIFT-like coarse-grained matching scheme. Our algorithm
is tested on the Bosphorus database and achieves identifica-
tion rates of 96.56 % (entire database), 98.82 % (expression
subset), 99.21 % (occlusion subset), and 91.14 % (pose sub-
set), respectively. Meanwhile, good generalization ability is
exhibited on the FRGC v2.0 database. Moreover, our algo-
rithm has a potential for further improvements in speed, if
upgraded by more efficient keypoint detectors (e.g., random
sampling) and in also accuracy, if integrated with more effec-
tive keypoint descriptors and/or matchers. In In addition, we
will evaluate the proposed approach for general 3D object
description, matching and recognition.
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