
4680 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 11, NOVEMBER 2014

HSOG: A Novel Local Image Descriptor Based
on Histograms of the Second-Order Gradients
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Abstract— Recent investigations on human vision discover
that the retinal image is a landscape or a geometric surface,
consisting of features such as ridges and summits. However,
most of existing popular local image descriptors in the literature,
e.g., scale invariant feature transform (SIFT), histogram of
oriented gradient (HOG), DAISY, local binary Patterns (LBP),
and gradient location and orientation histogram, only employ
the first-order gradient information related to the slope and the
elasticity, i.e., length, area, and so on of a surface, and thereby
partially characterize the geometric properties of a landscape.
In this paper, we introduce a novel and powerful local image
descriptor that extracts the histograms of second-order gradients
(HSOGs) to capture the curvature related geometric properties
of the neural landscape, i.e., cliffs, ridges, summits, valleys,
basins, and so on. We conduct comprehensive experiments on
three different applications, including the problem of local image
matching, visual object categorization, and scene classification.
The experimental results clearly evidence the discriminative
power of HSOG as compared with its first-order gradient-based
counterparts, e.g., SIFT, HOG, DAISY, and center-symmetric
LBP, and the complementarity in terms of image representation,
demonstrating the effectiveness of the proposed local descriptor.

Index Terms— Local image descriptor, feature extraction,
second order gradients, image matching, object categorization,
scene classification.

I. INTRODUCTION

LOCAL image descriptors, e.g., SIFT [1], computed
densely or from interest regions, have many applications
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in computer vision, ranging from traditional vision tasks,
e.g., panoramic stitching [2], wide-baseline matching [3],
to advanced visual recognition problems, i.e., visual object
classification [1], [4], scene categorization [5], [6], and image
retrieval [7]. As such, they have been the focus of great
attentions from the research community in recent years and
a number of effective local image descriptors have been
proposed for various purposes, e.g., object recognition or
image indexing.

A. Related Work

A landmark representative of these local image descriptors
is Scale Invariant Feature Transform (SIFT) proposed by
Lowe [1]. SIFT has been widely studied and has played a dom-
inant role in object recognition. Its descriptor is represented
by a 3D histogram of the gradient locations and orientations
whose contributions are weighted by their gradient magni-
tudes. The quantization of gradient locations and orientations
makes the descriptor robust to small geometric distortions and
errors in the previous step of region detection.

Two years before Lowe’s work in [1], Belongie et al. [11]
introduced a descriptor named Shape Context, similar to SIFT
but is based on edges. It is represented by the 2D histogram of
these edge point locations, where the log-polar location grid
is utilized. It aims at describing the distribution of edge points
on a shape with respect to the reference point.

Following the two descriptors, i.e. SIFT and Shape Context,
great strides have been achieved to ameliorate the performance
of local image descriptors in the literature, in reinforcing the
discriminative power [9], [13], [16], improving the efficiency
while decreasing the memory requirements [8], [12], [15],
[17], [18], increasing the invariance to lighting changes [10],
[14], [19], [20] or scale variations [21], [22], and making them
robust to local distortions [23] or even occlusions [24], [25].

Ke and Sukthankar [8] proposed the PCA-SIFT descriptor,
which directly applies Principal Component Analysis (PCA) to
the normalized gradient patches to enhance the distinctiveness
and reduce the dimensionality of the SIFT features.

Mikolajczyk and Schmid [9] extended SIFT to the
Gradient Location and Orientation Histogram (GLOH)
descriptor to increase both robustness and distinctiveness.
It replaces the rectangular location grid utilized in SIFT with
a log-polar one, and applies PCA to reduce the size of the
descriptor.

In [19] and [10], Van de Sande et al. extracted SIFT features
in different color spaces and compared their accuracies, includ-
ing HSV-SIFT [26], HueSIFT [27], OpponentSIFT, C-SIFT,
rgSIFT, RGB-SIFT, and Transformed color SIFT, showing that
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TABLE I

ATTRIBUTE SUMMARY OF MAIN LOCAL IMAGE DESCRIPTORS

combining the SIFT descriptor with color clues is a promising
way to improve the performance in object recognition.

Inspired by SIFT, Bay et al. [17], [12] introduced Speeded-
Up Robust Features (SURF). Instead of the gradient informa-
tion used in the SIFT descriptor, SURF computes Haar wavelet
responses, and exploits integral images to save computational
cost. As a result, it runs times faster than SIFT.

Dalal and Triggs [13] presented the Histogram of Oriented
Gradient (HOG) descriptor. HOG combines both the properties
of SIFT and GLOH, because it is also represented by the 3D
histogram of gradient locations and orientations, and employs
both rectangular and log-polar location grids. The main
difference between HOG and SIFT is that HOG is computed
on a dense grid of uniformly spaced cells, with overlapping
local contrast normalization.

Ojala et al. [28] proposed Local Binary Patterns (LBP) for
texture classification, and such a descriptor encodes the sign
information between the central pixel and its surrounding ones
within a given neighborhood. It was soon successfully applied
to face recognition [29] and object categorization [20].

Heikkila et al. [14] combined both the strengths of SIFT
and LBP to build the Center-Symmetric LBP (CS-LBP)
descriptor. It adopts the SIFT-like approach for descrip-
tor construction, but replaces its gradient information with
CS-LBP features. Instead of thresholding each pixel with the
central one within the neighborhood, CS-LBP only compares
center-symmetric pairs of pixels, which reduces the size of the
LBP histogram.

Similar to [19], Zhu et al. [20] attempted to embed the
color information to the original LBP operator for object
recognition, pointing out that the six proposed color LBP
descriptors increase the photometric invariance and discrimina-
tive power of the original LBP and their joint use achieves the
comparable performance as SIFT does. They further proposed
an extension of this color LBP, namely orthogonal color LBP
or OC-LBP [6], which drastically decreases the feature vector
dimension while keeping the same discriminative power.

In order to improve the efficiency of local descriptors,
Tola et al. [18], [15] proposed the DAISY descriptor which
replaces the weighted sum rule used in SIFT by sum of
convolutions. Recently, Zhu et al. [30] introduced DAISY
into the domain of object recognition, and proved that when
displaying a similar recognition accuracy to SIFT, DAISY
operates 12 times faster.

The performance of local image descriptors, especially for
object recognition and image categorization, is discussed and
compared in several studies, see [9], [10], [31], [32]. The
attributes of some popular ones so far proposed within the
domain are summarized in Table I, including representation
type (sparse or dense), encoded information, spatial pooling
scheme (neighborhood), computation method, and dimension-
ality. It should be noted that the items in the column of
category and dimension can be changed according to different
tasks, and the ones listed are directly cited from the original
papers.

As it can be seen from Table I, most local image descriptors
are based on the first order gradient information along with a
given pooling scheme to simulate the features of the human
visual cortex following the findings of Hubel and Wiesel [33].
However, recent psychophysical and physiological studies on
human vision, see [34], [35], have shown that the first order
gradient information is far from being sufficient accurate in
capturing the perceived visual features by human beings.

B. Motivation and Contribution

In this paper, we concentrate on the discriminative power
of local image descriptors and investigate a novel one based
on second order gradient clues, namely Histograms of the
Second Order Gradients (HSOG), which is able to simulate the
human perceived visual features. Indeed, some latest studies
on human vision [34] suggest that the neural image is a
landscape or a surface, consisting of features such as cliffs,
ridges, summits, valleys, or basins, whose geometric properties
can be uniquely and accurately charactered by local curvatures
of differential geometry through second order gradient related
information as depicted in Fig.1, whereas first order gradients
only measure the slope of the luminance profile at each
point [35] and thus give quantities of the elasticity of a surface,
e.g., length, area.

In the theory of differential geometry, slope and curvature
are different geometric clues which one can measure at each
point on a 1D curve. As we can observe from Fig.1 (a), the first
order gradient computed on a point delivers the slope or the
velocity of the curve at that point which encodes the metrics,
e.g., the length of that curve, whereas the second order gradient
at that point is the quantity related to its local curvature or how
much the curve bends. Now the retinal image is a landscape or
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Fig. 1. Slope, curvature, and shape in differential geometry. (a) The first order gradient computes the slope at a given point on a 1D curve whereas
the second order gradient delivers the curvature at that point; (b) On a smooth 2D surface embedded in a 3D space, one can compute the two principle
curvatures which help to characterize the local shape; (c) The shape index is computed from the principle curvatures and its different values correspond to
different shapes.

Fig. 2. Retinal images are perceived as landscapes or surfaces. (a) Two images showing an aircraft and a warship, respectively; (b) Their gray level images;
(c) These gray level images plotted as landscapes where one can see different geometric properties: cliffs, ridges, summits, valleys, basins, etc.

a surface embedded in a 3D space, and the local shape around
a point, as illustrated in Fig.1 (b), is characterized by the two
principle curvatures, i.e. maximum and minimum curvatures,
that one can compute by the second fundamental form [36]
which is closely related to the second order gradient cue. Their
joint variations, e.g., through the value of shape index, define
various local shapes as in Fig.1 (c).

Following the insights conveyed by recent investigations on
human vision as well as existing tools of differential geometry,
we conjecture that local image descriptors calculated over a
point should exploit the second order gradient information to
account for its local shape attributes of a retinal image in terms
of curvature and thus provide additional discriminative power
as compared with their first order gradient-based counterparts.
Nevertheless, since first order gradients are quantities related
to the metrics of a surface, e.g., length, angle, and area, while
second order gradients correspond to the curvatures, these two
categories of quantities should present some complementarity
in the description of a local surface shape. Fig.2 illustrates
two images and their corresponding landscapes plotted

as surfaces. The first one shows an aircraft and the second
one a warship. As we can see from this figure, each of these
two landscapes displays various local shapes, including cliffs,
ridges, summits, valleys, or basins.

This paper proposes a novel local image descriptor, namely
Histograms of Second Order Gradients abbreviated as HSOG,
to characterize local shape changes for images represented as
landscapes. Following the findings of Hubel and Wiesel [37],
we also apply a pooling strategy, as most state of the art local
descriptors do, to enable small displacements of second order
gradients in the neighborhood of a certain point. Specifically,
for a given image region, HSOG begins by computing a set of
its first order Oriented Gradient Maps (OGMs), each of which
is for a quantized direction. The histograms of the second order
gradients are then extracted from all these OGMs, and finally
concatenated to achieve the HSOG descriptor. Additionally, we
embed the multi-scale strategy to further reinforce the descrip-
tive completeness of local shape changes and thereby increase
discriminative power and performance. Extensive experiments
are carried out in three different applications, and the results
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Fig. 3. Construction process of the proposed HSOG descriptor.

clearly demonstrate the effectiveness of the proposed HSOG
descriptor and its complementarity with respect to these first
order gradient based ones.

The main contribution of this work is three-fold:
• We highlight recent findings on human vision that retinal

images are landscapes and their local geometric proper-
ties, e.g., cliffs, ridges, summits, can be characterized by
quantities of differential geometry, e.g., curvatures.

• We propose a local descriptor, HSOG, to encode second
order gradients, and these quantities are closely related to
principle curvatures, accounting for local shape variations
and thereby offering good discriminative power as its first
order gradient-based counterparts do.

• We test HSOG in three applications, namely local image
matching, visual object categorization (VOC), and scene
classification, and prove its effectiveness with respect to
first order gradient-based ones and their complementarity
in terms of descriptive power, especially for the applica-
tion where the major challenges occur in viewpoint and
illumination.

A preliminary version of this work appeared in [38],
which compares HSOG with state of the art local image
descriptors in VOC using sparse sampling. This paper includes
that work but significantly extends it in the following ways.
Firstly, we motivate HSOG using the recent findings of
psychophysicists on human vision and explain why local shape
characterization should rely on second order gradients in the
viewpoint of differential geometry. Secondly, using the Notre
Dame-Yosemite-Liberty (NYL) database [16], we highlight
the discriminative power of HSOG compared with the state
of the art by comprehensive experiments in local descriptor
matching whose major challenges are viewpoint and illu-
mination changes. Thirdly, we evaluate HSOG and its first
order gradient related counterparts on two other applications,
i.e. VOC and scene classification. These two applications pos-
sess increased challenges including in particular background
clutter, scale variations, occlusions, intra-class dissimilarities,

and inter-class similarities. However, scene images are gen-
erally wide views of a large depth-of-field and therefore
scale changes are not so important as in VOC. We improve
their performance by the dense sampling strategy and the
experimental results on these two applications provide insights
into the properties of HSOG contrasted with the first order
gradient based ones.

C. The Organization of the Paper

The rest of this paper is organized as follows. In Section II,
the HSOG descriptor is introduced in detail, including the
way of construction and utilization. Section III presents and
discusses the experimental results achieved in three applica-
tions. Section IV concludes the paper.

II. HSOG DESCRIPTOR CONSTRUCTION

In this section, we introduce the Histograms of the Second
Order Gradient (HSOG) descriptor in detail. The construction
of HSOG is composed of three steps: (1) computation of the
first order Oriented Gradient Maps (OGMs); (2) computation
of the second order gradients based on these computed OGMs;
and (3) spatial pooling.

The entire process is illustrated in Fig. 3.

A. Computation of 1st-Order Oriented
Gradient Maps (OGMs)

The input of the proposed HSOG descriptor is a local image
region around a given keypoint, which is either detected by
an interest point detector, e.g., Harris-Laplace, or located on
a dense sampling grid. For each pixel (x, y) within the given
region I , a certain number of gradient maps G1, G2,…, GN ,
one for each quantized direction o, are first computed. They
are formally defined as:

Go =
(

∂ I
∂o

)+
; o = 1, 2, . . . , N. (1)
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Fig. 4. An illustration of the oriented gradient maps for each of the quantized
orientations o.

where the ‘+’ sign means that only positive values are kept
to preserve the polarity of intensity changes, while negative
ones are set to zero.

Each gradient map describes the gradient norms of the input
image region in a direction o at every pixel location. We then
convolve these gradient maps with a Gaussian kernel G. The
standard deviation of the Gaussian kernel G is proportional to
the radius of the given neighborhood, R, as in (2).

ρR
o = G R ∗ Go (2)

The purpose of the convolution with a Gaussian kernel is
to allow the gradients to shift within a neighborhood without
abrupt changes and thereby simulates the operation of simple
cells in the human visual processing.

At a given pixel location (x, y), we collect all the values of
these convolved gradient maps at that location and build the
vector ρR(x, y).

ρR(x, y) =
[
ρR

1 (x, y), · · · , ρR
N (x, y)

]T
(3)

This vector, ρR(x, y), is further normalized to a unit norm
vector, which is called entire orientation vector and denoted
by ρR in the subsequent, and the image region can hence be
represented by entire orientation vectors. Specifically, given a
local image region I , we generate an Oriented Gradient Map
(OGM) Jo for each orientation o defined as:

Jo(x, y) = ρR
o
(x, y) (4)

Fig. 4 illustrates such a process. As it can be seen from that
figure, OGMs highlight the details of local texture changes and
potentially offer high distinctiveness. Due to the computation
of gradient maps and the following normalization step, OGMs
possess the property of being invariant to affine lighting
transformations. Indeed, an OGM Jo is simply the normalized
convolved gradient map at orientation o according to (4), while
a brightness change often adds a constant intensity value, so it
does not affect the gradient computation. Moreover, a change
in image contrast in which the intensities of all the pixels are
multiplied by a constant will thus result in the multiplication of
gradient calculation; however, this change of contrast will be
cancelled by the normalization of the response vector. As such,
it has been successfully applied to face recognition [39]. All
these properties will be inherited by the HSOG descriptor.

B. Computation of 2nd-Order Gradients

Once these first order OGMs of all quantized directions are
generated, they are exploited as the inputs for computing the
second order gradients over the same image region. Precisely,
for each of OGMs, Jo(x, y), o = 1, 2, . . . , N , we consider it
as a regular image, and calculate the gradient magnitude mago
and orientation θo at every pixel location as (5) and (6).

mago(x, y) =
√(

∂ Jo(x, y)

∂x

)2

+
(

∂ Jo(x, y)

∂y

)2

(5)

θo(x, y) = arctan
(

∂ Jo(x, y)

∂y

/
∂ Jo(x, y)

∂x

)
(6)

where o = 1, 2, . . . , N ;

∂ Jo(x, y)

∂x
= Jo(x + 1, y) − Jo(x − 1, y) (7)

∂ Jo(x, y)

∂y
= Jo(x, y + 1) − Jo(x, y − 1) (8)

Each orientation (denoted as θo) is then mapped from the
range of [−π/2,π/2] to that of [0, 2π], and quantized into N
dominant orientations, which keeps consistent with the number
of the first order OGMs. After quantization, the entry no of
each direction θo is calculated as (9).

no(x, y)= mod
(⌊

θo(x, y)

2π/N
+ 1

2

⌋
, N

)
, o=1, 2, . . . , N (9)

A crucial issue to be dealt with when computing the second
order gradients is the sensitivity of the resultant local image
descriptor with respect to noise. As it can be seen in the latter
section of experimental results, the fact of using the Gaussian
kernel to simulate human simple cells and smooth first order
gradients by (2) gives HSOG a desirable robustness to noise.

C. Spatial Pooling

The local shape descriptor associated with a given keypoint
is computed to simulate the operation of human complex cells
in the visual cortex [37] so that they are robust to small
transformations, e.g., spatial shifting, non rigid deformations.
This is achieved as most state of the art local image descrip-
tors, e.g., SIFT, through a spatial pooling strategy. It consists
of dividing the input local image region into sub-regions
and accumulating a histogram of certain property (gradients,
edge points, binary patterns, etc.) within each sub-region.
All these histograms are then concatenated to construct the
final descriptor. Brown et al. [16] analyzed different spatial
pooling schemes and compared their performance, suggesting
that the best performance can be achieved by the DAISY-style
arrangement, as illustrated in Fig. 5. As a result, this spatial
pooling strategy is adopted to build the HSOG descriptor.

As illustrated in Fig. 5, the input image region is separated
into a number of circles of different sizes located on a series
of concentric rings (3 in Fig. 5), whose radius values form an
arithmetic sequence and are hence controlled by the radius of
the region. In each ring, the centers of these circles are evenly
distributed, and the radius value of each circle is proportional
to its distance (the radius value of that ring) from the central
pixel. Therefore, there are four parameters that determine the
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Fig. 5. Spatial pooling arrangement (DAISY-style in [16]) of the proposed
HSOG descriptor.

spatial arrangement of the HSOG descriptor, i.e. the radius of
the region (R); the number of quantized orientations (N); the
number of concentric rings (C R); the number of circles on
each ring (C). The influence of different parameters will be
discussed experimentally in Section III.

Recall that the standard deviation of the Gaussian kernel is
proportional to the size of the region in the HSOG descriptor.
Specifically, it is defined as:

σi = R(i + 1)

2C R
(10)

and circle locations are formulated in polar coordinates as:

ri = R(i + 1)

C R
; θ j = 2π j

C
(11)

where i is the i th layer in the circular neighborhood; and j is
the j th circle in each ring.

The total number of the divided circles can be calculated as
T = C R × C + 1. Within each circle C I R j , j = 1, 2, . . . , T ,
and for each first order OGM Jo, o = 1, 2, . . . , N , a second
order gradient histogram, hoj , is constructed as (12) by accu-
mulating the gradient magnitudes mago of all the pixels with
the same quantized orientation entry no.

hoj (i) =
∑

(x,y)∈C I R j

f (no(x, y) == i) ∗ mago(x, y) (12)

where i = 0, 1, . . . , N − 1; o = 1, 2, . . . , N , j = 1, 2, . . . , T ,

f (x) =
{

1, if x is true
0, otherwise

(13)

Then, for each first order OGM Jo, its second order gradient
histogram ho is generated by concatenating all the histograms
from T circles:

ho = [ho1, ho2, ho3, · · · , hoT ]T (14)

where o = 1, 2, . . . , N . The HSOG descriptor is obtained by
concatenating all N histograms of the second order gradients
as (15). Each histogram ho is normalized to a unit norm vector
ĥo before the concatenation.

HSOG = [ĥ1, ĥ2, ĥ3, · · · , ĥN ]T (15)

Some descriptors perform a weighting scheme during pool-
ing, to highlight different contributions of pixels. For exam-
ple, SIFT adopts the Gaussian-weighted gradient magnitude,

Fig. 6. Example image patches of the descriptor matching dataset.

and CS-LBP exploits the uniform weighting (i.e. without
weighting). In order to control the computational cost of
HSOG, we do not employ any weighting scheme as CS-LBP
does.

III. EXPERIMENTAL EVALUATION

We evaluate the proposed HSOG descriptor in three differ-
ent applications: (1) local image matching; (2) visual object
categorization (VOC); as well as (3) scene classification,
and compare its performance with that of several state-of-
the-art ones including SIFT [1], HOG [13], DAISY [18],
and CS-LBP [14]. T3-S4 (steerable filters with DAISY-style
spatial pooling) is only discussed in local matching [16].
These applications represent different levels of challenges.
The major problems in local image matching are viewpoint
and illumination variations whereas VOC implies to han-
dle a number of additional ones, i.e. large scale changes,
background clutter, occlusions, intra-class dissimilarities and
inter-class similarities. Finally, scene classification requires to
deal with all the challenges in VOC except scale change,
since it is not so important as compared to VOC. Indeed,
scene images are generally wide views that are captured
adopting cameras with short focal lengths displaying large
depth-of-fields. These experiments shed different light on the
proposed HSOG descriptor and therefore provide insights into
its discriminative power and complementarity to these first
order related counterparts.

A. Experiments on Descriptor Matching

Local matching aims to match local features extracted
from image patches of a scene and/or an object captured
in different viewpoints and illumination conditions. It has
a broad range of applications, including in particular wide-
baseline matching [3] and image stitching [2]. In this exper-
iment, we evaluate the discriminative power of HSOG and
its complementarity in terms of descriptive completeness in
comparison with several state of the art first order gradient-
based descriptors, e.g., SIFT [1], HOG [13], DAISY [18],
as well as CS-LBP [14]. The best performance achieved in
this work are further compared with the leading ones reported
in literature on this database.

1) The NYL Dataset: We make use of the ground truth data
provided by Brown et al. [16], which were generated for the
purpose of local descriptor matching through multi-view stereo
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Fig. 7. ROC curves of matching results for HSOG and other state-of-the-art descriptors (with false positive rate at 95% recall in parenthesis).

correspondences from large 3D reconstructions. This database
consists of approximately 2.5 × 106 labeled patches of Notre
Dame (Paris), Half Dome (Yosemite), and the Statue of Liberty
(New York). It is called in the subsequent as NYL. All patches
are sampled to the size of 64 × 64 around each Difference of
Gaussian (DoG) interest point with associated position, scale
and orientation. Two patches are considered to be “matches” if
their corresponding interest points are detected within 5 pixels
of position, 0.25 scale octaves as well as π/8 radians in angle,
while those outside 10 pixels of position, 0.5 octaves of scale,
and π/4 radians in angle are defined to be “non-matches.” The
interest points detected between these ranges are considered to
be ambiguous and not used. This dataset is publicly available
online,1 and some example image patches are shown in Fig. 6.

2) Experimental Setup: To conduct the experiments in local
descriptor matching, we follow the settings as adopted in [16].
More precisely, four combinations of training and test set are
used (the former one of each pair is the training set): Yosemite-
Notre Dame, Yosemite-Liberty, Notre Dame-Yosemite, as well
as Notre Dame-Liberty. The training sets contain from 10,000
to 500,000 patch pairs depending on various applications
while the test sets always contain 100,000 patch pairs. The
training and test sets have 50% “match” and 50% “non-match”
pairs.

For each image patch, the proposed HSOG and other state-
of-the-art descriptors are extracted respectively to represent its
visual content. Then, for each patch pair in the training and test
sets, we compute the Euclidean distance between their feature
vectors and decide whether they are “matches” according to

1http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html

a threshold. When investigating the complementation of the
1st- and 2nd-order gradient based descriptors through combin-
ing HSOG with DAISY, HOG, CS-LBP, etc., respectively, their
similarity scores measured by normalized Euclidean distances
are combined at a late stage using the simple sum rule in order
not to increase the dimensionality of the feature space, and the
final measurement is compared with a threshold. Therefore, by
sweeping this threshold on the values of descriptor distances,
we can obtain an ROC curve which plots the correctly detected
matches as a fraction of all true matches against the incorrectly
detected matches as a fraction of all true non-matches. In addi-
tion, we also compare the accuracies of different descriptors or
their combinations in terms of the percentage of false matches
present as 95% of all true matches are detected, i.e. the false
positive rate at 95% recall.

For the state-of-the-art descriptors including DAISY, HOG,
and CS-LBP, we optimize the parameters on the training set,
and report their best performance for comparison. The detailed
parameter values are as follows. CS-LBP: CS-LBP1,8,0.01 with
the 4 × 4 grid; DAISY: R = 20, N = 8, C R = 3, C = 8;
HOG: 9 orientation bins in 0°-180° using the cell size of 8.
For SIFT, we directly cite its performance from [16]. We tune
the parameters of HSOG on the training set as well, and the
detailed values are R = 24, N = 8, C R = 3, C = 8.

3) Experimental Results: The matching results at 95% recall
and the corresponding ROC curves in comparison with the
state of the art are shown in Table II and Fig. 7, respectively.
In addition to these popular first order gradient-based descrip-
tors, we also compare our results with the state of the art ones
achieved on this dataset in the literature in Table III. It can be
seen from the results that:
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TABLE II

COMPARISON OF DESCRIPTORS IN TERMS OF FALSE POSITIVE RATE (%) AT 95% RECALL

(YOS: YOSEMITE, ND: NOTRE DAME, LIB: LIBERTY)

TABLE III

COMPARISON OF BEST PERFORMANCES IN TERMS OF FALSE POSITIVE RATE (%) AT 95% RECALL

(YOS: YOSEMITE, ND: NOTRE DAME, LIB: LIBERTY)

• In local shape representation through curvature related
quantities, HSOG shows its effectiveness and outperforms
the existing popular descriptors based on the first order
gradients, i.e., HOG, CS-LBP, DAISY, and SIFT by a
large margin, hence clearly demonstrating its discrimina-
tive power.

• HSOG also surpasses T3h-S4-25, namely the parametric
descriptor in [16] achieving the best accuracy based on
the 4th-order steerable filters, whose parameters were
optimized using the Powell’s multidimensional direction
set method. It suggests that the proposed HSOG descrip-
tor better captures local shape information and thereby
provides better discriminative power than the 4th order
steerable filters.

• As first and second order gradient-based descriptors are
related to different geometric properties of an image land-
scape, one can expect more comprehensive representation
of a local shape when they are jointly used. Indeed,
the fusion of HSOG with DAISY, HOG, or CS-LBP
further improves the matching performance, indicating
that HSOG provides complementary information to that
conveyed by the first order gradient based descriptors, and
their combination is thus a promising manner for visual
content description.

• The fusion of HSOG with HOG produces better perfor-
mance than that when HSOG is combined with other
1st-order gradient based descriptors, and its scores are
even comparable to the state of the art ones reported
on this dataset as shown in Table III that are always
reached through comprehensive learning where a set of
building blocks whose parameters or combinations are
jointly optimized as in [16] and [40], etc.

4) Robustness to Noise: An important concern of the
image descriptor when encoding the local shape information
through curvature related second order gradient cues is its
robustness or sensitivity to noise as images captured in
real-life applications are more or less disrupted by noises for
various reasons, e.g., acquisition. In the design of HSOG,

Fig. 8. Illustration of samples corrupted by white Gaussian noise in different
intensities. First column presents the original image patches; the other columns
from left to right show the same samples with noise added in 0db, −10db,
−20db, −25db, and −30db SNR, respectively.

the first step is to generate first order Oriented Gradient
Maps (OGMs) which are further smoothed by adopting
a Gaussian kernel to allow the gradients to shift within
the neighborhood without abrupt changes. This smoothing
process should provide some robustness to noises. However,
how does it behave facing different noise intensities? We
aim to answer this problem in comparison with several
other state of the art local image descriptors, including
HOG, SIFT, DAISY, CS-LBP, and 2nd order Steerable
Filter.

We follow the protocol as previously defined in
Subsection III-A.2, and conduct local descriptor matching in
four scenarios according to different training and test subsets.
For each pair of image patches, we add random white Gaussian
noises with varying intensities measured by the Signal Noise
Ratio (SNR). Fig. 8 depicts several image patches corrupted
by noises in different intensities.

Fig. 9 (a) to (d) illustrate the curves of the performance
(at 95% recall) of these local descriptors with regard to
increasing white Gaussian noise in different local matching
scenarios.

To detailedly analyze the curves in these 4 local matching
scenarios, we divide the variation of SNR into three different
ranges: [8db, −8db], [−8db, −20db], and [−20db, −30db].
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Fig. 9. Curves of matching performance (false positive rate at 95% recall) of different local image descriptors with regard to increasing white Gaussian
noise (a) Yosemite-NotreDame, (b) Yosemite-Liberty, (c) NotreDame-Yosemite, and (d) NotreDame-Liberty.

• SNR in [8db, −8db]
The performance of HSOG, Steerable Filter (SF), SIFT,

CS-LBP, and DAISY generally remains stable and that of
HOG slightly drops, which indicates that these local descrip-
tors are not seriously impacted by weak noise.

• SNR in [−8db, −20db]
The accuracies of all these local descriptors are obviously

degraded, and they change in different styles, indicating that
the robustness to noise of each local descriptor is different. The
sensitivity of the local descriptor is illustrated by the slope of
the curve. We can see that SIFT possesses good robustness to
noise thanks to its histogram statistics of gradient distribution,
while HSOG achieves a comparable robustness as SIFT does
for its map-based manner of gradient calculation as well as its
overlapped arrangement of spatial pooling. SF also presents
good robustness, since in this experiment it is computed using
the map-based gradient generation as in HSOG, showing the
necessity of such a process to decrease the sensitivity to noise.
Furthermore, in CS-LBP, this robustness on flat image regions
is obtained by thresholding the gray level differences with a
small value T (set at an experimentally optimized value 0.01).

The robustness of these four descriptors is superior to that of
DAISY and HOG. Since DAISY adopts Gaussian smoothing
and a similar pooling strategy as HSOG, its robustness is not
far behind. The robustness of HOG is the worst and its slope is
quite large as the noise increases. We think that this sensitivity
is mainly caused by its simple sampling grid.

• SNR in [−20db, −30db]
In this range, the slopes of these curves are similar, which

are all quite large, illustrating that when the additive noise is
strong enough, the robustness of local image descriptors does
not make sense any more. Their errors dramatically increase.

To sum up, HSOG not only achieves the best performance
in local matching, but also owns good robustness to noise, in
comparison with these first order gradient based descriptors.

B. Experiments on Object Categorization

The previous part shows that HSOG depicts high discrimi-
native power in local image matching, and proves complemen-
tary to state of the art first order gradient-based descriptors
in terms of descriptive completeness. But how does HSOG
behave when it is applied to visual object categorization
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Fig. 10. Illustration of intra-class dissimilarities and inter-class similarities.
(a) Examples are all from the class of speed boat in the Caltech 256 database,
but possess very different appearances. (b) Images in the first row are from
the bike class of the Caltech 256 database, while the ones in the second row
are from the class of motorbike in the same dataset, and they are very similar
in appearance.

(VOC)? This is a much harder problem since it implies to deal
with, in addition to viewpoint and lighting variations, those
challenges such as scale changes, background clutter, occlu-
sions, intra-class dissimilarities and inter-class similarities as
illustrated in Fig.10. We make use of the bag-of-visual words
approach [44] which requires more stages as compared to
local matching. It additionally consists of building a dictionary
of visual words using training data, encoding of sparsely or
densely sampled local descriptors, and classification.

1) The Caltech 101 and Caltech 256 Datasets: We evalu-
ate the proposed HSOG descriptor in the context of visual
object categorization (VOC) on two standard databases:
Caltech 101 [45] and Caltech 256 [46]. Caltech 101 contains
a total number of 9146 images split into 101 different object
classes including chairs, faces, airplanes, animals, vehicles,
flowers, etc. and an additional background category. The
number of images in each class varies from 31 to 800, and
most categories have about 50 images. As an extension of
Caltech 101, Caltech 256 consists of 30607 images from
256 object categories and an additional clutter category. Each
of categories contains at least 80 images. Compared with
Caltech 101, Caltech 256 is more challenging because it
contains more categories and presents higher inter-class sim-
ilarities and larger intra-class dissimilarities in object scale,
location, viewpoint, etc.

2) Experimental Setup: We follow the method whose
general flowchart is illustrated in Fig. 11 for object
categorization.

For each image in the database, these HSOG based features
are extracted from a dense grid with a 6-pixel spacing.

Fig. 11. Flowchart of our approach for visual object categorization.

It is in contrast to our preliminary work [38] where sparse
sampling was performed by using the Harris-Laplace keypoint
detector [47]. Nevertheless, the dense sampling technique
consistently displays better performance than sparse sampling
in VOC. As a result, we apply it and make comparison of these
descriptors. In the configuration of a dense sampling, SIFT is
quite similar to HOG, and we therefore do not provide the
performance of HOG in this experiment. We implement the
CS-LBP descriptor according to [14], and use the source code
available online for computing SIFT2 and DAISY.3

The visual content of images is modeled using the popular
Bag-of-Features (BoF) framework [44] which achieves great
success in the VOC task. The main idea of BoF is to represent
an image as an orderless collection of local image descriptors.
More precisely, a visual vocabulary is initially constructed by
introducing a clustering algorithm on training data, and each
cluster center is considered as a visual word in the vocabulary.
Instead of hard assignment that all these descriptors extracted
from a given image are quantized to their closest visual word in
an appropriate metric space, we make use of a more effective
soft assignment strategy, namely Locality-constrained Linear
Coding (LLC) [48], which employs the locality constraints to
project each of the descriptors into its local-coordinate system,
and the resulted coordinates are integrated by max pooling to
generate the final representation. The number of the descriptors
assigned to each visual word is accounted into a histogram as
the final BoF based representation.

The Support Vector Machine (SVM) algorithm is applied in
classification. When all the local descriptors are transformed
to fixed length feature vectors by the BoF modeling, the linear
kernel function is utilized for the SVM training and prediction,
as non-linear information has been already included in LLC.

Finally, each of test images is classified into the object class
with the maximum SVM output decision value. We tune these
parameters of the classifier by using the training set via 5-fold
cross-validation, and obtain the accuracy on the test set.

To conduct the experiments on the Caltech 101 and Caltech
256 datasets, we follow the common training and test settings
as in [49], [50], and 2007Caltech256Griffin. For Caltech
101, 15 and 30 images per category are randomly selected
for training respectively, while another 15 random images
for testing (except for the categories containing less than
45 images). For Caltech 256, 30 images are randomly chosen
for training while the other 25 random images for testing

2http://www.vlfeat.org
3http://cvlab.epfl.ch/software/daisy
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respectively from each category. We report the recognition
accuracy on all the 102 classes of Caltech 101 averaged over
three splits, and on 256 classes of Caltech 256 (excluding the
clutter category) for a single split. In our case, a vocabulary
of 1024 and 4000 visual words is constructed for each kind of
local descriptors on Caltech 101 and Caltech 256 respectively
by applying the k-means clustering algorithm on a subset of
the descriptors randomly selected from the training data as
in [10].

3) Parameter Selection: Recall that HSOG has 4 parame-
ters: the radius of the region area (R); the number of quantized
orientations (N); the number of concentric rings (C R); and the
number of circles on each ring (C). To evaluate their impacts
on the performance of the descriptor, we draw a series of line
graphs of the recognition accuracy on Caltech 101 (15 training
images per class) for different R by alternately changing one
parameter while fixing the others for N , C R, and C . These
results are shown in Fig. 12.

It can be observed in Fig. 12(a) that the HSOG descriptors
with 8 orientations perform clearly better than those with
4 and 6; whilst the ones with 10 orientations present no
superiority to those with 8, demonstrating that 8 orienta-
tions are sufficient to describe local image variations. From
Fig. 12(b), we also see that the performance keeps improving
when the number of concentric rings increases, illustrating
that the descriptor based on more rings is better, since more
neighboring information is included. When we keep increasing
the number of concentric rings to 4 or 5, the performance
improvement is more and more limited, but the dimensionality
of the HSOG feature increases dramatically. To control the
computational cost of HSOG, we have to make a trade-off
and hence set this number at 3. Fig. 12(c) shows that raising
the number of the circles on each ring does not improve the
performance, implying that large number of circles on each
ring are unnecessary, due to overlapping of adjacent regions.

Another phenomenon from the three figures lies in that the
best performance is achieved when R is set at 15. Therefore,
we choose the best parameter setting for the proposed HSOG
descriptor as follows: R = 15, N = 8, C R = 3, and C = 4.

4) Influence of PCA-Based Dimensionality Reduction: The
dimension of HSOG is (C R ×C +1)× N2, which is relatively
high for the following classification processes (e.g. 832 using
the best parameter setting). In order to reduce its dimension-
ality, we apply the well known Principal Component Analysis
(PCA) technique, since it has been successfully applied in the
PCA-SIFT and GLOH cases for the same objective.

We observe the change in performance with varying dimen-
sion using the same protocol as in parameter selection, i.e. on
Caltech 101 with 15 random training images per category.
To build the eigenspace, we localize 76,000 local image
patches on a diverse collection of images that belong to
Caltech 256 for validation. Each of these patches is exploited
to compute its HSOG descriptor, and PCA is then applied
on the covariance matrix of these descriptors. The matrix
consisting of the top n eigenvectors is stored and utilized as
the projection matrix.

For a certain local image region, its HSOG descriptor is
first computed and then projected into a low-dimensional

Fig. 12. Influence of different parameters in HSOG. (a) number of quantized
orientations N ; (b) number of concentric rings C R; and (c) number of circles
on each ring C .

feature space by multiplying the pre-generated projection
matrix. The dimensionality of the final HSOG descriptor
is hence reduced to n. We experimentally evaluate the
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Fig. 13. Influence of the PCA-based dimensionality reduction of the proposed
HSOG descriptor.

impact of different values of n for the HSOG performance
on Caltech 101. A series of curves of the recognition accuracy
based on different region sizes are produced by varying the
dimensionality n calculated by PCA from 32 to 256, as shown
in Fig. 13.

We calculate the mean and deviation value of these HSOG
descriptors over all radii for each given dimension n, and find
out that the performance of 128-dimensional HSOG features
(57.60 ± 2.37) is better than those of the other choices, such
as 32 dimension (56.47 ± 2.20); 64 dimension (56.45 ± 1.91);
96 dimension (56.90 ± 2.10); 160 dimension (57.13 ± 2.19);
192 dimension (57.00 ± 2.14); and 256 dimension (57.33 ±
2.13). Therefore, 128 is a good alternative for the dimen-
sionality of HSOG, and we set n = 128 in the following
experiments.

The performance difference before and after dimensionality
reduction can be measured by these red curves in Fig. 12
(i.e. before PCA; N = 8, C R = 3, C = 4, R varies from
10 to 35 with an interval of 5, the performance is 59.1%,
60.5% 59.3%, 57.0%, 55.8%, and 54.5%, respectively) and
the red curve in Fig. 13 (i.e. after PCA with the same para-
meter configuration, the classification rate is 58.8%, 60.4%,
59.0%, 57.9%, 55.3%, and 54.2%, respectively). While the
performances before and after PCA are rather comparable,
the length of the feature is reduced by a factor of 6.5, from
832 to 128, which saves time in the following classification.

5) Performance Evaluation and Comparison: We evalu-
ate the proposed HSOG descriptor with the best parameter
setting on the Caltech 101 and Caltech 256 databases, and
compare its performance with that of several state-of-the-art
ones including SIFT, DAISY, and CS-LBP. It should be noted
that in this experiment the parameters of all other descriptors
are best tuned except SIFT (its standard configuration is
usually regarded as the best in literature and its parameters are
seldom changed). The parameter setting of HSOG is R = 15,
N = 8, C R = 3, and C = 4, with the dimensionality
of 128. Additionally, we build the PCA subspace across
databases of Caltech 101 and Caltech 256. SIFT utilizes the
standard configuration as in [1], thus with 128-dimension.

TABLE IV

PERFORMANCE AND CONSUMED TIME COMPARISON BETWEEN HSOG

AND STATE-OF-THE-ART DESCRIPTORS ON CALTECH 101

USING 15 AND 30 TRAINING IMAGES PER CLASS AND

ON CALTECH 256 USING 30 TRAINING

IMAGES PER CLASS

DAISY applies the parameter setting as R = 15, N = 8,
C R = 3, and C = 4, and its dimension is 104. The parameters
of CS-LBP are set as CS-LBP2,8,0.01 with the 4 × 4 grid,
resulting in a 256-dimensional descriptor.

We can see from Table IV that:
• The HSOG descriptor achieves the second best accu-

racy on Caltech 101, inferior to SIFT but superior
to DAISY and CS-LBP, and it reaches the third best
result on Caltech 256, inferior to SIFT and CS-LBP but
superior to DAISY. These results indicate that HSOG
contributes to solving the problem of VOC. Mean-
while, to capture the geometric properties of an image
interpreted as a landscape or surface through curvature
related quantities (i.e., second order gradients), HSOG is
theoretically sensitive to scale variations, which can
be observed from the performance difference between
HSOG and some of its first order gradient based coun-
terparts.

• Because HSOG captures different local geometric infor-
mation as compared to first order gradient related descrip-
tors, one could expect the recognition accuracy be
improved when they are jointly used and fused through
a late fusion strategy. This is indeed the case as we can
see in this table. As HSOG is combined with individual
first order gradient based descriptors (i.e, SIFT, DAISY,
and CS-LBP), categorization performance consistently
increases.
At the same time, it is worth noting that, even though
SIFT, CS-LBP, and DAISY all convey first order gradient
clues, they are still complementary to each other due to
their differences in gradient computation, pooling, etc.;
and thus could improve the final performance when they
are combined. However, when HSOG is further added,
one can expect extra performance gain again for its
additional geometric information.
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Both facts indicate that the information that HSOG
provides is complementary to that of first order gradients.
A consequent question lies in the statistical significance
of the performance gain displayed in Table IV as HSOG
is used in addition to other first order gradient related
descriptors. For this purpose, we carry out an additional
experiment on Caltech 101 by using 10 randomly selected
splits instead of 3 splits as in the standard protocol.
The mean recognition accuracies and the standard
deviations computed over the 10 splits show that the
results accord with the ones in Table IV. Additionally,
we also perform the StudentâŁ™s t-test to check the
statistical significance of the performance improvement
for each pair of classifiers, e.g., “CS-LBP+DAISY” vs.
“CS-LBP+DAISY+HSOG”; “SIFT+CS-LBP” vs.
“SIFT+CS-LBP+HSOG” etc., and validate that the gain
is indeed statistically significant.

• The combination of all the four descriptors, i.e, HSOG,
SIFT, DAISY, and CS-LBP, achieves the best accuracies
both on Caltech 101 and Caltech 256. Such scores are
among the leading results reported by state of the art
systems in the literature. It is worth noting that further
performance improvement does not only depend on the
features, but also requires more advanced and complex
kernel combination techniques as did in [56] and [55].

At the same time, we calculate the average computational
time required on the Caltech 101 database for each input image
(about the size of 300×250) through different local descriptors
using an Intel Core 2 Duo CPU @ 3.16 GHz with 3GB RAM,
and it can be seen that the current version of HSOG is 3 times
slower than SIFT. Nevertheless, it should be noted that since
each first order OGM and its second order gradients can be
computed individually, the current implementation of HSOG
can be accelerated by GPU programming, which should make
the computation of HSOG approximately N times faster (N is
the number of OGMs, and 8 in our case), thereby displaying
a runtime comparable to the existing ones.

C. Experiments on Scene Classification

The previous experiment in the task of VOC benchmarked
HSOG in unconstrained conditions, with these challenging
factors including in particular large scale changes in addition
to viewpoint and lighting variations, background clutter, etc..
In order to gain additional insights into the geometric proper-
ties captured by HSOG, we also experiment it using the OT
scene dataset consisting of scene images which are generally
wide views captured by cameras with short focal lengths
displaying large depth-of-fields. The categorization of an given
image into a scene class is thus less impacted by scale changes.
How does HSOG behave in such a task of an intermediate
difficulty in comparison with other state of the art local
descriptors? We answer this question in this subsection.

1) The OT Scene Dataset: The proposed HSOG descriptor
is evaluated on a dataset from Oliva and Torralba [5], namely
the OT database, for the last application of scene classification.
It totally consists of 2,688 images from 8 scenery categories:
including coast (360 samples), forest (328 samples), mountain

Fig. 14. Example images of the OT scene dataset.

Fig. 15. Classification results on the OT scene dataset.

(374 samples), highway (260 samples), inside city (308 sam-
ples), tall building (356 samples), open country (410 samples),
and street (292 samples). Fig. 14 shows some sample images
of each category.

2) Experimental Setup: For the task of scene classification,
our approach is the same as the one used in VOC, as described
in Section III-B.2, Once again, the dense sampling strategy is
applied to locate keypoints for local feature computation. Such
a sampling strategy is expected, because the classification of an
image into a scene class mostly requires the whole content of
an image, rather than on the “object” region only. Specifically,
the sampling spacing is set to 6 pixels, resulting in about 1,700
interest points per image. A visual vocabulary of 2,000 “visual
words” is constructed for each kind of local descriptor to build
the corresponding Bag-of-Features (BoF) representation.

The parameters of these descriptors in comparison are tuned
so that they perform in their best conditions, HSOG: R = 15,
N = 8, C R = 3, C = 4; CS-LBP: CS-LBP2,8,0.01 with the
4 × 4 grid; DAISY: R = 15, N = 8, C R = 3, C = 4; HOG:
9 orientation bins in 0°-180° with the cell size of 8. For SIFT,
we also use its standard setting.

We randomly choose half of these images from each scenery
category for training, while the other half for test. The recog-
nition accuracy is adopted as the evaluation criterion. We tune
these parameters of the classifier on the training set via 5-fold
cross-validation, and obtain the classification results on the
test set.

3) Experimental Results: The classification results achieved
on the OT scene dataset are displayed in Fig. 15. As it can be
seen from this figure, in capturing curvature related local shape
information, HSOG outperforms all these first order gradient-
based local descriptors, with the accuracy gain reaching 3.9%
over HOG; 2.9% over CS-LBP; 2.2% over SIFT; and 0.6%
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TABLE V

COMPARISON OF THE HSOG DESCRIPTOR (MULTI-SCALE VS. SINGLE

SCALE) ON CALTECH 101 USING 15 AND 30 TRAINING IMAGES PER

CLASS; CALTECH 256 USING 30 TRAINING IMAGES PER CLASS;

AND OT USING HALF OF IMAGES PER CLASS FOR TRAINING

over DAISY. This accuracy holds an improvement of 2.6%
to that of GIST (83.7%) [5] as well. Furthermore, HSOG
proves once more to provide complementary descriptive infor-
mation with respect to its first order gradient related coun-
terparts, e.g., SIFT, CS-LBP, DAISY, and HOG. Their joint
use improves the classification precision, and the performance
improvement by combining HSOG and the first order gradient-
based descriptors is more than 2 points over HSOG itself and
is 4.5 points on average over these first order gradient-based
counterparts. These accuracies are in line with those findings
in the previous two applications, regarding its discriminative
power as well as complementarity to the first order gradient
based descriptors.

The best classification accuracy attains 88.8% when HSOG
is combined with CS-LBP. This result outperforms the state
of the art ones on this dataset, such as 86.65% [57] and
87.8% [26].

D. Summary and Discussion

HSOG captures curvature related local geometric properties
which are different from those of the first order gradient related
local descriptors. The experimental accuracies in the previous
three applications show that HSOG conveys very useful clues
which are complementary to that of first order gradient based
descriptors in image representation. Furthermore, HSOG tends
to extract more discriminative information than its first order
gradient-based counterparts and thereby outperforms the latter
ones in both the applications of descriptor matching and scene
classification where scale changes are limited. While, HSOG
indeed presents some sensitivity to scale variations, losing its
lead on VOC. The reason lies in that HSOG encodes geometric
properties of an image that is interpreted as a surface through
curvature related quantities, and it is theoretically sensitive to
scale changing. We can image that the earth with mountains,
cliffs, valleys, etc. becomes a simple sphere when observed at
a large distance.

To improve the robustness of HSOG to severe scale vari-
ations, a straightforward way is to consider support regions
of various sizes of a given interest point to embed more
geometric information. In such a case, the multi-scale strategy
is a direct alternative. We introduce the late fusion strategy to
combine different HSOG features of multi-scale regions, since
it does not increase the dimensionality of feature space, and
the similarity scores achieved by different parameters can be

calculated individually, leading to a high feasibility in imple-
mentation of parallel computing without largely increasing
time cost. The kernel matrices of different HSOG descriptors
are combined using the Multiple Kernel Learning (MKL)
algorithm [58] for decision.

From the preliminary results listed in Table V, we can see
that the performance of these single scale HSOG descriptors is
improved roughly by 2 points when more scales are combined
on both Caltech 101 (15 and 30 training images each class)
and Caltech 256 (30 training images each class). The accuracy
improvement on the OT scene dataset is about 1 point. These
results demonstrate that, facing large scale changes of visual
objects, the multi-scale HSOG is an effective solution. On the
other hand, the improvement in scene classification is not as
significant as in VOC, showing its limited scale variations.

IV. CONCLUSION

In this paper, we present a novel and effective local image
descriptor, namely HSOG, by making use of the Histograms of
the Second Order Gradients to capture curvature related local
geometric properties. These experimental results achieved on
three applications with different levels of challenges (descrip-
tor matching, object categorization, scene image classification)
indicate that the HSOG descriptor owns a good discrimina-
tive power to distinguish different visual contents, especially
embedded with more spatial information provided by the
multi-scale strategy. Moreover, the information conveyed by
HSOG proves complementary to that captured by state of
the art first order gradient based local image descriptors,
e.g., HOG, SIFT, CS-LBP, and DAISY.

In future work, we continue to go a step in capturing local
geometric properties of images interpreted as landscapes and
employ true differential geometry quantities which are intrinsi-
cally densely computable and rotation invariant, e.g., Gaussian
and mean curvatures, and make the resultant descriptor scale
invariant. Meanwhile, we will investigate how to make full use
of HSOG to improve the accuracy of scene classification on
a more comprehensive database, e.g. the SUN database [59].
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