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ABSTRACT

In the context of lack of object-level annotation, we propose
a model that enhances the weakly supervised deformable part
model (DPM) by emphasizing the importance of size and as-
pect ratio of the initial class-specific root filter. For each im-
age, to extract a reliable bounding box as this root filter esti-
mate, we explore the generic objectness measurement to ob-
tain a reference window based on the most salient region, and
select a small set of candidate windows by adaptive thresh-
olding and greedy Non-Maximum Suppression (NMS). The
initial root filter estimate is decided by optimizing the score
of overlap between the reference box and candidate boxes,
as well as their corresponding objectness score. Then the
derived window is treated as a positive training window for
DPM training. Finally, we design a flexible enlarging-and-
shrinking post-processing procedure to modify the output of
DPM, which can effectively fit to the aspect ratio of the object
and further improve the final accuracy. Experimental results
on the challenging PASCAL VOC 2007 database demonstrate
that our proposed framework is effective and competitive with
the state-of-the-arts.

Index Terms— Object detection, weakly supervised
learning, deformable part-based models, objectness, post-
processing

1. INTRODUCTION

Object detection/localization in images is one of the most
widely studied problems in computer vision. For most of the
existing methods, a fully supervised learning (FSL) approach
is adopted [1, 2], where positive training images are manually
annotated with bounding boxes encompassing the objects of
interest. However, manual annotation for large-scale image
database is extremely laborious and unreliable [3]. As a re-
sult, in contrast to the traditional FSL, there has been a great
interest in weakly supervised learning (WSL) for object de-
tection [4, 5, 6, 7, 8, 9, 10], where the exact object locations
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in positive training examples are not provided, given only the
binary labels indicating the presence or absence of the objects.

Deformable Part-based Models (DPM) [2] and its variants
[11, 12], are the leading technique to object detection with
full supervision on the challenging PASCAL VOC datasets
[13]. The DPM represent an object with a coarse root filter
that approximately covers an entire object and several higher
resolution part filters that cover smaller parts of the object.
In the standard (fully supervised) DPM framework, the posi-
tive ground-truth object bounding boxes are treated as the ini-
tial root filters, and it is allowed to move around in its small
neighborhood to maximize the filter score. The locations of
parts are treated as latent information as the annotations for
parts are not available. Megha et al. [5] modify the fully
supervised DPM to a weakly supervised one, without object-
level annotations, by treating the location of root filter and
part filters full latent, and learning structural object detectors
based on the entire image (root filter location is initialized
randomly based on a window which has at least 40% overlap
with the positive training image, and its aspect ratio is ini-
tialized roughly to the average of the aspect ratios of positive
training examples). However, the specific size and location
of the initial root filter, as well as their aspect ratio are in-
dicated to have a significant impact on the final localization
result [1, 2, 5]. And to our best knowledge, methods for ini-
tializing the root filter as well as the definition of the aspect
ratio of the objects in weakly supervised DPM, have not been
well studied in [5].

To take advantage of the outstanding object detection per-
formance of fully supervised DPM, in this paper, we propose
a model enhancing the weakly supervised DPM by empha-
sizing the importance of location and size of the initial class-
specific root filter. To be precise, we explore the objectness
approach [14], which generates class-independent object pro-
posals with corresponding scores to their probabilities of be-
ing object windows, and adaptively extract a reliable window
from the derived object proposals for each image as the ini-
tial root filter estimate for training DPM detector. Finally,
a flexible enlarging-and-shrinking post-processing procedure
is proposed to modify the predicted output of DPM detec-
tor, which can effectively generate more accurate bounding
boxes by better conserving foreground and cropping out plain
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Fig. 1. Illustration of our proposed method to extract the initial object estimation: for an input image (a), 1000 object proposals
(b) are sampled with corresponding scores to their probability to have object inside via the objectness measurement. (c) is the
saliency map derived from (b), and (d) is the reference region obtained by thresholding (c). A finer set of candidate windows (f)
are selected on the sorted proposals (e) by NMS. The blue window in (g) is our initial object estimation obtained by optimizing
the overlap between (d) and (f).

background regions. Experimental results on the challeng-
ing PASCAL VOC 2007 database demonstrate that our pro-
posed framework is effective for initialization of root filter,
and shows competitive final localization performance with the
other weakly supervised object detection methods[5, 10].

The rest of the paper is organized as follows: we present
our method to extract reliable initial root filter for weakly su-
pervised DPM and our technique to post-process the bound-
ing box in Section 2, and in Section 3 we present our ex-
perimental results and the comparison with other methods on
PASCAL VOC 2007 datasets. In Section 4, we conclude our
work.

2. OUR APPROACH

In this section, we present our approach for improving the
performance of DPM for weakly supervised object detection.
In particular, we explore objectness measurement [14], which
has been widely applied for various purposes in computer
vision, to generates category-independent object proposals
with corresponding scores to their likelihood of being object
bounding boxes, and adaptively extract a faithful window
from the derived object proposals for each image as the initial
root filter size and position for DPM detector. We then briefly
describe the training and detecting procedures with DPM. Fi-
nally we propose our new post-processing method to further
modify the predicted object bounding box obtained by DPM
detector, so as to cover the object more precisely.

2.1. Initialization of object bounding box estimation

Given an input image I (shown in Fig.1(a)), we first compute
a set of N windowsW = {w1, · · · , wk, · · · , wN} with cor-
responding Bayesian posterior probabilities, denoted as S =
{s1, · · · , sk, · · · , sN} (shown in Fig.1 (b)) using the object-
ness approach [14]. We set N = 1000, which ensures cov-
ering most objects even in very difficult images [14]. Based
on the fact that the objectness is designed to capture all pos-
sible objects within an image, we assume it has the reliability

for providing at least one good candidate window w∗ which
covers the object of interest. However, the window with the
highest objectness score max(S) is not always an effective
choice[15], which usually encompasses other noisy objects,
or locates poorly on object target.

To extract a reliable window from the pool of 1000
windows, we design a recursive selective scheme shown
in Fig.1 (c)-(g). Inspired by the success of visual saliency
applied in object recognition, we compute the reference re-
gion T (shown in Fig.1 (d)) by thresholding the saliency map
M(shown in Fig.1 (c)). The value of saliency map M at
pixel I(i, j) is obtained by summing up the objectness scores
of the windows that cover this pixel:

M(i, j) =

1000∑
k=1

Mk(i, j) (1)

where,

Mk(i, j) =

{
sk, if I(i, j) ∈ wk,∀wk ∈ W ,
0, otherwise. (2)

Meanwhile, we also adaptively select windows with high
score as candidates, according to the histogram of 1000
sorted windows (shown in Fig.1(e)). To avoid near duplicate
candidate windows, we further perform non-maximum sup-
pression (NMS) to get a finer set of candidates. Contrary to
the common practice, which starts the suppression procedure
from highest scoring windows, we randomly choose one, for
the reason that the highest scoring window is not necessarily
the best. Fig.1 (f) illustrates the derived smaller set of n
confident candidates Ŵ = {ŵ1, · · · , ŵi, · · · , ŵn}, and their
corresponding score denoted as Ŝ = {ŝ1, · · · , ŝi, · · · , ŝn}.

Given the reference region T which implies the most
salient region within an image, and confident candidate win-
dows, the overlap between them provides valuable informa-
tion to find the location of target object. The final estimate of
the initial object bounding box w∗ (Fig.1(g)) is determined
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Fig. 2. Examples of bounding box enlarging and shrinking. Boxes before and after post-processing are shown in red and yellow,
respectively.

by optimizing the following function:

w∗ = argmax
ŵi∈Ŵ,ŝi∈Ŝ

γŝi + (1− γ)area(T ∩ ŵi)

area(T ∪ ŵi)
, i ∈ [1, n]

(3)
where γ is a parameter used to control the influence of the
objectness score si. In practice, we set γ = 0.2.

2.2. Detection with deformable part-based models

We start training the DPM detectors with the derived bound-
ing boxes from Section 2.1, which are treated as our positive
training windows. Similarly to [2], each root filter hypothesis
in a positive training image is initialized with the correspond-
ing derived bounding box (ground-truth bounding box is used
in [2]), and it is allowed to move around in a small neighbor-
hood to maximize the filter score to compensate for impre-
cise bounding box estimation from Section 2.1. We refer the
reader to [2] for more details concerning the DPM training
and detection procedures. As in [5], we represent an image
by a multiscale HOG feature pyramid [1] of 16 levels. For
our DPM model, we use only a single component, since the
multiple components are used for detecting objects with dif-
ferent views. We set the number of parts in DPM as 8 in all
our experiments. And for negative training examples, we use
random negatives from other object classes.

2.3. Bounding box post-processing

In many cases, the bounding boxes generated by DPM de-
tectors are too large (resp. small) when detecting very small
(resp. large) objects due to the restrictions of the size of the
root filter and the scale of the feature pyramid. To improve
the localization and to obtain a more precise estimate of the
bounding box aspect ratio, we post-process each bounding
box by enlarging or shrinking it to cover the object as much
as possible. This is done using an improved version of the
method proposed in [16] which measures the amount of area
that the edge energy occupies. In brief, we first augment
the original bounding box to 120% of the original width and
height (i.e. 144% in total area), and calculate the absolute
values of the gradients over the augmented bounding box and
set the values which are less than 10% of the maximum to 0.
To easily calculate the edge spatial distribution, then we resize
the gradient magnitude image size to 100×100 and normalize
the image sum to 1. Finally, we expand the bounding box in 4
directions from the centroid and stop until it contains 98% of
the total gradient magnitude (edge energy) in the augmented
box. This post-processing technique is not only able to crop

out plain background regions, but also can expand to cover the
foreground regions which are not encompassed by the origi-
nal box. However, the cropping method in [5] is probably
to fail with the latter. Fig. 2 shows a few examples of our
bounding box post-processing results. It is also worth notic-
ing that this post-processing technique works efficiently for
the objects with a unique or plain background, but has limited
help for those with cluttered or textured background.

3. EXPERIMENTAL EVALUATION

Dataset: Following the protocol of previous works [4, 5, 10],
we evaluate the performance of our proposed weak super-
vision framework on two subsets from the training and val-
idation set (trainval) of the PASCAL VOC 2007 dataset
(VOC07)[13]: VOC07-6×2 and VOC07-14. The VOC07-
6×2 subset contains 6 classes with Left and Right views
(aspects) of each class, resulting in a total of 12 separating
classes. The VOC07-14 subset (same with PASCAL07-all de-
fined in [5]) consists of 42 class/view combinations covering
14 classes and 5 views. Similar to [5], we remove all the
images annotated as difficult or truncated in both training and
evaluation steps.
Evaluation criteria: To make fair comparisons, we only
choose the detection window with highest score per image,
although our method can detect multiple instances appeared
in the image using sliding window approach. We also re-
port both results for initial and refined localization as [5, 10].
A refined localization is obtained by an iteratively trained
DPM detector for one/several iteration(s) to refine the initial
detection using the previous annotations as ground truth. Per-
formance is evaluated with the percentage of training images
in which an object is correctly covered by the window, if
the strict PASCAL-overlap criterion is satisfied (intersection-
over-union > 0.5).
Experimental evaluation: As Table 1 shows, our method
outperforms [4] and our baseline approach [5] on both
datasets. Our average performance of initial detection be-
fore cropping boxes on the VOC07-6×2 and VOC07-14 sub-
sets is 38.74% and 21.73% respectively, versus 37.22% and
19.98% for [5]. These improvements are due to the ini-
tial object estimate of our method described in Section 2.1,
which gives a better initialisation of the root filter of DPM
detectors. We can also observe that both the cropping post-
processing method from [5] (i.e. ours-[5] in Table 1) and our
enlarging-or-shrinking (i.e. ours-ES) post-processing method
steadily improve the average localization accuracy. In par-
ticular, our ES cropping method is superior to that of [5], as
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Table 1. Average detection results (in %) compared with state-of-the-art competitors on the two variations of the PASCAL
VOC 2007 datasets.

VOC07-6×2 VOC07-14
no post-processing with post-processing no post-processing with post-processing

[5] ours [5] ours-[5] ours-ES [5] ours [5] ours-[5] ours-ES
Initialization 37.22 38.74 44.62 47.85 48.59 19.98 21.73 23.00 24.20 25.12
Refinement 1 51.63 55.85 53.11 56.78 58.02 25.11 27.46 26.38 28.21 28.94
Refinement 2 56.99 59.82 59.31 63.31 63.91 27.69 28.95 29.39 32.87 32.82
Refinement 3 59.32 — 61.05 — — 28.98 — 30.31 — —
Result from [4] 50.00 26.00

our cropped bounding box is not only able to shrink to crop
out the background regions, but also capable of enlarging to
cover the whole foreground object resulted by incomplete
coverage of the original window. An example is shown in
the last row of Fig. 3, where the target object (motorbike)
is only partially localized by the initial detector (shown in
red rectangles in the middle and right images) for both [5]
and our method. However, in the final detection (shown in
yellow), our method is able to enlarge the bounding box to
nearly include the whole object, while [5] tends to crop out
both foreground and background regions. The middle rows
in Table 1 indicate that localization accuracy can benefit from
the refinement process. It is worth mentioning that with a
better initialisation, our models converge to a steady level of
performance after one less round of costly re-training (i.e. 2
iterations) than [5], and achieve slightly better results in the
mean time. The detailed comparisons for our method with
the state-of-the-arts on the VOC07-6×2 dataset are listed in
Table 2. The results show that our method outperforms [5]
for most of the categories. Especially, our method achieves
the state-of-the-art results in some classes where the target
object possesses the most salient regions in that category (e.g.
aeroplane, bus, horse). Interestingly, even without refinement
process, the accuracy for our method with certain category
(e.g. aeroplane left) is superior to the competitors with the
time-consuming refinement procedure. Fig. 3 visually com-
pares some of our results with those of [5].

Table 2. Class-level localisation accuracy (in %) for the
VOC07-6×2 dataset for our method vs. [4, 5, 10].

Initialisation Refined by detector
ours [5] [10] ours [5] [4]

aero left 65.1 55.8 39.1 69.7 65.1 58.0
aero right 64.1 61.5 50.0 84.6 82.1 59.0
bike left 31.3 31.3 28.4 85.4 87.5 46.0
bike right 42.0 44.0 30.6 54.0 68.0 40.0
boat left 9.1 4.6 15.1 13.6 2.3 9.0
boat right 9.3 9.3 20.7 14.0 7.0 16.0
bus left 23.8 23.8 31.0 42.9 28.6 38.0
bus right 65.2 52.2 35.1 69.6 47.8 74.0
horse left 64.6 60.4 48.5 87.5 83.3 58.0
horse right 73.9 67.4 45.2 76.1 80.4 52.0
mbike left 64.1 48.7 46.3 87.2 92.3 67.0
mbike right 70.6 76.5 55.3 82.4 88.2 76.0
average 48.6 44.6 37.1 63.9 61.1 50.0

4. CONCLUSION

In this paper, we proposed a model enhancing the weakly su-
pervised learning by emphasizing the importance of location
and size of the initial class-specific root filter of deformable
part model (DPM). We follow the general setup of [5] and in-
troduce several substantial improvements to the weakly super-
vised DPM. The main contributions included new approaches
based on objectness approach in generating the initial candi-
date window estimates. Furthermore we designed a flexible
enlarging-and-shrinking post-processing procedure to modify
the output bounding boxes of DPM, which can effectively fur-
ther improve the final accuracy. Experimental results on the
challenging PASCAL VOC 2007 database demonstrate that
our proposed framework is efficient and competitive with the
state-of-the-arts.

Ground Truth [5] Ours 

Fig. 3. Examples of detection results. The left column:
ground-truth bounding boxes in green rectangles. The mid-
dle and right columns are detection results with [5] and our
method, respectively. Initial detections are shown in red and
detections refined by detectors are shown in yellow. Both re-
sults are with individual post-processing approach.
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