
Towards Efficient and Accurate Privacy Preserving Web
Search

Albin Petit
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205,
F-69621, France

albin.petit@insa-lyon.fr

Sonia Ben Mokhtar
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205,
F-69621, France

sonia.benmokhtar@insa-lyon.fr

Lionel Brunie
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205,
F-69621, France

lionel.brunie@insa-lyon.fr

Harald Kosch
Universität Passau

Innstrasse 43, 94032 Passau,
Germany

harald.kosch@uni-passau.de

ABSTRACT
Querying Web search engines is by far the most frequent
activity performed by online users and consequently the one
in which they are likely to reveal a significant amount of
personal information. Protecting the privacy of Web re-
questers is thus becoming increasingly important. This is
often done by using systems that guarantee unlinkability be-
tween the requester and her query. The most effective so-
lution to reach this objective is the use of anonymous com-
munication protocols (e.g., onion routing [10]). However,
according to [14], anonymity might not resist to machine
learning attacks. Thus, an adversary could link a query to
her requester’s public profile. Other approaches (e.g., [8,17])
guarantee unidentifiability of the user interests by generat-
ing noise (e.g., creating covert queries or adding extra key-
words). However, these solutions overload the network and
decrease the accuracy of the results. We present in this pa-
per the first contribution that combines both approaches. It
allows a user to perform a private Web search resistant to
machine learning attacks while slightly decreasing the rele-
vance of the results. Our three stage architecture contains:
(1) a Privacy Proxy that relies on two non-colluding servers
to hide the requester identity from the search engine ; (2) a
Linkability Assessment that analyses the risk that a request
is reassociated with the identity of the requester; (3) an Ob-
fuscator that protects the queries which have been flagged
linkable by the linkability assessment.

Categories and Subject Descriptors
K.4.1 [Computers and society]: Public Policy Issues—
privacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4NG ’14 December 8-12, 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-3222-4/14/12 ...$15.00.

General Terms
Security, Algorithms

Keywords
Privacy, Web search, Unlinkability, Unidentifiability

1. INTRODUCTION
Recent surveillance programs (e.g., PRISM) and online

services (e.g., Google, Facebook, Twitter, etc) demonstrate
the massive use of personal data without any control or
agreement from end-users. In this context, protecting user
privacy is becoming increasingly important. Indeed, a re-
cent study shows that 73% of search users do not agree with
search engines keeping track of their searches1.

Literature contains many solutions to protect the privacy
of requesters accessing Web search engines. Among these so-
lutions, we distinguish two different directions : hiding the
identity of the requester (unlinkability) or hiding the con-
tent of the query (unidentifiability). On the one hand, the
most robust approaches to reach unlinkability are anony-
mous communication protocols (e.g., TOR [7], Dissent [6,
18], RAC [3]). However, in addition to their heavy compu-
tational overhead, it was demonstrated [14] that machine
learning algorithms break this protection. Consequently,
adversaries are able to link a query to its requester’s iden-
tity. On the other hand, the most common solutions to
unidentifiability create covert queries (to drown user queries
among fake queries) or add extra keywords to the initial
query (to drown user’s keywords in these extra keywords).
However, these approaches incur a communication overhead
and a degradation in the accuracy of the results.

In this paper, we propose a new architecture that guaran-
tees a stronger protection to the users while keeping a high
level of accuracy and limiting the communication overhead.
First, to overcome the machine learning attacks [14], we
combine unidentifiability techniques with a new unlinkabil-
ity protocol. Further, to keep a high accuracy of the results
and limit the communication overhead, we adopt an adap-

1Pew Internet & American Life survey - February 2012:
http://www.pewinternet.org/2012/03/09/search-engine-
use-2012/

SEARCH ENGINECLIENT
Query

PUBLIC
PROFILE

PRIVATE
PROFILE

Results

Private search

Figure 1: Context overview

tive obfuscation mechanism. Specifically, only queries with a
high probability to be reassociated to their requester’s public
profile are obfuscated. This obfuscation step concatenates
the initial query with generated fake queries using the logical
OR operator. The number of fake queries depends on the
risk of reassociating the initial query to its requester’s pro-
file. Finally, a post-filtering removes irrelevant answers to
retrieve results corresponding to the non-obfuscated query.
To reach this objective, our solution relies on three parts:
(1) a Privacy Proxy that implements a new unlinkability
protocol ; (2) a Linkability Assessment that assesses the re-
association risk of requests ; (3) an Obfuscator that performs
the obfuscation in an efficient way.

The remaining of this paper is organized as follows. We
define the problem that we want to solve in Section 2. We
then present an overview of existing state of the art in Sec-
tion 3. Further we present our architecture in Section 4 and
we discuss aspects related to our assumptions in Section 5.
Finally, we present our evaluation plan in Section 6 before
concluding the paper in Section 7.

2. PROBLEM STATEMENT
As described in Figure 1, we consider two different entities:

a client and a Web search engine. Our objective is to allow
a client to query the search engine in a privacy preserving
way. This means that the search engine, which receives the
query, or any adversary which listens to the network, cannot
infer the identity of the requester. Moreover, we assume
that the user has been querying directly (i.e., without any
privacy preserving protection) the search engine in the past.
Consequently, the search engine used all client’s previous
queries to create on its side a user profile, namely public
profile (right side of Figure 1). The client has also saved
locally her search history in a private profile (left side of
Figure 1).

Finally, we assume that requests sent by the client do
not contain quasi-identifiers (e.g., egosurfing) enabling the
straightforward re-identification of the user.

3. STATE OF THE ART
There have been a large body of works to protect the pri-

vacy of users accessing search engines. These solutions can
be classified in three major categories according to the guar-
antees they offer to users: (1) systems guaranteeing unlink-
ability between the requester and its request ; (2) systems
guaranteeing unidentifiability of the user’s requests and (3)
systems following the Private Information Retrieval (PIR)
scheme.

3.1 Unlinkability
Unlinkability refers to the ability to anonymously query

Add fake
requests
[12,17]

Add noise to
requests [8]

Generalize
request [1]

Overhead ++ + ++
Privacy plausible

deniability
k-anonymity plausible

deniability
Accuracy +++ ++ +

Table 1: Comparison of unidentifiability approaches

service providers. The naive solutions in this category of
systems rely on the use of a trusted proxy, which handles
the sending of a request on behalf of the user [15]. However,
this solution only translates the problem to the proxy-side
as the latter is able to collect sensitive information about the
users. The most robust solutions in this first category of sys-
tems are anonymous communication protocols (e.g., onion
routing [10], TOR [7], Dissent [6, 18], RAC [3]). Neverthe-
less, these protocols require a large number of cryptographic
operations and some of them (e.g., RAC, Dissent), need the
use of all to all communication primitives, which engender a
large amount of traffic in the network. This category of sys-
tems also includes solutions in which users send requests on
behalf of each other to protect their identities (e.g., [5], [11]).
As such, the service provider is not able to link the request
with the identity of the effective requester. However, these
approaches are very costly as they rely on group communi-
cation between users in order to organize the mixing of their
requests.

Moreover, in addition to their costs, it has been proved
that unlinkability techniques are not enough to protect the
user. Naive machine learning techniques [14] show that it is
feasible to identify the requester of an anonymous query. In-
deed, the Support Vector Machine (SVM) algorithm, trained
on previous non anonymous queries, is able to reassociate a
query to its requester’s public profile. For instance, if all
public profiles contain different topics of interest, this al-
gorithm can easily link an anonymous query to the right
profile. Consequently, unlinkability approaches do not effec-
tively guarantee the protection of the user.

3.2 Unidentifiability
The second category of approaches aims instead at obfus-

cating a user profile. As a result, the service provider can
hardly distinguish between a user’s effective interests (or re-
quests according to the implementation) and fake ones. The
main approaches can be classified into three categories as
shown in the Table 1.

Unidentifiability is usually achieved by generating addi-
tional periodic non relevant requests on behalf of the user
(column 1 in the table). For instance, in [17], the system ran-
domly sends fake requests based on RSS feeds (e.g. CNN,
New York Times). But the RSS feeds, hardcoded or set up
manually by the user, might be irrelevant to cover user’s
queries and consequently an adversary could distinguish be-
tween the real queries and the generated one. A similar ap-
proach (e.g., [12]) generates k plausibly deniable queries on
different topics with the same probability of relevance for the
user. These queries are generated using a set of documents
as seed. However, these two first solutions (e.g., [17] [12])
overload the network with useless traffic by creating a lot of
covert queries.

CLIENT

PRIVACY PROXYUSER
PROFILE

LINKABILITY
ASSESSMENT

OBFUSCATOR
(4):E(Q)

(2):Q

(3): E(Q’)

GROUP
PROFILE(1):Q

if linkable
if not linkable

SEARCH ENGINE

(5): Q or Q’

(6): R

(7): R

Figure 2: The three stage architecture overview

Another approach is to add noise to existing users’ re-
quests (column 2 in the table). For instance, in [8], k-1

random extra keywords are added to the user’s original re-
quest. This approach guarantees k-anonymity [16] which
means that search engines can guess the correct keyword
with a probability 1/k.

A similar solution (e.g., [1]) is to send a set of requests
representing more general concepts that the original request,
and then to merge and to filter out the result in order to
retrieve part of the original results. This method is based
on the hypothesis that a subset of the original results is
included in the result of the generated queries. Nevertheless,
these two former solutions result in a decreased accuracy as
the users may not retrieve the original result and receive
irrelevant replies due to the added noise. Furthermore, for
all these approaches, search engines that use personalization
to improve their results will reply more inappropriate results
due to the noise deliberately introduced in the user profile.

3.3 Private Information Retrieval
Finally, approaches of Private Information Retrieval (PIR)

prevent the Web search engine to know the interest of the
user. Indeed, a solution (e.g., [13]) that uses homographic
encryption with a mechanism that embellish each user query
does not reveal the original query to the search engine. How-
ever, this very costly approach (due to the homographic en-
cryption) supposes a modification of the recommendation
algorithm on the provider side.

Considering the limitations of state of the art approaches,
we aim in this paper to propose a solution that guarantees
a higher protection between the requester and her request
while providing a lower computational and communication
overhead than state of the art approaches.

4. TOWARDS PRIVACY PRESERVING WEB
SEARCH

Our solution combines unidentifiability techniques with a
new unlinkability approach to guarantee that the query is
not linkable to its requester’s public profile. We divide our
approach in three parts : the privacy proxy, the linkability
assessment and the obfuscator. We first introduce our con-

tribution with a general overview and then present, in the
three following subsections, each stage in detail.

4.1 Architecture overview
As shown in Figure 2, when the requester issues a query Q

(message (1) in the figure), the linkability assessment anal-
yses Q to determine if the latter can be linked to the user
profile. To do so, the linkability assessment relies on the user
profile (private profile) and on the group profile (aggregation
of public profiles). If the query is flagged linkable (message
(2) in the figure), the second stage (i.e., the obfuscator) ob-
fuscates the query to mislead the adversary. In any case, the
query is issued through the privacy proxy (message (3) and
(4) in the figure). This third stage is responsible for split-
ting the query into two distinct pieces of information: the
requester identity and the query content. As a consequence,
the search engine knows the content of the query (message
(5) in the figure) but has no clue in the requester’s iden-
tity. Finally, the search engine replies to the privacy proxy
(message (6) in the figure) which retrieves the identity of
the requester and forwards the answer to her (message (7)
in the figure).

4.2 Privacy Proxy
The goal of the privacy proxy is to guarantee that the

query is not linkable with its requester’s public profile with
a low computational cost.

4.2.1 Protocol overview
To protect the privacy of users, the aim of the privacy

proxy is to prevent all distant servers involved in the pro-
cess of satisfying a user’s request to have access to both the
query and the identity of the requester (e.g., her IP address).
The key idea behind the privacy proxy is thus to split these
two pieces of information on two different servers. Specifi-
cally, our first server, namely the receiver, has access to the
identity of the requester without being able to read the re-
quest, while our second server, namely the issuer, has access
to the request without knowing the identity of the user. A
key challenge is then to allow these two servers to query the
search engine and to return an answer to the requester in
a privacy-preserving way. Figure 3 shows how our protocol
reaches this objective. In this figure, we use the notations

E(m) RSA encryption of message m with the public
key of the issuer

{m}i AES encryption of message m with key Ki

Qi i-th query of user U
Ki AES encryption key associated with query Qi

Ai Answer to query Qi

X An anonymous identifier

Table 2: Notations

Alice Receiver Issuer Search Engine
(1): E(Qi,Ki) (2): X,E(Qi,Ki) (3): Qi

(4): Ai(5): X,{Ai}Ki(6): {Ai}Ki

Figure 3: Privacy Proxy protocol

of Table 2. We assume that the client has the public key
of the issuer and generates a symmetric encryption key Ki

for each request she wants to send to the service provider.
We assume that the two non-colluding servers are honest-
but-curious: they execute their tasks correctly, but they can
collect and reason about knowledge traversing them.

To send a request Qi to a service provider, the user starts
by encrypting Qi using the issuer’s public key and sends it
to the receiver along with Ki (message (1) in the figure).
As such, the receiver is unable to read the content of the
query. Upon receiving a user’s request, the receiver stores
the identity of the requester and forwards the query to the
issuer associated with an anonymous unique identifier, i.e.,
X in the figure (message (2) in the figure). This identifier
could simply be the hash of the timestamp at which the
receiver received the request. For stronger guarantees we
can also use UUIDs2. Upon receiving the anonymized query,
the issuer decrypts the request and submits it to the search
engine (message (3) in the figure), which replies with the
corresponding answer (message (4) in the figure). Then, the
issuer encrypts the answer with the user’s symmetric key,
i.e., Ki and forwards the answer to the receiver along with
the anonymous identifier, i.e., X (message (5) in the figure).
Finally, the receiver retrieves the IP address of the requester
and forwards the encrypted reply to her (message (6) in the
figure).

For security reasons, the user has to create a new sym-
metric key Ki each time she wants to send a query. If not,
the issuer can link all the queries belonging to a same user
together by using this key as a unique identifier and possi-
bly reidentify the user using statistical attacks as it has been
done on the AOL dataset [2].

4.2.2 Privacy-preserving group profile computation
The machine learning attack [14] on unlinkability solu-

tions is mainly due to not taking into account the popular-
ity of topics searched by all users. Our solution addresses
this issue by using a profile that contains information about
all users. The privacy proxy will publish periodically an
updated version of what we call the group profile. A key
requirement of the group profile computation is that it has

2UUID standard specification:
http://tools.ietf.org/html/rfc4122

USER PROFILE

HIV
risk

factor
tennis

4
3
3
2

GROUP PROFILE

HIV
risk

factor
tennis

5
4
3
9

#users#usage

cinema

2
2
1
4

5 2

#usage

#average 3

Figure 4: Example of a User Profile and a Group
Profile

to be done in a privacy preserving way. Consequently, to
avoid the leak of personal information, this profile is an ag-
gregation of all user requests. It includes, for a given word,
how many users used it and how many times it was used by
all users. This profile is used by the linkability assessment
and the obfuscator modules. Figure 4 gives an example of
a group profile. In this figure, we can see that the keyword
”HIV” has been used 5 times by 2 different users.

4.3 Linkability assessment
The second stage of our mechanism is to evaluate if the

query is linkable to the requester’s public profile. In fact, the
linkability assessment ensures that a non linkable query is re-
sistant to statistical attacks (machine learning algorithms).
To reach this objective we defined a linkability metric which
quantifies if the query is likely to be linked to her requester
public profile. This evaluation is based on two types of infor-
mation: the popularity of a query (using the group profile)
and the proximity of a query to the user profile. Conse-
quently, we define two submetrics:

• User profile similarity — The goal of this metric is
to evaluate the degree of similarity of a query to the
user profile. Specifically, for each keyword belonging
to the query, we compare its usage frequency ai to
the average usage frequency of all keywords bi. More
formally, we define the user profile similarity metric
Mu as:

Mu =

∑
i
ai−bi
ai+bi

#keywords

The value of this metric varies from -1 (no part of query
was already issued) to 1 (the query was already issued
multiple times). If we compute this metric for the
keyword ”HIV” using the user profile of Figure 4 (the
usage frequency is 4 and the average usage frequency
of all keywords is 3), we deduce that the user profile
similarity metric of ”HIV” is 0.14.

• Group profile similarity — The goal of this metric
is to evaluate if a query is popular among the other
users in the group. Concretely, this comes down to
know, for each keyword belonging to the query, how
many times ci, it was used and how many users di
used it. More formally, the group profile similarity Mg

can be defined as follow:

Mg =

∑
i
ai−ci/di
ai+ci/di

#keywords

For instance, if we take the keyword ”HIV” and the
profiles of Figure 4, we obtain a group profile similarity
of 0.23.

As shown by Algorithm 1, the linkability is defined as
an average between these two above metrics. A low value
means that the query is not linkable to a specific public pro-
file whereas a high value means that only one public profile
corresponds to the query and consequently the search engine
is able to link the anonymous query to its requester.

We consider that all queries with a linkability value over
the threshold 0 (i.e., a not popular query close to the user
profile is sensitive) need to be protected and sent to the ob-
fuscator. For instance, if we take the keyword ”HIV”and the
profiles of Figure 4, we have a linkability of 0.18. This value
is over 0 and thus the query ”HIV” is potentially linkable.

Algorithm 1 Linkability Assessment

Require: The query Q
1: linkability ← 0
2: for all keyword ∈ Q do
3: Mu ← computeUserProfileMetric(keyword)
4: Mg ← computeGroupProfileMetric(keyword)

5: linkability ← linkability +
Mu+Mg

2
6: end for
7: linkability ← linkability

|Q|
8: if linkability > 0 then
9: SendToObfuscator(Q)

10: else
11: SendToPrivacyProxy(Q)
12: end if

4.4 Obfuscator
In order to protect queries that are tagged as linkable, we

need to modify the original query. A major drawback in
adding noise to the query is the introduction of irrelevant
answers. For example, a naive way of doing that is to re-
place all words with their synonyms (using Wordnet [9] for
instance). Unfortunately, even though this strategy protects
quite efficiently the user, the results are not very accurate.
That is why, we choose a basic functionality of search en-
gines that allows the use of logical propositions in the query.
Our goal is to complete the current query with k other fake
queries using logical OR propositions. A post-filtering fi-
nally decreases the number of irrelevant answers introduced
by the fake queries. We describe the implementation of the
obfuscator (i.e., the Algorithm 2) in the three following sec-
tions.

Algorithm 2 Obfuscator

Require: The set q which contains the query Q
1: while evaluateLinkability(q) > 0 do
2: q ← q ∪ generateFakeQuery(q)
3: end while
4: Q′ ← createObfuscatedQuery(Q)
5: SendToPrivacyProxy(Q′)
6: R← GetResults()
7: for all result ∈ R do
8: for all word ∈ result do
9: if word ∈ q \ {Q} then

10: remove(result)
11: break
12: end if
13: end for
14: end for

4.4.1 Fake query generation
The challenge here is to generate fake queries that cannot

easily be identified as such by the search engine. Toward this
purpose, we aim at generating fake queries that are far from
the user profile and close to the profile of other users. The
fake queries are generated using information contained in the
user profile and in the group profile. It takes words contained
in the group profile but not in the user profile. All the fake
queries contains words used by other user. Consequently,
the obfuscated query, forged by combining the original query
and these fake queries (line 4 in Algorithm 2), is potentially
closer to another user profile. This strategy misleads the
adversary about the real identity of the requester.

4.4.2 Number of fake queries (k)
The number of fake queries is fundamental to guarantee

the protection of the user. Indeed, a too small number will
not decrease the success rate of the machine learning attack.
We consider that an obfuscated query is correctly obfuscated
when the average of linkabilities of the original query and
the fake queries is above 0 (line 1 in Algorithm 2).

Theoretically, the construction of fake queries gives at
least 2-anonymity guarantees. This number is in practice
higher especially with a large number of users. In fact, the
group profile does not contain enough information to deter-
mine if the fake queries are close to one or multiple other
user profiles. A solution to have a better approximation of
this number consists of adding information to the group pro-
file. However this is not feasible because it discloses publicly
too much information about the user.

4.4.3 Post-filtering
The goal of the post-filtering is to remove all irrelevant

answers introduced by the fake queries. A basic algorithm
(line 7 to 14 in Algorithm 2) will analyze all the results re-
turned by the search engine and remove results that contain
words generated during the obfuscation step. These irrele-
vant results are returned as an answer of the fake queries.
Consequently, there are not interesting for the user.

5. DISCUSSION
On the non-collusion assumption of the receiver and the is-
suer : One of our main assumptions of the privacy proxy
is the non-collusion of the receiver and the issuer. Onion
routing deals with this issue by enabling the users to use a
higher number of relays when they wish to have a higher de-
gree of privacy. To have a higher level of privacy, we prefer
not to increase the number of intermediate servers as we aim
to provide a practical protocol. Instead, we choose to trust
the receiver or the issuer. One could imagine that users and
institutions can volunteer with servers acting as receivers or
issuers as it is done in the TOR community. As such, the
user could choose a receiver and an issuer she would trust
(e.g., a server hosted by a non profit organization).

On the data leakage with the publication of the group profile:
The group profile contains for each word its usage by all the
users. By construction, it does not contain any personal in-
formation. Moreover, this aggregated data does not enable
any adversary to recover the queries. Of course, we assume
that enough users use our system. Furthermore, during the
initialization step, the group profile can contain fake infor-
mation.

6. EVALUATION PLAN
We are currently working on the evaluation of our ap-

proach. To do so, we plan to evaluate our solution in terms
of:

• Privacy guarantees — We have already generated
a proof with ProVerif [4] which confirms that the pri-
vacy proxy avoids a user and her query to be linked
together (if we consider that the search engine does not
have any previous information about the user). The
full ProVerif description of the privacy proxy is accessi-
ble online3. We plan to validate the privacy guarantees
of the whole architecture by replaying machine learn-
ing attacks [14] and by measuring protections offered
by our architecture compared to TrackMeNot [17] pro-
tections.

• Computational & communication overhead —
To measure the performance of our architecture, we
plan to evaluate the performance of our privacy proxy
compared to anonymous protocols like TOR [7].

• Accuracy of the results — By comparing the rank-
ing of an non-obfuscated query and of an obfuscated
query, we will measure the decrease of the accuracy.

7. CONCLUSION AND FUTURE WORKS
We presented in this paper a new architecture to query

Web search engines in a privacy-preserving way. Existing
solutions in literature such as anonymous communication
protocols or unidentifiability approaches suffer from a huge
computational and/or communication overhead and/or poor
accuracy of results. Moreover they might not resist to ma-
chine learning attacks. To overcome these limitations, our
solution relies on three stages to find the perfect trade off
between user’s privacy and accuracy of results. A key fea-
ture of our approach is to detect and protect queries that
might be linked to a public profile and thus guaranteeing a
real unlinkability between the requester and her request.

Our future work will focus on the evaluation of this solu-
tion in terms of security guarantees, computational cost and
accuracy of the results.

8. ACKNOWLEDGMENTS
The presented work was supported the EEXCESS project

funded by the EU Seventh Framework Program, grant agree-
ment number 600601.

9. REFERENCES
[1] A. Arampatzis, P. S. Efraimidis, and G. Drosatos. A

query scrambler for search privacy on the internet.
Information retrieval, 16(6):657–679, 2013.

[2] M. Barbaro and T. Zeller. A Face Is Exposed for AOL
Searcher No. 4417749. [Online]
http://www.nytimes.com/2006/08/09/technology/

09aol.html?pagewanted=all&_r=0, Aug. 2006.

[3] S. Ben Mokhtar, G. Berthou, A. Diarra, V. Quéma,
and A. Shoker. Rac: A freerider-resilient, scalable,
anonymous communication protocol. In Proceedings of
ICDCS, 2013.

3Privacy Proxy ProVerif model:
http://pastebin.com/FdsYanLz

[4] B. Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In Proceedings of the
Computer Security Foundations Workshop (CSFW),
2001.

[5] J. Castellà-Roca, A. Viejo, and
J. Herrera-Joancomart́ı. Preserving user’s privacy in
web search engines. Computer Communications,
32(13), 2009.

[6] H. Corrigan-Gibbs and B. Ford. Dissent: accountable
anonymous group messaging. In Proceedings of CCS,
2010.

[7] R. Dingledine, N. Mathewson, and P. Syverson. TOR:
The second generation onion router. In Proceedings of
the Usenix Security Symposium, 2004.

[8] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca.
h(k)-private information retrieval from
privacy-uncooperative queryable databases. Online
Information Review, 33(4):720–744, 2009.

[9] C. Fellbaum. Wordnet: An electronic lexical database.
1998. WordNet is available from http://www. cogsci.
princeton. edu/wn, 2010.

[10] D. Goldschlag, M. Reed, and P. Syverson. Onion
routing. Commun. ACM, 42(2), 1999.

[11] Y. Lindell and E. Waisbard. Private web search with
malicious adversaries. In Privacy Enhancing
Technologies, pages 220–235. Springer, 2010.

[12] M. Murugesan and C. Clifton. Providing Privacy
through Plausibly Deniable Search., chapter 65, pages
768–779. 2009.

[13] H. Pang, X. Ding, and X. Xiao. Embellishing text
search queries to protect user privacy. Proceedings of
the VLDB Endowment, 3(1-2):598–607, 2010.

[14] S. T. Peddinti and N. Saxena. On the effectiveness of
anonymizing networks for web search privacy. In
Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security,
pages 483–489. ACM, 2011.

[15] M. Shapiro. Structure and Encapsulation in
Distributed Systems: the Proxy Principle. In
Proceedings of ICDCS, 1986.

[16] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[17] V. Toubiana, L. Subramanian, and H. Nissenbaum.
Trackmenot: Enhancing the privacy of web search.
arXiv preprint arXiv:1109.4677, 2011.

[18] D. I. Wolinsky, H. Corrigan-Gibbs, and B. Ford.
Dissent in numbers: Making strong anonymity scale.
In Proceedings of OSDI, 2012.

