
Collaborative Construction of
Updatable Digital Critical Editions:

A Generic Approach

Vincent Barrellon
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205, F-69621, France
vincent.barrellon@insa-lyon.fr

ABSTRACT
In the frame of Digital Humanities, many collaborative schol-
arly publishing projects arise. Editors often give shape to
those projects by designing a data structure that validates
the annotated content of the edition. In practise, in the
course of annotation, data structures have to be updated.
Besides, they determine the expressivity of the critical appa-
ratus. The challenge is to design a data structure that will:
be updatable; guarantee the consistency of the collective ed-
itorial project; reflect the different editors’ needs in terms of
expressivity. In this paper, we present the basis to build an
edition tool dedicated to collaborative data structuring. To
do so, we introduce a composite structure, constituted of a
core structure (CS) and of ephemeral, peripheral ones (PS).
PS will be created by individual editors to amend the core
structure. They will then be discussed by the community,
and eventually adopted or rejected. Means will be provided
to translate the structured data instantiating one structure
into a shape validated by the others. This way, if a PS is
accepted, the CS will be updated and the instances of the
previous CS will be transformed so as to match with the
updated CS.

Categories and Subject Descriptors
[Human-centered computing]: Collaborative ans social
computing

General Terms
Design, Human Factors, Theory

Keywords
Digital Humanities, Scholarly Publishing, Annotation, Col-
laborative work

Copyright is held by the author(s).
Digital Libraries 2014 Doctoral Consortium
September 8, 2014, London, UK.

1. MOTIVATION

1.1 Context
Digital Humanities can be defined by their vocation to be-

come a digital research infrastructure for humanists, in an
analogous way to the infrastructure that libraries, universi-
ties, and so on, constitute in the physical world [7]. In this
frame, taking advantage of the vast digitalization campaigns
of cultural resources that have been led in libraries and mu-
seums, many ambitious scholarly digital publishing projects
have been undertaken recently.

This work takes place at the crossroads between four such
scholarly publishing projects: the edition of the documen-
tation Gustave Flaubert gathered for his unfinished novel
Bouvard et Pécuchet1, the exploratory analysis of philoso-
pher Jean-Toussaint Desanti’s papers2, the double publica-
tion (printed and online) of Stendhal’s Journaux et papiers3

and the critical edition of the Diderot and D’Alembert’s En-
cyclopédie4. The four corpora are huge (e.g. more than
74.000 articles in the Encyclopédie), composite (e.g. J.-T.
Desanti’s archive contains manuscripts, administrative doc-
uments, audio files, etc.) and want extensive critical enlight-
ening.

Over the four teams, more than sixty editors are involved.
One of the teams is widely international and multicultural;
all of them are multidisciplinary. Each of the four projects
needs a working human-computer interface (HCI) dedicated
to the collaborative annotation of their respective corpus.
Such a tool will be referred to as an edition tool hereafter.

Thus, in this work, we consider a multidisciplinary, dis-
tributed and collaborative team of scholars (the editors)
gathered to produce a digital critical edition of some com-
plex documentary corpora.

We decided to begin by working on a specific task derived
from the whole editorial process, namely: corpus construc-
tion. In the editors’ terms, it means: properly ordering the
resources at hand, identifying relevant items in the corpus
they represent, characterizing those items with some well-
defined classification scheme, establishing correspondences
between such qualified elements across the corpus, annotat-
ing the resulting contents, etc. It basically means structuring
the available data.

1http://www.dossiers-faubert.fr/
2http://institutdesanti.ens-lyon.fr/
3http ://manuscrits-de-stendhal.org/
4http://enccre.academie-sciences.fr/



1.2 Problem statement
In practice, the data structures that model an edition are

defined explicitly by the publishing team. Indeed, they for-
malize the informal publishing policy that makes a scholarly
edition “an argument about a text” [12].
Data structures define the types that will be instantiated

through annotation and the links that can be reified between
instances of these types. In other words, data structures
define the vocabulary and the grammar of annotation.
It is clear from the history of the four publishing projects

that, however well-thought-out the initial schema was, rea-
sons occurred that led the editors to fine-tune, update, or
even dramatically change the data structure, while the cor-
pus is in daily use. Here are a few examples :

- the Stendhal project produces XML files, validated
against a home-made DTD. The first DTD, in use dur-
ing a few months, proved not to match the editorial
policy, that was to make a semi-diplomatic transcrip-
tion of the folios – while the DTD did not allow to
encode tabulars, indentation, special characters, etc.
A brand new DTD was designed and the whole anno-
tation work had to be restarted from scratch. From
there on, about 30 versions of the DTD were made.

- the Desanti project started as a classification project;
the current objective is to extract a dictionary of con-
cepts from the corpus. The two enterprises involve two
different but “overlapping” data structures – the latest
being not entirely designed yet. Additionally, unex-
pected audio sources have just joined the archive. The
editors want to be able to annotate those resources and
to link them to the rest of the archive.

One question arises at this point : if data structures can
change in time, what (who) drives their evolution? Our
proposition is based upon this assumption: since they im-
pose a grammar and a vocabulary for the annotations, data
structures also determine the expressivity of the critical ap-
paratus. Thus, they influence the power of expression of
the editors themselves, as individuals in charge of that crit-
ical apparatus. However, because the archive to edit grows,
or the editorial policy changes, or eventually because unex-
pected items (e.g. tabulars; a specialization of any existing
type; etc.) are uncovered during the annotation process,
editors sometimes face resources that cannot be modeled
adequately with the current data structures. Therefore, it
seems interesting to design an edition tool in which editors
themselves, as individuals, initiate the evolution of the data
structure – in order to be able to describe those resources
properly.
The problem we want to solve can be phrased as follows: a

data structure must reflect the evolutive, different and even
conflicting editors’ needs in terms of expressivity; at the
same time it must support a single, consistent collaborative
product: the edition itself.

2. STATE OF THE ART

2.1 Models of annotation
In traditional publishing, the notions of critical edition

and annotation are inseparable. Analogously, diverse defi-
nitions of digital annotation have been proposed.

Some take the shape of integrated models, implemented in
an editing tool. Among those, we can mention the Shared-
Canvas model [13], “applicable to any layout-oriented pre-
sentation of images of text”. In this model, the photos of
the primary sources annotate a blank canvas, simultane-
ously with textual annotations (transcriptions or explana-
tions related to a particular zone of the image). This allows
editors to establish the edition on several material versions
of a given work. Unfortunately, the graphical dimension of
the structured data interpretation makes it HCI-dependant.

Several generic theoretical models have also been proposed
(and, lately, implemented). Among them are Annotation
Graphs (AGs) [3].

AGs are directed acyclic graphs with edges that can be
labelled with fielded records. The content of the annotations
has to be contained in the edges’ labels. Optionally, nodes
can be labelled with indexes that can be used as references
to the annotated content. The labels can contain prefixes
that can be used to group the annotations into classes. Also,
by way of suffixes, labels can reference labels to produce N-
P relationships. The model is versatile enough: most of the
existing annotation formats (E-mu, XML/TEI, etc.) can be
translated into AGs.

2.2 Edition tools for scholars
The notion of “edition tools” needs clarification. Such

a tool shares some functional goals with Virtual Research
Environments (VREs) and Creativity Support Environment
(CSEs) (e.g. [2], [1]): helping scholars to manage huge dig-
ital libraries. However, an edition tool is meant to support
not only the exploratory and constraints-free phases tar-
geted by CSEs and VREs, but also more advanced stages
for which the consistency of the annotations made within a
team of editors matters greatly. Even though formalization
is regarded as an obstacle for scholars who are not used to
abstraction [15], we believe that resorting to implicit struc-
turing ([2], [1]) is not a solution to our problem, since it ap-
pears to be incompatible with a collaborative work driven
by a shared editing-policy. Thus, we are more in favour of
explicit structuring along with an ergonomic HCI, as illus-
trated by the Glozz Platform [16].

2.3 Common Ground
The concept of common ground originates from linguistics

studies. It is a model of conversation, based on the consid-
eration that collaborative work can be achieved even though
the actors do not share a common comprehension, or repre-
sentation [8], of its object, be it at the beginning or at the
end of the interactive process. The explanation is that ac-
tion is possible if there is a feeling of mutual understanding,
“to a criterion sufficient for current purpose” [6].

An interesting reformulation of the concept can be found
in [4]. This paper deals with multidisciplinary intellectual
work. Multidisciplinarity implies divergence of perspectives
and epistemic styles. Actors, consequently, never share a
common understanding of the object of their task. Interac-
tion becomes “processes of confrontation between different
structures of knowledge”– thus, divergence is seen as a driver
for interaction.



3. ONGOING WORK

3.1 An interpretation of the Common Ground
In the light of the above considerations, one may consider

that the definition and the renegotiation of data structures
are collaborative tasks in themselves. To our knowledge,
there is no existing tool dedicated to such tasks. Conse-
quently, we tried to give shape to a data structure that would
be both product of and support to collaborative work. It
should reflect a consistent editorial policy, and at the same
time meet the expressivity needs of the editors as individu-
als.
To solve this paradox, we developed an new interpretation

of the concept of common ground. In our context, a data
structure can be regarded as a representation of the edition
to be made. Literature on the common ground indicates
that no unique representation of the edition will arise; on the
contrary, new perspectives may develop from the confronta-
tion of diverse representations. However, editors may agree
on an ephemeral feeling of mutual understanding, based on
the use of a basic, common annotation language, or upon
the confidence that one of them can lead an expert editorial
project, in the frame of the common project.
We can rephrase this more concretely. An editorial data

structure can be composite. It can be made of an evolution-
ary core structure and evolutionary peripheral structures.
The core structure is made of types and links upon which the
whole team of editors agreed at an instant t. This agreement
could be based on the fact that they share the impression
that they are able to implement it, or the feeling that the
others are. Peripheral structures are proposed by any editor,
and are defined as modifications of the core structure.
Such peripheral structures are not meant to coexist inde-

pendently. A typical scenario follows.

1. a publisher instantiates S, which is the core structure;

2. while annotating, he notices that one of the types in
S is not adequate for the content to be annotated. He
transforms S into a peripheral structure S′, in which
he defines a new pattern of types in place of the former
one;

3. he argues in favour of S′ before the other editors,
through the edition tool, by showing use-cases and in-
stance samples – the other editors reply;

4. S′ is either accepted or rejected by the community of
editors.

This scenario raises technical and practical challenges. In
particular, technically speaking, when two structures are de-
fined, we want to have means to transform the instances of
each of those structures so as to make them match the other
structure. Practically speaking, when defining a peripheral
structure by modifying the core one, an editor shall be given
ways to preview the effects of his structural modification
over the existing annotated data.
Meeting those challenges would open promising perspec-

tives. Editors would be given ways to fine-tune the existing
core structure, or to propose new peripheral structures to en-
rich the initial editorial project and to experiment on those
structures. More fundamentally, if we had ways to trans-
late structured data from one structure to another, then

even if the editors were working on peripheral projects, data
converted from these side projects would be converted in a
shape compatible with the core structure; thus the collective
edition, validated by the core structure, would keep progress-
ing. Eventually, if a peripheral structure was accepted and
the core structure updated, editors would be given the pos-
sibility to update the data instantiating the obsolete core
structure; otherwise, the work done by the proposing editor
would still be preserved, by first being translated into an-
other shape, respectful of the collective editorial policy.

Those challenges could be met by resorting to a bidirec-
tional algebra as a tool for building and manipulating the
structured data. Since we want to stick to an existing model
of annotation, the goal for us is to bidirectionalize Annota-
tion Graphs.

3.2 Bidirectionalizing AGs
Bidirectional editors are mechanisms that allow to main-

tain the consistency of two structured sources of informa-
tion, denoted A and B hereafter, that share items. There
are three main approaches in the field of bidirectional trans-
formation: Lenses, Triple Graph Grammars (TGGs) and
UNQL+. Lenses [10] are transformations capable of trans-
lating an edit on one structure into an appropriate edit on
the other: if a set A is connected to a set B by a lens, up-
dates on A will be mapped to updates on B, and conversely.
Unfortunately, lenses only work on trees. TGGs are gram-
mars that generate languages of graph triples which consist
in two related graphs plus a graph that serves as a bridge be-
tween them [14]. This only works if the pattern-to-pattern
correspondence between the related graphs is well known,
which won’t be the case in our context.

UnQL+ [11] is a graph algebra enriched with bidirec-
tional semantics. It is based on the UnQL/UnCAL alge-
bra [5], whose graph model is a rooted, directed and cyclic
graph with labelled edges, and optionally marked and in-
dexed nodes. To that respect, the graph model of UnQL+
is close to the one of the AGs.

In UnQL+, whenever a (forward) transformation5 Ff is
performed onA, givingB, a corresponding (backward) trans-
formation Bf is automatically defined, so that any update
on B can be propagated to A.

We insist here on the fact that the way UnQL+ works
is highly compatible with the challenges we listed in sec-
tion 3.1:
Be S the core structure, IS data instantiating S. An ed-
itor defines a peripheral structure S′ by a transformation
g on S6, and instantiates S′ in the shape of IS′ . Let us
imagine that we are able to determine Ff/Bf from g, so
that Ff(IS) = IS′ and Bf(IS′) = IS . Once the bidirec-
tional transformation Ff/Bf available, any update on the
instances of S′ will be propagated on the instances of S.
This way, for instance, when an editor is annotating a part
of the corpus according to the data structure S′, he is actu-
ally, automatically, structuring the same part of the corpus
according to the core structure S, because Bf propagates

5Transformations are defined as the composition of graph
constructors and a recursion operator that allows structural
recursion on graphs (see [9]).
6The editor will not have to define g directly: g will be
obtained by composition of all the consecutive interactions
of the editor with the data structure, mediated by the HCI.



on IS the modifications the editor is performing on IS′ .
The problem is : how to determine Ff/Bf from g?

3.3 The notion of (bi)simulation
So far, we only have clues about how to answer this ques-

tion. Our intuition is to try to represent data structures and
structured data in a “similar” way, so that g and Ff will be
as close as possible. It will then be possible to determine
Bf from Ff [11]. The “similarity” between the representa-
tions of structure and instances we want to experiment on
is called simulation.
It happens that UnQL/UnCAL is based upon a notion of

extended bisimulation, an equivalence relation that comes
from state transition systems (STS). Be G1 = (V1, E1) and
G2 = (V2, E2) two STS. G2 simulates G1 if there is S ∈
V1×V2 so that if (u1, u2) ∈ S∧(u1, ǫ

∗.a, v1) ∈ E1, a 6= ǫ, then
there is a node v2 so that (v1, v2) ∈ S ∧ (u2, ǫ

∗.a, v2) ∈ E2.
Here we denote ǫ∗.a a path made of ǫ-edge and an edge
labelled a. The relation “A simulates B” will be denoted
A →֒ B hereafter.
A bisimulation is a simulation S so that S−1 is a simula-

tion as well. Such a relation is denoted ≡ hereafter.
An important property of (bi)simulation is that the multi-

plicity of the edges of a given label outing from a given node
is indifferent. See figure 1 for an illustration. This suggests
that we may be able to represent a structure, and instances
of this structure (that may contain several instances of a
given type from the structure) so well so that the graph rep-
resenting the structure simulates the graph representing the
data.
Another important property is that any composition f of

graph constructors and recursive transformations is bisimu-
lation generic (i.e. preserves bisimulation) [5]:
∀ {G1, G2, ...} and {G′

1, G
′

2, ...} | ∀i, Gi ≡ G′

i,
f(G1, ..., GN ) ≡ f(G′

1, ..., G
′

N ). Any transformation oper-
ated by the editors will be bisimulation generic (see note 5).
Note that bisimulation generic functions are also simulation
generic.
Based on those properties, we are currently formalizing

a representation of data structures and instances that are
indeed similar. Accurate introduction to this mode of repre-
sentation is beyond the scope of this paper; besides, it is an
ongoing work that needs testing. The principle of this new
representation is based on two facts:

1. AGs can be seen as enriched STS.

2. according to [14], a data structure defines a language
whose words are paths of its own instances.

This indicates that a data structure and instances of this
data structure can equally be represented as STS, so well so
that any path in any instance of some structure is a possible
execution of the structure-automaton. See figure 2.
This is only possible if the graph representing structured

data does not include values that are instance-specific, i.e.
that do not appear in the graph representing the data struc-
ture. This is compatible with AGs, since annotated contents
are only referred to by indexes placed on nodes – and simu-
lation does not see values on nodes.
With such a representation, we are in the following situa-

tion: given a core structure S and instances IS , a peripheral
structure S′ obtained via transformation g and instances
IS′ ,

Figure 1: Two bisimilar graphs (taken from [5]).

S
g
→ S′

→֒ →֒ and (g.S = S′) →֒ g.IS

IS
Ff/Bf?

↔ IS′

It only suggests that in such a configuration, g and Ff
might indeed be “close” one from the other – or even equal,
in some situations. But this is sheer speculation at this stage
of our work.

4. RESEARCH PLAN AND CONCLUSION
In the future, we want to formalize the automaton-like

representation of data structures and instances. We want
to implement a prototype tool in order to test structural
updating in-situ. This may require to adapt the UnQL+ al-
gebra, in order to allow for the inclusion of ǫ-edges in graphs
representing data structures, for instance (so far, ǫ-edges are
eliminated when performing a transformation).

We hope to contribute by providing editors with a struc-
tural update support tool, based on a versatile annotation
model, that is Annotation Graphs. Such a tool may give
back to the editors the means to master the expressivity of
the critical apparatus they are in charge of, to experiment
on new enrichments while contributing to a coherent, collec-
tive project, and to fine-tune the core structure validating
the collective product, that is the digital edition itself.

5. ACKNOWLEDGMENTS
This work is supported by the ARC5 program of the Rhône-

Alpes region, France.

6. REFERENCES
[1] C. Andrews and C. North. Analyst’s workspace: An

embodied sensemaking environment for large,
high-resolution displays. In Visual Analytics Science
and Technology (VAST), 2012 IEEE Conference on,
pages 123–131. IEEE, 2012.

[2] N. Audenaert, G. Lucchese, and R. Furuta. Critspace:
a workspace for critical engagement within cultural
heritage digital libraries. In Research and Advanced
Technology for Digital Libraries, pages 307–314.
Springer, 2010.

[3] S. Bird and M. Liberman. A formal framework for
linguistic annotation. Speech communication,
33(1):23–60, 2001.

[4] R. Bromme. Beyond one’s own perspective: The
psychology of cognitive interdisciplinarity. Practicing
interdisciplinarity, pages 115–133, 2000.



Figure 2: The structure states that an article contains one or more “Attributed paragraph”, and one “Signa-
ture”. The ∃ symbol indicates that a corresponding node in the instances should be indexed. An instance of
that is illustrated underneath. The bare contents are not included in the instance graph, since contents are
referred to by the indexes on the nodes of the graph.

[5] P. Buneman, M. Fernandez, and D. Suciu. Unql: a
query language and algebra for semistructured data
based on structural recursion. The VLDB Journal-The
International Journal on Very Large Data Bases,
9(1):76–110, 2000.

[6] H. H. Clark and S. E. Brennan. Grounding in
communication. Perspectives on socially shared
cognition, 13(1991):127–149, 1991.

[7] P. D’Iorio and M. Barbera. Scholarsource: A digital
infrastructure for the humanities. Switching Codes.
Thinking through New Technology in the Humanities
and the Arts, pages 61–87, 2011.

[8] S. Ehlinger. Les représentations partagées au sein des
organisations: entre mythe et réalité. Actes du 8ème
congrès de l’AIMS, 1998.

[9] M. Felleisen. How to design programs: an introduction
to programming and computing. MIT Press, 2001.

[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bi-directional
tree transformations: a linguistic approach to the view
update problem. In ACM SIGPLAN Notices,
volume 40, pages 233–246. ACM, 2005.

[11] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano. Bidirectionalizing graph transformations.
In ACM Sigplan Notices, volume 45, pages 205–216.
ACM, 2010.

[12] P. Robinson. What Digital Humanists don’t know
about Scholarly Editing. SDSE2013, 2013.

[13] R. Sanderson, B. Albritton, R. Schwemmer, and
H. Van de Sompel. Sharedcanvas: a collaborative
model for medieval manuscript layout dissemination.
In Proceedings of the 11th annual international

ACM/IEEE joint conference on Digital libraries,
pages 175–184. ACM, 2011.

[14] A. Schürr and F. Klar. 15 years of triple graph
grammars. In Graph Transformations, pages 411–425.
Springer, 2008.

[15] F. M. Shipman III and C. C. Marshall. Formality
considered harmful: Experiences, emerging themes,
and directions on the use of formal representations in
interactive systems. Computer Supported Cooperative
Work (CSCW), 8(4):333–352, 1999.

[16] A. Widlöcher and Y. Mathet. The glozz platform: a
corpus annotation and mining tool. In Proceedings of
the 2012 ACM symposium on Document engineering,
pages 171–180. ACM, 2012.


