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and Jean-François Boulicaut1

1 INSA Lyon, LIRIS CNRS UMR 5205, F-69621 Villeurbanne, France
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Abstract. Many applications see huge demands for discovering relevant
patterns in dynamic attributed graphs, for instance in the context of so-
cial interaction analysis. It is often possible to associate a hierarchy on the
attributes related to graph vertices to explicit prior knowledge. For exam-
ple, considering the study of scientific collaboration networks, conference
venues and journals can be grouped with respect to types or topics. We
propose to extend a recent constraint-based mining method by exploiting
such hierarchies on attributes. We define an algorithm that enumerates
all multi-level co-evolution sub-graphs, i.e., induced sub-graphs that sat-
isfy a topologic constraint and whose vertices follow the same evolution
on a set of attributes during some timestamps. Experiments show that
hierarchies make it possible to return more concise collections of patterns
without information loss in a feasible time.

1 Introduction

Due to the success of social media and the ground-breaking discovery in exper-
imental sciences, network data have become increasingly available in the last
decade. Consequently, graph mining is recognized as being one of the most stud-
ied and challenging tasks for the data mining community. Two different and
complementary ways have been considered so far: (1) analyzing graphs based on
macroscopic properties (e.g., degree distribution, diameter) [9] or partitioning
techniques [12], and (2) extracting more sophisticated properties within a pat-
tern discovery setting. In particular, local pattern mining in graphs has received
much attention, leading to the introduction of new problems (e.g., mining col-
lections of graphs [17,22] or single graphs [5,7]). The graph vertices are generally
depicted by additional information that form with the graph structure an at-
tributed graph [15,16,18,20]. Such attributed graphs support advanced discovery
processes providing insightful patterns.

However, there exists other types of augmented graphs such as evolving [1,4,19]
or multidimensional graphs [2]. A growing body of literature has investigated
augmented graphs by only considering one of the above types at a time. In [11],
we proposed to tackle both dynamic and attributed graphs by introducing the
problem of trend sub-graphs in dynamic attributed graph discovery. This new
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Fig. 1. US domestic flights dynamic graph

kind of patterns relies on the graph structure and on the temporal evolution of
the vertex attribute values. In this paper, we go deeper in the analysis of dynamic
attributed graphs by also examining the existence of a hierarchy over the vertex
attributes. Indeed, we believe that the subsumption power of hierarchies is of
most interest to summarize patterns and avoid unperceptive/useless/meaningless
patterns. We propose to mine maximal dynamic attributed sub-graphs that sat-
isfy some constraints on the graph topology and on the attribute values. To
be more robust towards intrinsic inter-individual variability, we do not compare
raw numerical values, but their trends, that is, their derivative at time stamp t.
Let us consider the example in Fig. 1 that depicts a dynamic attributed graph
describing the US domestic flights. The vertices stand for the airports and edges
link airports that are connected by at least a flight during the time period of
observation. Two attributes described the vertices of the graph: a is the num-
ber of flight arrivals and b is the average delay of arrival. At each time period
of observation, we only consider the evolution or trend of the attribute values,
and the value increases are denoted +, whereas their decreases is denoted −.
The two attributes a and b can be specialized according to the geographical
location of the airports where planes come from (see hierarchy H on Fig. 1).
The incoming number of flights and their average delay can be decomposed into
the ones coming from the North and South areas, as well as the distinct states
of America. Hence, if a pattern describes a phenomenon that characterizes the
whole airplane system, the most appropriate level of description is the first one
(namely attributes a and b), whereas if the pattern is specific to a peculiar state,
the involved attributes will be the ones at the leaves of the hierarchy.

The connectivity of the extracted dynamic sub-graphs is constrained by a
maximum diameter value that limits the length of the longest shortest path be-
tween two vertices. Additional interestingness measures are used to assess the
relevancy of the trend dynamic sub-graphs and guide their search with user-
parametrized constraints. In this unified framework, these measures aim at eval-
uating (1) how the vertices outside the trend dynamic sub-graph are similar to
the ones inside it; (2) the dynamic of the pattern through time; (3) the quality
of the description of the pattern given the hierarchy over the vertex attributes.
The algorithm designed to compute these patterns traverses the lattice of dy-
namic attributed sub-graphs in a depth-first manner. It prunes and propagates
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constraints that are fully or partially monotonic or anti-monotonic [8], and thus
takes advantage of a large variety of constraints that are usually not exploited
by standard lattice-based approaches. Our contributions are:

– The definition of hierarchical co-evolution sub-graphs: We define them as
a suitable mathematical notion for the study of dynamic attributed graphs
and introduce the purity and h-gain concepts (see Section 2).

– The design of an efficient algorithm H-MINTAG that exploits the constraints,
even those that are neither monotonic nor anti-monotonic (see Section 3).

– A quantitative and qualitative empirical study. We report on the evalua-
tion of the efficiency and the effectiveness of the algorithm on a real-world
dynamic attributed graph (see Section 4).

2 Hierarchical Co-evolution Sub-graphs

A dynamic attributed graph G = (V , T ,A) is a sequence over a time period T
of attributed graphs {G1, . . . , G|T |} where each attributed graph Gt is a triplet
(V , Et, At), with V a set of vertices that is fixed throughout the time, Et ⊆ V×V
a set of edges at timestamp t, and A a set of attributes common to all vertices
at all times. At(v) ∈ R

|A| are the values of vertex v at time t on A.
A vertex induced dynamic sub-graph of G is an induced subgraph across a

subsequence of G, denoted by (V, T ) with V ⊆ V and T ⊆ T . In order to
take into account both the fact that attributes can be expressed according to
different levels of granularity and the end-user’s prior knowledge, we assume
that a hierarchy H is provided over the set of vertex attributes A. A hierarchy
H on dom(H) is a tree whose edges are a relation is a, a specialization (resp.
generalization) relationship that corresponds to a path in the tree from the root
node HAll to the leaves, that are the attributes of A (resp. from the leaves to
the root). Different functions are used to run through the hierarchy:

– parent(x) returns the direct parent of the node x ∈ dom(H)
– children(x) returns the direct children of the node x ∈ dom(H)
– leaf(x) returns all the leaves down from x ∈ dom(H)

We aim at identifying relevant sub-graphs that rely on the graph structure,
the temporal evolution of attributes and the associated hierarchy. To this end, we
define a new kind of pattern, the so-called hierarchical co-evolution sub-graphs.
Intuitively, a hierarchical co-evolution sub-graph P = {V, T,Ω} is such that
V ⊆ V , T ⊆ T and Ω ⊆ {dom(H) × {+,−}}, a set of signed attributes. Such
a dynamic sub-graph of G is induced by (V, T ) and its vertices follow the same
trends defined by Ω. Such dynamic sub-graphs, whose attribute values increase
or decrease at the same timestamps, may be unconnected. Therefore, to support
analysis based on the graph structure, we introduce a structural constraint that
is based on the diameter of the induced dynamic subgraph and provides relevant
patterns.
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A hierarchical co-evolution sub-graph is then defined as follows:

Definition 1 (Hierarchical co-evolution Sub-Graph). P = (V, T,Ω) is a
sequence of graphs Gt[V ] induced1 by the vertices of V in the graphs Gt, t ∈ T .
The sets V , T and Ω are such that V ⊆ V, T ⊆ T and Ω ⊆ {dom(H)×{+,−}}.
The pattern P has to satisfy the two following constraints:

1. Each signed attribute (a, s) ∈ Ω defines a trend that has to be satisfied by
any vertex v ∈ V at any timestamp t ∈ T . Thus, if (v, a, t) is the value of
attribute a at time t for vertex v, trend(v, a, t) = s with:

trend(v, a, t) = + iff
∑

ai∈leaf(a)

(v, ai, t) <
∑

ai∈leaf(a)

(v, ai, t+ 1)

trend(v, a, t) = − iff
∑

ai∈leaf(a)

(v, ai, t) >
∑

ai∈leaf(a)

(v, ai, t+ 1)

Thus, if ∀v ∈ V , ∀t ∈ T and ∀(a, s) ∈ Ω, we have trend(v, a, t) = s, then
coevolution(P ) constraint is satisfied.

2. Given Δ, a user-defined threshold, and spG(v, w) the length of the shortest
path between vertices v and w in graph G, the constraint diameter(P ) is
satisfied iff ∀t ∈ T , maxv,w∈V spGt[V ](v, w) ≤ Δ.

The maximum diameter constraint makes it possible to focus on some specific
graph structure within the discovery of hierarchical co-evolution sub-graphs.
Indeed, it allows to check how far the vertices are from each other. Δ = 1 implies
that the sub-graph is a clique, Δ = 2 implies that the vertices of the sub-graph
have at least one common neighbor. More generally, the higher the maximum
diameter threshold Δ, the sparser the sub-graphs can be. Until Δ = |V|− 1, the
sub-graphs have to be connected.

The attribute value of a parent node within the hierarchy is evaluated by
adding the corresponding values of its children. Therefore, even if the trend
conveyed by an attribute of the parent is true, it is important to check how
this information is valid, i.e., if the trends associated to its children are similar.
Indeed, if a children attribute has a large increase while the other children have
a small decrease, the sum associated to the parent attribute may result in an
increase that is not followed by most of its leaves. The purity measure evaluates
the correlation between trends of the leaves of an attribute. Given the Kronecker
function δcondition and given a user-defined threshold ψ ∈ [0, 1], the purity of a
pattern returns the number of valid trends trend(v, a, t) = s of the pattern
compared to the total number of trends:

purity(V, T,Ω) =

∑
v∈V

∑
t∈T

∑
(a,s)∈Ω

∑
�∈leaf(a) δtrend(v,�,t)=s

|V | × |T | × |leaf(Ω)|

1 Gt[V ] = (V,Et ∩ {V × V })
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Fig. 2. Illustration of the purity values of two patterns extracted from dynamic graph
presented in Fig. 1

From this measure, we can derive the predicate purityMin(P ) which is true
iff purity(P ) ≥ ψ. For example of Fig. 2, the purity of the pattern P1 =
{{v1, v2, v3, v4}, {Aug. 2005}, {(a,+)}} is equal to 7

8 = 0.875 whereas the one
of P2 = {{v1, v2, v3, v4}, {Aug. 2005}, {(b,+)}} is equal to 5

8 = 0.625.
One inconvenient of hierarchy is that it may introduce redundancy among the

hierarchical co-evolution sub-graphs. An important issue is thus to avoid this re-
dundancy by identifying the good level of granularity of a pattern. The question
is thus to determine whether the pattern is worth to be specialized. Fig. 2 illus-
trates this problem with two patterns in two dimensions, i.e., lines depict vertices,
columns are related to attributes. A cell is coloured if the trend of the attribute
is +. Considering the pattern P3 = {{v1, v2, v3, v4}, {Aug. 2005}, {(anorth,+)}},
its purity is equal to 1, and the one of pattern P1 is of 0.875. There is no much
interest in specializing pattern P3 into P1: end-users may prefer to consider the
pattern P3 as it is more synthetic while having a similar purity. On the other
hand, the pattern P4 = {{v1, v2, v3, v4}, {Aug. 2005}, {(bnorth,+)}} as a purity
of 1 while its parent P2 has a purity of 0.625. Then it seems much more inter-
esting to keep the ”parent” attribute instead of producing redundant pieces of
information.

To this end, we introduce the gain of purity that evaluates whether the purity
of the pattern would increase if it gets specialized or not. To this aim, we compare
the purity of the a pattern P with respect to the purity of its “parent” patterns,
that is, all the patterns made by generalizing one of the attributes of P . Given a
user-threshold γ ≥ 1, the gain of purity is defined as the purity of the “children”
pattern compared to the purity of its “parent” patterns:

gainMin(P ) iff
purity(P )

maxPi∈parent(P )(purity(Pi))
≥ γ

where (V, T,Ωi) ∈ parent(V, T,Ω) if ∃(ai, si) ∈ Ωi and ∃(a, s) ∈ Ω s.t. a ∈
children(ai) and (Ωi \ ai) = (Ω \ children(ai)). From Fig. 2, the pattern P4 has
a gain equal to 1.6, whereas P3 has a gain equal to 1.14.

Before ending this Section, let us formalize the general problem we want to
solve as follows:
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Problem 1 (Maximal hierarchical co-evolution sub-graph discovery). Let G be a
dynamic attributed graph, H be a hierarchy over the set of vertex attributes
A, Δ be a maximum diameter threshold, and γ be a minimum gain threshold.
Additional quality measures Q can be used, as defined in [11] (e.g., volume,
vertex specificity, temporal dynamic). Given a conjunction of constraints CQ
over Q, the maximal hierarchical co-evolution sub-graph mining problem is to
find the set of all the patterns that satisfy the constraints coevolution, diameter,
gainMin and CQ.

3 H-MINTAG Algorithm

Algorithm 1 presents the main steps of H-MINTAG. The search space of the al-
gorithm can be represented as a lattice which contains all possible tri-sets from
V×T ×(dom(H)×{+,−}), with bounds {∅, ∅, ∅} and {V , T , dom(H)×{+,−}}.
The enumeration of all the patterns by materializing and traversing all possible
tri-sets from the lattice is not feasible in practice. Therefore, in the algorithm, all
possibly valid tri-sets are explored in a depth-first search manner which allows
to extract the whole collection of hierarchical co-evolution sub-graphs and the
constraints are used to reduce the search space by using their properties to not
develop tri-sets that can not be valid patterns. The enumeration can be repre-
sented as a tree where each node is a step of the enumeration. A node contains
two tri-sets P and C. P is the pattern in construction and C contains the ele-
ments not yet enumerated and that can potentially be added to the pattern. At
the beginning, P is empty and C contains all the elements of G, i.e., P = ∅ and
C = {V , T , dom(H)×{+,−}}. The extracted patterns are the ones that respect
the diameter, the coevolution, the gainMin, the maximality constraints, and
the other possible constraints as defined in [11].

At each step of the enumeration, either an element of C is enumerated (vertex,
timestamp or attribute) (lines 18-27) or an attribute of P is specialized (lines
5-10) and an attribute from C is enumerated (lines 11-15) while keeping the non
specialized attribute. At the beginning of the algorithm, one vertex, one times-
tamp and one attribute are enumerated to allow a better use of the constraints
to prune the search space. At each step, the elements of C (vertices, timestamps
and attributes) are deleted if they can not be added to P without invalidating
it, i.e., if they cannot respect the different constraints (line 1). If P does not
respect the constraints, the enumeration is stopped.

The constraints coevolution, diameter, purityMin are not anti-monotonic
considering the algorithm. They cannot be used directly to prune the search
space. However, some piecewise monotonic properties of these constraints can
be used to reduce the search space.

The coevolution constraint is not anti-monotonic considering the specialization
of an attribute: If a vertex v does not respect the trend as at time t, no conclu-
sions can be derived for the trends of any of its leaf attributes ai. Indeed, the
trend associated to a is computed while summing the values of the ai ∈ leaf(a),
so some ai can have an opposite trend. However, considering the enumeration
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Algorithm 1. H-MINTAG

Require: P = ∅,C = (V, T , children(HAll)),attr,CQ
Ensure: Maximal hierarchical co-evolution sub-graphs
1. Propagation(C)
2. if ¬empty(C) and CQ(P,C) then
3. if attr �= ∅ then
4. child ← children(attr)
5. for i in 1..|child| do
6. if gainMin(P .V ∪ C.V , P .T ∪ C.T , P .A \ attr ∪ child[i]) then
7. H-MINTAG((P \ attr) ∪ child[i], C ∪ child[i + 1..|child|], child[i])
8. hasSon ← true
9. end if
10. end for
11. if hasSon then
12. for i in 1..|C.A| do
13. H-MINTAG(P ∪ C.A[i], C \ C.A[1..i], i)
14. end for
15. else
16. attr ← ∅

17. end if
18. else
19. E ← ElementTypeToEnumerate(P,C)
20. for i in 1..|C.E | do
21. if E = A then
22. attr ← C.E[i]
23. end if
24. H-MINTAG(P ∪ C.E[i], C \ C.E[1..i], attr)
25. end for
26. H-MINTAG(P , C \ C.E,∅)
27. end if
28. else if CQ(P ) output (P )
29. end if

of the proposed algorithm, the coevolution can be pruned if the next step is not
a specialization step. Indeed, if the attributes of the pattern are leaves of H or
if the attributes have already passed the specialization step, the constraint is
anti-monotonic. Then enumeration can be stopped if coevolution(P ) is false and
elements e of C can be deleted if coevolution(P ∪ e) is false.

The diameter constraint is neither monotonic nor anti-monotonic. The addi-
tion of a vertex to a set of vertices can increase or decrease the diameter of the
induced subgraph. Then, it is not possible to check strictly the diameter on P
and C, however one can check if the induced graph can respect the diameter con-
straint while adding all or part of the vertices of C. Thus, during the algorithm,
the following relaxed constraint lightDiameter(P,C) is used:

∀t ∈ T, max
v,w∈P.V

spGt[P.V ∪C.V ](v, w) ≤ Δ
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Otherwise, no valid pattern can be enumerated. Moreover only elements of
C that can be added while respecting the diameter constraint are kept, i.e.,
C.V = {v ∈ C.V |∀t ∈ T,maxw∈P.V spGt[P.V ∪C.V ](v, w) ≤ Δ} and C.T = {t ∈
C.T |maxv,w∈P.V spGt[P.V ∪C.V ](v, w) ≤ Δ}.

The purityMin constraint is not anti-monotonic. Indeed, while specializing an
attribute, the number of trends trend(v, a, t) = s, v ∈ (P.V ∪ Q.V ), t ∈ (P.T ∪
Q.T ), (a, s) ∈ (P.Ω ∪Q.Ω) can increase or decrease if the leaf attributes do not
follow the same trend as their parent. One must compute the number of trends
that validate either s or s for at least one of the leaf attribute of a. Then the num-
ber of valid trends

∑
v∈P.V ∪C.V

∑
t∈P.T∪C.T

∑
�∈leaf(P.Ω∪C.Ω) δtrend(v,a,t)=s +

δtrend(v,a,t) �=s is anti-monotonic and the number of possible trends |P.V |×|P.T |×
|leaf(P.Ω)| is monotonic. The lightPurity relaxed constraint is anti-monotonic:

lightPurity(P,C) =∑
v∈P∪C.V

∑
t∈P∪C.T

∑
(a,s)∈leaf(P∪C.Ω) δtrend(v,a,t)=s + δtrend(v,a,t) �=s

|P.V | × |P.T | × |leaf(P.Ω)|

If lightPurity(P,C) < ψ is false, then the enumeration can safely be stopped.

4 Experiments

We carried out some experiments on a dynamic attributed graph built from the
DBLP Computer Science Bibliography2. Vertices of the graph represent 2,145
authors who published at least 10 papers in a selection of 43 conferences and
journals of the Data Mining and Database communities between January 1990
and December 2012. This time period is divided into 10 overlapping periods.
A hierarchy over the 43 attributes is built considering the type of publications
(e.g., journal, conference), the related area (e.g., database, machine learning,

HAll
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Fig. 3. Hierarchy of DBLP dataset

2 http://dblp.uni-trier.de/db/

http://dblp.uni-trier.de/db/
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data mining, bioinformatics). This hierarchy contains 59 nodes and has a depth
equal to 5, it is partly represented in Fig. 3. The default setting is Δ = 1, Γ =
1.1, Ψ = 0.2 and two maximum threshold on the vertex specificity (κ) and the
temporal dynamic (τ) set to 0.5.

Quantitative experiments. The impact of the hierarchy can be analyzed with
respect to 3 parameters: the purity and the h-gain and the depth of the hierar-
chy. Fig. 4 reports the execution time of H-MINTAG and the number of patterns
according to these parameters. The purity constraint has a significant and sim-
ilar positive impact on both the execution time and the number of patterns.
Increasing the h-gain enables to discard many patterns while the running time
is marginally impacted. To study the impact of the depth of the hierarchy, we
modified the hierarchy by deleting levels of abstractions. Hierarchy with depth
equal to 0 is the dataset with no-hierarchy (i.e., only the 43 attributes). In our
approach, the deeper the hierarchy, the lower the number of patterns. The exe-
cution time also decreases when the hierarchy becomes deeper.

purityMin gainMin hierarchy depth
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Fig. 4. Execution time and number of patterns with respect to ψ, γ and of the depth
of the hierarchy

Qualitative experiments. We then look for connected hierarchical co-evolution
sub-graphs (i.e., Δ = 2144), with γ = 1.1 and ψ = 0.35. We also set some addi-
tional interestingness measures thresholds (a minimum volume threshold ϑ = 20,
a maximum vertex specificity threshold κ = 0.2 and a maximal temporal dynamic
threshold τ = 0.4). As this dataset has many attribute values equal to 0, it is not
relevant to set the purity threshold too high. Considering the hierarchy, attributes
too generalized as “conference” or “journal” are not really interesting, then γ was
set to 1.1 to obtain patterns not too generalized. Two patterns were obtained in
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Fig. 5. First (on the left) and second (on the right) patterns extracted from DBLP
with the parameters: ϑ = 20, Δ = −1, γ = 1.1, ψ = 0.35 κ = 0.2 and τ = 0.4

this extraction. The first pattern is presented in Fig. 5 (left). This pattern con-
cerns 17 authors who decreased their number of publications in VLDB and ICDE
between 2004 and 2012. This pattern is relatively sparse, as the edges are dotted
when they exist only at one of the two timestamps, for instance “Raymond T.
Ng” is connected to “Beng Chin Ooi” at the first timestamp and to “Yannis E.
Ioannidis” at the second timestamp, but he is connected to none author at both
timestamps. It represents small groups of authors who work together occasion-
ally. Moreover, if the decreasing of publication in VLDB seems logical considering
the new publication policy of the “VLDB endowment” it is noteworthy that it is
also true for the ICDE conference. This pattern has small outside densities with
V ertexSpecificity = 0.126 and TemporalDynamic = 0.118. Since the decreas-
ing in “VLDB” concerns many authors at this timestamp (not only those involved
in this pattern), we can conclude that the vertex specificity is mainly due to the
decreasing in “ICDE”. The low temporal dynamic specificity means that they do
not decrease their number of publication in these conferences and that the pattern
can show that this small community changed its publication policy.

The second pattern is illustrated in Fig. 5 (right). It involves 5 authors that
increase their number of publication in the journal “IEEE-TKDE” and in the
data-mining journals between 1998 and 2006. This pattern reflects that even if
the journal “IEEE-TKDE” is considered as a database journal in the hierarchy,
it has a high attractiveness in data mining. This pattern has a purity of 0.417,
which means that they publish in a lot of data-mining journals; it seems to
make sense since these authors are well-known in the data mining community.
The vertex specificity is equal to 0.073 which depicts that this behavior is truly
specific to these authors. And the temporal dynamic is equal to 0.4 which shows
that their number of publications maybe oscillates. That points out that it is
difficult to publish regularly in this type of journals.
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5 Related Work

Recently, dynamic attributed graphs have received a particular interest. Boden
et al. [3] mine sequences of attributed graphs. They propose to extract clusters
in each attributed graph and associate time consecutive clusters that are similar.
Jin et al. [14] consider dynamic graph with weights on the vertices. They extract
groups of connected vertices whose vertex weights follow a similar increasing or
decreasing evolution, on consecutive time stamps. Desmier et al. [10] discover
subgraphs induced by vertices whose attributes follow the same trends. However,
these propositions do not take into account additional user knowledge.

Hierarchies are not often used in the analysis of graphs. In [21], the authors
propose subgraph querying in labelled graphs based on isomorphisms using an
ontology on the labels. They use a similarity function such that the extracted
subgraphs have labels similar to the query. Inokuchi [13] propose generalized
frequent subgraphs in labelled graphs using a taxonomy on vertex and edge la-
bels.The method is based on an isomorphic function and avoid the extraction of
over-generalized patterns. The authors of [6] defines the taxonomy-superimposed
graph mining problem. They compute frequency based on generalized isomor-
phism with a one-to-one mapping function. These propositions treat labelled
graphs instead of attributed graphs and do not deal with dynamic aspect of the
graphs.

6 Conclusion

We propose to extract hierarchical co-evolution sub-graphs from a dynamic at-
tributed graph and a hierarchy. These patterns are sets of vertices that are
connected and that follow the same trends over a set of attributes over time,
with attributes that are either those of the dataset or of the hierarchy. We also
define some constraints to reduce the execution time and increase the relevancy
of the patterns, in particular according to hierarchy. We design an algorithm
H-MINTAG to compute the complete set of patterns. Experiments on a real-world
dataset prove that this method extracts, in a feasible time, interesting patterns
based on the user parametrized constraints.
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