
Holistic and Change-centric Model for

Web Service Evolution

Wei Zuo, Aïcha Nabila Benharkat, Youssef Amghar
Université de Lyon, CNRS INSA-Lyon, LIRIS UMR5205,
20 Avenue Albert Einstein 69621, F-69621 Villeurbanne

Cedex, France
{wei.zuo, nabila.benharkat, youssef.amghar} @insa-lyon.fr

Abstract—Under the constantly evolving requirements from
the consumers and competition pressure from the peers, Web
Service providers are always striving to improve their services
through publishing new versions. As more enterprises chose to
embrace SOA, the frequent updates of Web services and
increasing distributed environments have resulted in major
challenges for all stakeholders to address the evolution of the
Web service As a result, lots of solutions have been proposed to
deal with the issues caused by Web Service evolution such as
models, monitor, analysis, versioning, adaptation, and execution.
However, few of them concentrate on the solution that covers all
the evolution-related issue under one holistic model which
explains 1) what has been changed, 2) when the changes occur, 3)
how to apply changes, and 4) how to react to the changes. In this
article, we present a change-centric model for Web Service
evolution and explain how it deals with the evolution-related
issues.

Keywords—Web Service; evolution; changes; adaptation

I. INTRODUCTION

As more enterprises chose to adopt Web Service as their
software framework to provide business services to the public,
systems based on SOA are facing a more dynamic and
distributed environment. Under the great pressure from
evolving requirements of consumers and competition with the
peers, the Web Service provider is always speeding up to
publish new versions of Web Service which are improved with
new functions, better Quality of Service (QoS), or fixing bugs.
As a result, several issues become more urgent for different
stakeholders due to the evolution of Web Service in SOA. Lack
of an efficient model for Web Service evolution, 1) the
manufacture process of Web Service becomes more time-
consuming and is accompanied with lots of repeating manual
configurations and development, and 2) the Web Service
evolution produces lots of misunderstandings between the Web
Service and their consumers so that it is quite difficult react to
evolution correctly, especially at runtime. In this work, we
present our change-centric and holistic model for Web Service
evolution. It supports and facilitates the manufacture process of
Web Service in evolution (design, execution, and publishing),
the propagation process, and the client behaviors to evolution
(monitor, analysis, and adaptation).

II. RELATED WORKS

To solve the problems caused by Web Service evolution,
the researchers contribute for different aspects of them. For
Web Service providers, whose tasks include designing,
developing, publishing, and managing Web Service versions,
researchers help them with versioning methodologies,
programming frameworks, Web Service changes models. For
Web Service consumers, who must be aware of and react to
Web Service evolution, researchers propose monitoring
methods, adaptation strategies, and impacts analysis. However,
current research works are quite limited to gain a better
understanding and solution to Web Service evolution.

A. Evolution programming

Researchers propose programming frameworks for
evolvable Web Services. The main goal of this issue is to
facilitate and encapsulate the development of Web Service.
Martin Treiber in [13] and L. Juszczyk in [14] propose a
framework to program evolvable services based on their Gensis
framework on Java platform. The framework provides simple
APIs for the developer to easily modify Web Service at
runtime. It also supports self-adaptation through migrating or
replicating services between hosts as well as changing
structural interfaces. Gensis can generate Web Services
instance from Web Service descriptions based Apache Velocity
templates. A plug-in concept is introduced to endow
extensibility to the system. The main limitation of Gensis is
that it lacks of event propagation mechanism.

B. Changes extracting

Several works [1, 2] try to help the consumers to extract
Web Service changes from some available documents such as
WSDL through specific tools and algorithms. Zhi Le Zou et al
in [3] try to extract the useful information from the release
notes of Web Services. Fokaefs in [11] proposes a VTracker
approach to resolve differences between two WSDL interfaces.
The similarity of the works with the “analyzer” proposed is to
extract changes related information through comparing the
different versions of existing Web Service descriptions. This
method can is helpful to obtain Web Service changes. However,
the disadvantages are also obvious. 1) The correctness and
completion are not guaranteed. 2) Resolving and comparing
documents bring unnecessary performance decreasing.

C. Changes management

Web Service changes are related to evolution. Managing
changes is to provide policies or tools for different stakeholders
to help them formulate the correct plans to deal with changes.
Treiber in [10] propose an interesting approach to identify the
changes as well as their trigger sources which include the roles
in SOA. They also provide an impact analysis for each of the
proposed changes. This is useful for the stakeholders to have a
holistic view of the Web Service evolution. However, it does
now explain why, when, and how the changes occur.
Furthermore, the impact analysis only points out what is the
impact and who it will affect. No further analysis is proposed
for the quantified result of impact and the corresponding
reactions to it.

Bruno in [12] proposes a decentralized change management
architecture. He considers designing a change dissemination
mechanism that can be transferred across domains. Bruno’s
change 2.0 is enlightening with the change design technique.
However, the execution of the changes has not been explained.

D. Service compatibility

To determine Web Service compatibility is important to
Web Service evolution because it is the foundation for the
consumers to take reactions. Defined by Meriem Belguidoum
in [4] and Vasilios Andrikopoulos in [5], service compatibility
can be separated into horizontal compatibility which indicates
the interoperability between Web Service and its consumer,
and vertical compatibility which indicates the possibility of
replacement from one version to another version. Becker in [15]
concludes the structural compatible Web Service changes. He
also introduces their algorithm to explain how to examine the
compatibilities.

E. Corrective and preventive evolution

As presented by Vasilios Andrikopoulos in [5], approaches
of evolving Web Service can be distinguished by corrective
ones which fix the mismatch changes during adaptation and
preventive ones which forbid the incompatible changes
occurring.

Vasilios’s approach pursues the preventive manner. He
proposes a contractually-bounded Web Service evolution
theory which is based on a formal description of the
compatibility guideline widely recognized and admitted.
Preventive evolution, also called compatible evolution, requires
the Web Service evolves in a limited way and always ensure
the correctness of T-shaped (in both horizontal and vertical)
evolution. The preventive approaches emphasize to drive the
Web Service providers from different domains to evolve Web
Service gracefully under certain rules. They can guarantee the
evolution results do not break the interaction or replacement
compatibility, ensure service stability and the whole process
completely automatically. However, the limitations also seem
unfixable. In the horizontal dimension, the approaches similar
as contract based evolution break the loose-couple principle
between provider and consumer in SOA design. As SOA
develops, the provider and consumer will be weaker in the
control of each other. It is impossible to build a certain contract
to limit the evolution behavior for both consumer and provider.

In the vertical dimension, the Web Service evolution in
incompatible way is inevitable.

Against to preventive approaches, another option is
corrective. The proposed model in this work falls in this
manner. The corrective approaches usually perform adaptation
at service side or client side. Kaminski.P in [6] proposes a
design technique with adapter chain deployed at service side to
obtain backward compatibility for the clients. Khater in [7]
introduces another approach of adaptation which setups
adapters at both service side and client side. He uses an infinite
state machine to simulate and adapt dynamically the behaviors.
Fokaefs in [9] introduces a client adaptation architecture
(WSDarwin) and their differentiate method of comparing
interfaces under a predefined delta model. The adaptation is
performed by dynamically generation of the client stubs. The
corrective approaches can liberate the Web Service from
constraint evolution so they seem more convincing than
preventive approaches. However, the disadvantages as
described in [8] are obvious. There is no guarantee to ensure
fully automatically adaptation. Most of the approaches need to
reform the system architecture to support adaptation. Some of
them even require the stakeholders to touch the implementation
layer of applications.

III. CHANGE-CENTRIC MODEL

A. Web Service delta

Web Service delta is a set of changes from one version to
its next version of the Web Service. Delta comes from the mind
of the Web Service provider at design time and is executed by
the Web Service developer. Once determined, delta will never
change again and it keeps unique during the whole lifecycle of
the Web Service. It is the only consensus for all the
stakeholders to understand Web Service evolution. Most of the
current works consider Web Service delta as the result of
evolution so they propose different approaches to find and
model it. We take into account of another aspect of delta that
can be considered as the template of Web Service evolution.
Once delta comes out of the mind of Web Service provider, it
drives all the stakeholders to take corresponding actions that
are related to evolution. That means, all the actions when
evolution occurs in SOA including: 1) designing, executing,
and publishing versions belonging to provider, 2) storing and
distributing versions belonging to broker, and 3) monitoring,
analyzing, and adapting to versions belonging to consumer, are
all performed under the guide of delta. For provider, Web
Service development can be totally replaced by delta design;
for broker, managing of versions can be totally replaced by
managing deltas; for consumer, reactions to evolution can be
totally replaced by reactions to delta.

Delta holds all the differences that distinguish Web Service
from one version to another version, which is called the
functionality of delta in the logic dimension. We also consider
functionality in time dimension. In time dimension, delta is
able to represent a definite state of a Web Service during a
certain time interval in its lifecycle if the previous version in
the delta is determined. In another word, delta can be used for
describing and invoking Web Service instead of different

descriptions such as WSDL, OWL-S, QoS and etc, of course,
with the original description of the version indicated in delta.

Fig 1 indicates that delta actually runs through all the
processes in SOA, which is so called “change-centric”.

Fig. 1. Change-centric model

B. Extended Web Service information model

Current Web Service information model such as WSDL
and OWL-S do not report on the version related information.
To implement description with delta, the Web Service
information model is extended with a Change Specification
(CS). CS defines the changeable primitives with change target
and change operators with a set of formal descriptions and
standardized documental signatures. CS is designed by service
provider and distributed to consumers and brokers. The
changeable primitives in CS are shown in Fig 2.

Fig. 2. Changeable primitives in CS

As explained above, delta is able to be used for Web
Service description and invocation. Thereby a delta chain is
proposed as Fig 3.

Fig. 3. Delta chain in Web Service

However, when the chain becomes longer, the cost of
forwarding requests from a later version also increases. To
avoid of developing a chain too heavy, there must be some
breakpoints on the chain. These breakpoints are stable versions.
For example, WS v1.0 is announced as a stable version which
may be requested frequently. WS v1.1 is announced as a
relatively unstable version. WS v1.0 reserves a complete
instance of Web Service. WS v1.0 is deployed and functioning
chronically. However, v1.1 only reserves the delta from v1.0 to
v1.1after being published. When a request is forwarded to v1.1,

the provider starts a process to generate the fully instance of
v1.1. This generation is called as delta roll forward. Relatively,
the generation roll back is also included in the model.

As lots of works mentioned, delta also functions as a result
of evolution as well as a template. In the whole lifecycle of
Web Service, some of the versions may be reserved and some
of them may be retired. However for the deltas of a Web
Service, they never change or reduce once being designed and
are preserved forever unless the Web Service is definitively
removed. So the accumulated delta of Web Services is the best
option for historical analysis of the Web Service.

Another benefit of CS is that it also carries the other
evolution related information such as adaptation assistant of
each version from Web Service provider for the client
adaptation just as [8]. As mentioned above, delta is the only
consensus of all the evolution behaviors in SOA.

C. System design

Service-oriented architecture is typically described as a
model with three roles (provider, broker, and consumer) and
the interaction behaviors among them (lookup, bind, and
publish). However, to cope with Web Service evolution, it
lacks of 1) event propagation mechanism of evolution, 2) the
behaviors that are related to evolution, and 3) the timing
sequence of these behaviors. Fig 4 shows the extended SOA
for evolution in the change-centric model.

Fig. 4. Extended service-oriented architecture for Web Service evolution

Web Service designs the delta of Web Service, executes
the delta into a new version with both implementation and
information aspects of Web Service, deployed it to the Web
Service container of a certain host, and notifies the Web
Service registry of broker with the delta. The consumer and
broker build a subscription/ notification conversation
mechanism to propagate the delta over SOA.

D. Programming Web Service

In the service side, a programming framework must be
provided to support Web Service development. The main task
of the framework is to take a version of Web Service and a set
of change actions as input and generate a new version (the
delta). In this work, the Web Service execution engine is
responsible to modify both the implementation and
information aspect of Web Service. The implementation
represents the underlying byte code which executes the
business logic of the Web service. The information represents

the upper layer documents which describes different aspects of
the Web service in text format (especially in XML) such as
WSDL, OWL-S and so on. The output of proposed execution
engine is CS which is well formed and distributed to the other
stakeholders when evolving Web Service. The execution
engine is also responsible for generating the full instance of a
Web Service version when a request is forwarded to an
unstable version.

E. Features

The proposed change-centric model proposes solutions
which cover several aspects of Web Service evolution
including model, architecture, and methods. The systems
which are designed under this model can obtain numerous
positive features.

a) Unambiguity: In this model, the designed delta plays
the roles of both startpoint and result of Web Service
evolution. There is no ambiguity in the system. The
standardized CS and system design ensure that all the
stakeholders have the same knowledge of delta. The system
design also ensures that consumers can obtain the correct and
complete CS. This feature is the basis to take the correct
reactions to evolution for the other stakeholders.

b) Evolution without constraint: The proposed model
adapt the services in a corrective way, which makes conditions
for the Web to evolve without limitation though .

c) Programmable Web Service evolution: In the service
side, this work proposed a set of tools and methods to generate
Web Serices. A programming framework is provided for
developers to modify Web Service at runtime. Compared to
Gensis in [13, 14], the proposed framework allows the
developers to directly modify the operation bodies and has a
design to ensure event propagation.

d) Graceful versioning: Every version of the Web
Service is accompanied with a delta. The creation of delta is
under a well formed Change Specification, which makes the
Web Service evolve in a more standardized way. A delta chain
is proposed to manage versions of Web Service. It is used for
simplify the versioning process and reduce the cost of
infrastructures.

e) Dynamic adaptation: In the change-centric model,
the client applications of consumer can monitor the delta event
from broker and take adaption after impact analysis. An object
factory is required in the client to produce the Web Service
reference for business module. Similar as the other work [9],
the client adaptation is also implemented by dynamic proxies
generation and adaptation assitant from delta. By the way, the
adaptation is also based on a consumer configuration.

IV. CONCLUSION

In this paper, we discussed about the background and the
state of art in the field of Web Service evolution. Then we
proposed a change-centric and holistic model to manage Web
Service evolution. This, lead us to answer the questions that are
proposed in the abstract.

1) What has been changed?: In change-centric model, we
use Change Specification to describe formally the changeable
primitives.

2) When the changes occur?: We explain that the changes
occur at the design time of Web Service.

3) How to apply changes?: The change execution engine is
our approach to apply changes.

4) How to react to changes?: We extend the SOA to obtain
changes and perform client adaption to react to changes.

In future, there are still several challenges. For example,
the change specification needs to be improved to support the
other aspects of Web Service. There are some problems with
the dependencies resolution when executing Web Service.
Problems exist when evolving stateful Web Service.

REFERENCES
[1] Leitner P, Michlmayr A, Rosenberg F, et al. End-to-end versioning

support for web services[C]//Services Computing, 2008. SCC'08. IEEE
International Conference on. IEEE, 2008, 1: 59-66.

[2] Romano, Daniele, and Martin Pinzger. "Analyzing the Evolution of Web
Services Using Fine-Grained Changes." Web Services (ICWS), 2012
IEEE 19th International Conference on. IEEE, 2012.

[3] Le Zou Z, Fang R, Liu L, et al. On synchronizing with web service
evolution[C]//Web Services, 2008. ICWS'08. IEEE International
Conference on. IEEE, 2008: 329-336.

[4] Belguidoum M, Dagnat F. Formalization of component
substitutability[J]. Electronic Notes in Theoretical Computer Science,
2008, 215: 75-92.

[5] Andrikopoulos V. A theory and model for the evolution of software
services[R]. Tilburg University, 2010.

[6] Kaminski P, Müller H, Litoiu M. A design for adaptive web service
evolution[C]//Proceedings of the 2006 international workshop on Self-
adaptation and self-managing systems. ACM, 2006: 86-92.

[7] Khater M, Malki M. An approach for adapting web
services[C]//Multimedia Computing and Systems, 2009. ICMCS'09.
International Conference on. IEEE, 2009: 56-61.

[8] Andrikopoulos V, Benbernou S, Papazoglou M P. On the evolution of
services[J]. Software Engineering, IEEE Transactions on, 2012, 38(3):
609-628.

[9] Fokaefs M, Stroulia E. WSDarwin: automatic web service client
adaptation[C]//CASCON. 2012: 176-191.

[10] Treiber M, Truong H L, Dustdar S. On analyzing evolutionary changes
of web services[C]//Service-Oriented Computing–ICSOC 2008
Workshops. Springer Berlin Heidelberg, 2009: 284-297.

[11] Fokaefs M, Mikhaiel R, Tsantalis N, et al. An empirical study on web
service evolution[C]//Web Services (ICWS), 2011 IEEE International
Conference on. IEEE, 2011: 49-56.

[12] Wassermann B, Ludwig H, Laredo J, et al. Distributed cross-domain
change management[C]//Web Services, 2009. ICWS 2009. IEEE
International Conference on. IEEE, 2009: 59-66.

[13] Treiber M, Juszczyk L, Schall D, et al. Programming evolvable web
services[C]//Proceedings of the 2nd International Workshop on
Principles of Engineering Service-Oriented Systems. ACM, 2010: 43-49.

[14] L. Juszczyk, H.-L. Truong, and S. Dustdar. Genesis – a framework for
automatic generation and steering of testbeds of complexweb services.
In ICECCS ’08: Proceedings of the 13th IEEE International Conference
on on Engineering of Complex Computer Systems, pages 131–
140,Washington, DC, USA, 2008. IEEE Computer Society.

[15] Becker K, Lopes A, Milojicic D, et al. Automatically determining
compatibility of evolving services[C]//Web Services, 2008. ICWS'08.
IEEE International Conference on. IEEE, 2008: 161-168.

