
A Semi-Automatic Framework for the Design of
Rational Resilient Collaborative Systems

Technical Report

Guido Lena Cota
Univ. of Milano

Pierre-Louis Aublin
INSA Lyon

Sonia Ben Mokhtar
LIRIS - CNRS

Gabriele Gianini
Univ. of Milano

Ernesto Damiani
Univ. of Milano

Lionel Brunie
INSA Lyon

Abstract—Collaborative systems (e.g., P2P instant messaging,
file sharing, live streaming applications) constitute the largest
traffic of today’s Internet. Common to all these systems is
the assumption that, in return to the service offered by the
collaborative system, users are willing to participate by sharing
their resources with others. However, in practice, these systems
suffer from rational users, i.e. users that benefit from the system
without contributing their fair share to it. A number of solutions
have been devised in the literature to deal with the problem of
rational users in collaborative systems. However, most of these
solutions are tailored to specific systems and thus lack flexibility
and re-usability. In this paper, we propose RACOON, the first
framework for RAtional resilient COllabOrative system desigN.
RACOON relies on an extensible model that allows a system
designer to specify the protocol steps and the different types
of rational users he wants to consider. Furthermore, RACOON
relies on game theory to reason on the behaviour of rational
users. Finally, RACOON includes a simulation module that
allows performance-oriented tuning of the system. Throughout
the paper, we show how we used RACOON for the design
of a rational-resilient, collaborative live-streaming application.
Performance evaluation realised on one hundred real machines
shows that the configuration proposed by RACOON allows all
users to visualise a quality stream even in presence of rational
users.

I. INTRODUCTION

According to numerous studies (e.g., [9], [20], [5]), collab-
orative systems, also called peer-to-peer systems, account for
the largest traffic of today’s Internet. These systems include
P2P instant messaging and voice over IP (e.g., Skype), P2P file
sharing (e.g., Ares, BitTorrent, eDonkey), P2P live streaming
(e.g., P2PTV, PPLIVE). The success of these systems mainly
resides in their attractive properties among which the robust-
ness to failures, the scalability to millions of users and the
un-necessity to maintain costly dedicated servers as cost is
shared among the participating users.

Common to all these systems is the assumption that, in
return to the service offered by the collaborative system, users
commit to sharing their (communication and computational)
resources with others. However, in practice, these systems
suffer from rational users, i.e. users that benefit from the
system without contributing their fair share to it.

A number of solutions have been devised in the literature
to deal with the problem of rational users in collaborative
systems. Most of these systems rely on game theory by
including incentives for rational users to collaborate with other

users. Examples of such systems include rational-resilient
live streaming [12], [6], rational-resilient anonymous com-
munication [23], [3], rational-resilient spam filtering [2]. To
design these systems, experts perform a manual analysis of
all the possible rational deviations. Then, they augment the
original protocol with incentives in such a way that it is not
in the interest of rational users to deviate from the system
specification. However, these systems suffer from a number
of limitations. First, the analysis of rational deviations and
the integration of the corresponding incentives are performed
manually by the system designers, which is complex and error
prone. Second, these systems are hardly extensible. Indeed,
any modification in the original system requires to rethink
the system as a whole, as modifications may introduce new
rational deviations. Third, these solutions often lack flexibility
as designers often assume that all rational users follow the
same rationality model (i.e. they all behave similarly in the
same conditions). Finally, in order to force rational users to
always stick to the protocol specification, most of existing
solutions heavily rely on cryptographic-based fault-detection
mechanisms, which results in poor performance.

In this context, the challenge is to devise a framework to
assist system designers in the performance-oriented design of
robust and flexible rational resilient distributed systems.

In this paper, we embrace this challenge and propose
RACOON, the first framework for RAtional resilient COl-
labOrative system desigN. To reach this objective, RACOON
is composed of three parts. First, RACOON includes an
extensible model that allows a system designer to describe
the interaction patterns between users using state machines,
and the different types of rational users he wants to consider.
This model also allows a system designer to plug inspection
mechanisms at specific points of the protocol in order to verify
whether users participating to the protocol effectively stick to
its specification or not. Second, RACOON includes a game
theoretic module that allows reasoning on the behaviour of
rational users when the latter are confronted to the inspection
mechanisms. Third, RACOON includes a simulation module
that uses the game analysis to provide the designer with
performance-oriented guidelines for the fine tuning of its
system (e.g., the penalty/rewards that users obtain when their
behaviour appears as faulty/correct after inspection).

Throughout the paper, we show how we used RACOON for

the design of a rational-resilient, collaborative live-streaming
application. Performance evaluation realised on one hundred
real machines shows that the augmented system proposed by
RACOON allows all users to visualise a quality stream in
presence of rational users.

The remaining of the paper is organized as follows. First,
Section II presents the problem statement and the goals and
non-goals of our framework. Then, Section III presents the
overview of RACOON while Section IV presents its detailed
description. Further, Section V presents the performance evalu-
ation of RACOON. Finally, Section VI discusses related work,
and Section VII concludes this paper.

II. PROBLEM STATEMENT, GOALS AND NON-GOALS

Collaborative systems are systems in which users coop-
erate to realise a mutually beneficial service (e.g., overlay
routing [8], cooperative backup [14], file sharing [24], live
streaming [12], [6]). In addition to classical failures (e.g.,
crash of machines, malicious users), collaborative systems
are subject to rational behaviour, i.e. users that benefit from
the system without contributing their fair share to it. The
rationality of a user is often defined by a utility function, i.e.
a mathematical representation of its preferences (e.g., mini-
mizing its bandwidth consumption) over a set of behavioural
choices (e.g., replying or not replying to a given request).

In this context, our aim is to propose a framework to assist
system designers in the design and evolution of collaborative
systems that are robust to rational users.

To better illustrate the objectives of our framework, let us
consider a simple protocol P1 in which a user u0 sends a
request message m0 to a user u1. Upon receiving m0, u1
performs some local computation and replies to u0 by sending
a message m1. In P1, the rationality of users can take different
forms. For instance, a rational user u1 can omit to send a
response to u0 to save bandwidth (i.e. communication-related
rationality). Alternatively, to avoid being harassed by u0 which
might retransmit its request, u1 can skip the computations
necessary to compute m1 and send instead a wrong response
to u0 (i.e. computation-related rationality). These two different
types of rationalities require the system designer to include
different types of incentives/counter measures. Furthermore,
while it is often assumed in the literature that all rational
users have the same rationality, the reality is different as many
different types of rational users can co-exist in a collaborative
system.
The first objective of RACOON is thus to allow a system
designer to model different types of rationalities and to au-
tomatically propose incentives/counter measures adapted to
each of them.

A classical solution to reason on rational behaviours is to
rely on game theory and specifically on the concept of Nash
equilibrium [17]. This concept defines a strategy for each
participant in the game (i.e. each user in the collaborative
system) from which there is no benefit in deviating. Many
collaborative systems are thus designed (from scratch) to be
a Nash equilibrium (e.g., [12], [2], [3], [13]) by embedding

incentives on each protocol step in such a way that it is not
in the interest of rational users to behave rationally. However,
these systems are hardly extensible as any modification in the
original protocol may introduce new rational deviations and
thus break the Nash equilibrium.
The second objective of RACOON is thus to introduce automa-
tion in the process of devising the rational resilient system.
This enables more robustness and the easy evolution of the
resulting collaborative system.

Among the classical incentives to force rational nodes to
stick to a protocol is to integrate inspection mechanisms (e.g.,
[7], [1]). For instance, in the protocol P1 introduced above,
each user could be associated with a secure log in which it
writes all its interactions with other users. Periodically, each
user can inspect the log of its partners to verify that their
behaviours correspond to a correct execution of the protocol.
However, these mechanisms are very costly especially if
inspections are performed regularly (e.g., to deter faults faster).
Moreover, a realistic collaborative system should accept the
presence of some uncooperative behaviours. For example,
users may deviate in good faith, because of limited resources
or inexperience. In these situations, it may be beneficial to
relax the security properties of the system.
The third objective of RACOON is thus to allow the system
designer to set up inspection mechanisms according to the
rationality models he wants to consider on the one hand and
to the performance he wants to reach on the other hand.

Finally, we also list some non-goals in order to help posi-
tion our contribution. First, we do not aim at outperforming
established context-specific solutions for dealing with rational
users. Instead, we aim at providing software designers with a
framework to easily design and maintain a rational resilient
collaborative system. Second, RACOON does not generate
executable code. Third, RACOON does not enable on-line
analysis of software systems. All the analysis performed by
RACOON are done offline at design time.

III. RACOON OVERVIEW

RACOON reaches the objectives specified above by relying
on classical building blocks for the design of rational-resilient
collaborative systems. Specifically, RACOON specifies the
communication protocols among users using finite state ma-
chines. It predicts rational behaviours using game theory.
Further, it makes deviations unprofitable using inspection
mechanisms. Finally, it tests the achievement of performance
and security requirements using simulations.

Fig. 1 shows the four phases that a system designer follows
when using our framework. The first phase, i.e. the specifica-
tion phase, is manually performed by the system designer.
In this phase, the designer specifies the system following
the model presented in Section IV-A. This model allows the
specification of the interaction patterns between users, the
types of rationalities investigated, and the configuration of the
security mechanisms. Once the first phase has been completed,
then RACOON proceeds automatically. The second phase
depicted in the figure is the augmentation phase. In this phase,

Fig. 1: The four phases of the RACOON framework.

the specification produced by the designer is automatically
augmented with rational deviations. The automatic generation
of deviations applies the model of rationality defined by the
designer in the specification phase (see Section IV-B1). The
original specification is also augmented with the security
modules, which are: (i) inspection methods to expose rational
deviations, and (ii) an incentive system to reward users when
they behave cooperatively, and punish them when they do
not. We present these modules in Section IV-B2. Then, the
framework proceeds with the third phase, i.e. the gamification
phase, which aims at predicting the behavioural choice of a
user in a certain system set-up. In other words, RACOON
estimates the most favourable behaviour among all the possible
candidates from the augmented protocol. We achieve this with
a game theoretic approach. Game theory is indeed the most
appropriate tool to predict the interactions among rational
decision-makers. The gamification phase carries out the game
theoretic analysis by transforming the augmented protocol
into a suitable game representation (see Section IV-C1). The
analysis leads to a Nash Equilibrium [17], which we use
to predict rational behaviours. Finally, the last phase, i.e.
the simulation phase, tests whether the rational-resilience and
performance requirements are satisfied. The simulator uses
the augmented protocol and the game theoretic predictions
to produce a set of measures. The designer compares these
measures to determine if the system specification is worth
implementing or not. If not, RACOON provides insights to
help the system designer to find the right parameters to meet
its performance requirements.

IV. RACOON DETAILED DESCRIPTION

In this section we present RACOON in detail, following the
sequencing of phases introduced in the previous section. To
better illustrate the various parts of RACOON with concrete
examples, we start by introducing a case study, which is the
design of a P2P live-streaming application.

Case Study: P2P Live Streaming

The P2P live-streaming system consists of a stream source
and an audience of n users (peers). The source of the streaming
session encodes the video, cuts it into pieces (chunks) and
periodically broadcasts c of them to a set of users. At each
period of time, the broadcast reaches a fraction a of the

Fig. 2: Gossip-based protocol for chunks dissemination.

users in the network. We assume the source is cooperative,
while a proportion r of users can be rational. Each user must
receive chunks within a deadline d to be played out (play-
out delay). An expired chunk is equivalent to a lost chunk,
because it can not be reproduced. In order to support the media
distribution process, users share chunks with each other using
a content dissemination protocol. The upload bandwidth of
users is limited to b chunks/round. We consider the three-
phase gossip protocol used in [6]. Every p rounds (which is
the period), users establish a partnership with f others selected
uniformly at random. Then, they propose their not expired
chunks to all of them. Fig. 2(a) shows the propose phase,
where user u0 sends a list of chunk’s identifiers (c6, c7, c9) to
its 3 partners (u1, u2, u3). As soon as the propose has been
received, the partners request the chunks they miss (request
message). Eventually, the proposing user sends the payload of
the requested chunks (serve message). Fig. 2(b) illustrates
the state machine of the above protocol, where user u1 requests
the chunks 7 and 9 from u0. The label of each transition
defines the user’s ID, the name of the method invoked and
the ID of the message sent.

A. Specification

In this phase, the designer defines the collaborative system.
The framework provides a specification model to guide this
task. The output is an instance of the specification model
characterizing the target collaborative system.

The designer specifies its collaborative system following the
UML diagram depicted in Fig. 3. Each element in this diagram
describes characteristics or requirements of the system. We
classify them in four logical areas: the User domain, the
Rationality domain, the Security domain, and the System do-
main. The white elements in Fig. 3 are application dependent,
whereas the coloured ones can be re-employed in different
contexts. This approach improves the reusability, and enables
the automation of the next phases of the framework. The
specifications are encoded as a machine-readable XML-based
format. The XML Schema of each element can be found in the
companion technical report [11]. In the following, we detail
the four specification domains.

User domain defines the user and the interaction protocols

Fig. 3: RACOON Specification Model of a collaborative system.

in which it participates. The Role element describes the part
that a user may undertake in a protocol. For instance, in
our case study, one can participate to the gossip protocol
as a sender or as a receiver. The interaction among users is
represented as deterministic finite State Machine, like the one
shown in Fig 2(b). We assume no loops in the state machine.
A State represents a stage of the protocol, while Transitions
are the operations (e.g., communications or computations)
that enable its evolution. An operation corresponds to the
invocation of a set of methods. The Interface element collects
all the methods that a transition must implement. The same
method can describe the functionality that a user provides
or uses, according to the role that it plays in the protocol.
For example, the method propose in Fig. 2(b) is provided
by u0 (sender) and used by u1 (receiver). The designer also
declares possible relationships among contents, and provides
their XML Schema type.

Rationality domain The rationality of a user is defined
by its utility function, that is specified in the Utility Profile
element. Note that the same user may have several Utility
Profiles, one for each role it undertakes in a certain protocol. In
order to simplify the definition of a utility function, we propose
to build it by enabling Rationality Model elements, which
identify specific types of rational behaviours. This encourages
the reuse of already defined elements, and simplifies the
analysis of the system under new rationality assumptions. The
Utility Profile and the Rationality Models are independent
from the specific application. Finally, in the Rationality Conf
element the designer specifies the models of rationality to
activate, along with the types of deviation to generate. For
our case study, we have implemented the Communication
Rationality model, a specialization of the Rationality Model
element. We discuss it in Section IV-B1.

Security domain It specifies the modules that provide
resilience from rational behaviours. They are defined as imple-
mentation of the abstract Security Layer element, so that they
can be easily replaced with different modules. In this paper,

we use the Inspection module to detect deviations, and the
Reputation module to enforce cooperation. The Security Conf
element allows to configure both. We defer a description of
the security modules and their parameters in Section IV-B2.

System domain It specifies system specific information,
which are necessary to set-up the simulations. In particular,
the designer specifies the proportion of rational users in the
system, possibly all of them. In our use case, some example
of these are the number of users in the system, the length
of the stream, and the probability of message loss in each
communication. The code in Listing 1 presents an extract of
the User domain specification of our case study. The complete
specification awaits in the companion technical report [11].

B. Augmentation

The goal of this phase is to include rational behaviours
and security mechanisms into the protocol’s representation.
The result, called augmented protocol, details how the
collaborative system changes in presence of rational users.

1) Rational Deviations: A rational deviation is a violation
of the protocol that aims at maximizing a utility function.
In RACOON, utility functions are defined by activating a
Rationality Model created by the designer. This is a set of
algorithms that realize a specific model of rationality (e.g.,
saving bandwidth consumption, reducing computational costs).
Each algorithm takes as input the User domain specification
of the system, and describes the procedure to derive rational
deviations. RACOON provides an automatic tool that executes
the algorithms of the Rationality Models enabled by the
designer. This process results in the generation of new states
and transitions, which the automated tool adds to the original
state machine. Notice that each new transition is created along
with a new interface, which contains at least one deviation. The
resulting state machine is called augmented automaton, where
every execution path (i.e. the path that connects the initial state
to a final state) represents a possible user’s behaviour.

Listing 1: User domain specification of the state machine
shown in Fig. 2(b).
<userDomain>

<roles>
<role name="sender" />
<role name="receiver" />

</roles>
<states>

<state name="s0"> <initial /> </state>
<state name="s1" />
<state name="s2" />
<state name="s3"> <final /> </state>

</states>
<transitions>

<transition name="t0" interface="i0"
fromState="s0" toState="s1">

<fromRole>sender</fromRole>
<toRoles>

<toRole>receiver</toRole>
</toRoles>

</transition>
...

</transitions>
<interfaces>

<interface name="i0">
<methods>

<method name="propose">
<content name="m0" type="list" />

</method>
</methods>

</interface>
...

</interfaces>
</userDomain>

We provide as part of the RACOON framework the spec-
ification of the Communication rationality model. Its utility
function aims at minimizing the communication costs for
rational users. We define communication costs in terms of
bandwidth consumption, which depends on the length and
on the type of the transmitted contents. From the three-phase
gossip protocol of the case study, we can identify three rational
deviations consistent with this model: (d1) decreasing the
number of partners, so that a sender receives a lower number of
requests, (d2) proposing less chunks than what a sender holds,
and (d3) sending only a subset of the requested chunks. Based
on these insights, we have designed three rational deviations
intended to reduce communication costs:

i) Timeout Deviation. The user does not perform the pre-
scribed operation within the necessary time frame. For exam-
ple, it does not send any chunks proposal, or does not reply
to a request. The algorithm: for each non-final state s of the
protocol, checks whether it has at least one outgoing transition
that executes a legal timeout. If so, skip to the next state.
Otherwise, create a new final state sto, and connect it with s
by a timeout deviation.

ii) Subset Deviation. The user sends only a subset of the
legit content. This behaviour covers the deviations (d1) and
(d2) described above. The algorithm: for each non-final state
s of the protocol, consider the set of its outgoing transitions T .
If a transition t ∈ T transmits a content with a complex type
(according to the XML Schema type definition), then create
a new state ssub and connect it with s by a subset deviation
tsub. The content transmitted in tsub must be a subset of the

Fig. 4: Generation of the subset deviation tsub.

Fig. 5: Generation of the multicast deviation tmul.

legit one. Fig. 4 illustrates the procedure. The illegal states
are represented with filled circles, and labels of deviations are
in italics. Note that the message sent by a subset deviation is
indicated by an exclamation mark (!) before its ID.

iii) Multicast Deviation. The user does not perform a certain
operation with all the prescribed partners, but only with a
subset of them. For instance, a user can decrease the size
of its partnership, like described in (d3). The algorithm: for
each non-final state s of the protocol, consider the set of its
outgoing transitions T . If a transition t ∈ T sends a message
to more than one recipient, then create a new state smul and
connect it with s by a multicast deviation tmul. The recipients
of tmul must be less than the legit ones. The procedure is
shown in Fig. 5. For reason of clarity, we write the recipient
of a transition at the end of each label, after a semicolon (;).
The legit set of recipients is indicated with R, while the non-
legal one with !R.

Notice that once an illegal state is created, RACOON
updates its connections with the other states of the automaton.
The generality of the algorithms makes the Communication
Rationality model applicable to any collaborative systems.
Fig. 6 shows the three-phase gossip protocol augmented with
timeout and subset deviations. For clarity we do not represent
multicast deviations. Consider for instance the state s2. In
the correct execution of the protocol, the user u0 sends a list
with the payload of the requested chunks (m2) to user u1.
However, a rational user may also timeout the request, or
serve a list with less chunks (!m2). In both cases, the protocol
terminates in an illegal state (s2t and s2s, respectively), and
u1 does not obtain what it requested.

2) Security Layer: RACOON forces collaboration by mak-
ing rational users accountable for their actions. This is realized
by employing a security layer, which seamlessly extends the
logic of the original protocol. The security layer implements
an inspection module to detect rational deviations, and a
reputation module to assign positive or negative feedback
on the reputation of users. The deployment of the security
mechanisms on an augmented automaton results in an aug-
mented protocol, which is also the outcome of this phase of

Fig. 6: The augmented automaton of the state machine shown
in Fig. 2, augmented with timeout and subset deviations.

the framework.
Inspection: We propose to build upon inspection mecha-

nisms to detect and expose rational deviations in collaborative
systems. In RACOON, each user maintains a secure log that
keeps a record of its activities within the protocol (e.g.,
exchanged messages with other users). In the last years,
many solutions that enforce accountability using secure logs,
i.e. logs that are tamper-evident, have been proposed in the
literature. We rely on the solution proposed in [7]. Note
that the software developer can also decide to employ other
inspection mechanisms, e.g., [1], [6].

In RACOON, users can periodically perform inspections
of each other’s logs, eventually detecting if and when a
rational user has deviated from the protocol. To configure the
inspection module, the designer specifies: (i) the role or the
user that performs the inspection, (ii) the role or the user to
inspect, (iii) the state of the augmented automaton where the
inspection takes place, and (iv) the probability of inspection.
Note that the simulation phase helps the designer to configure
these parameters.

Reputation: We use reputation as an incentive mechanism
to motivate users to adhere to the protocol. Specifically, each
user is associated with a reputation value. This reputation
increases when its log appears correct after an inspection
performed by another user and decreases if a deviation is
detected by the latter. The reputation value is stored locally
in the security layer, and is distributed with a decentralized
mechanism such as [16]. One may wonder why users should
care about their reputation. The reason is that if the reputation
goes below a fixed threshold, then the user is evicted from
the system. Users are aware of the risk to be punished if
they choose to deviate. Therefore, as the eviction is a credible
threat, if their reputation is too close to the threshold they are
more likely to cooperate. We also introduce an upper limit for
the reputation value, to discourage users with high reputation
to start deviating for many consecutive times. In Section IV-C1
we discuss how to integrate such mechanisms into the utility

function. The designer can configure the reputation module by
setting the range of values for the reputation.

C. Gamification

The augmented protocol is transformed into a game. A
game theoretic analysis is then performed to predict the
behaviour of rational users. Such prediction is the output of
this phase.

We use game theory to assess the likelihood of rational
deviations from the augmented protocol. In fact, game theory
is the natural framework to model the interplay of rational
users in competitive systems [19]. RACOON provides an
automatic tool to transform any augmented protocol into a
game. The tool also performs the game theoretic analysis,
that reveals the expected behaviour of the rational users.

1) Game Mapping: We model a collaborative protocol as a
non-cooperative game with complete information [17]. A non-
cooperative game describes the interactions among rational
decision-makers (players). A player represents a role played by
a user in the protocol, and is associated with a set of possible
actions. Each action corresponds to a method of the augmented
protocol, possibly a deviation. As the augmented protocol
defines a certain order of execution of methods, we map it
into a game with sequential moves. When a player performs an
action, it does not know if it is responding to a deviation unless
it performs an inspection. The information available to a player
at a given point in the game form an information set. The
sequence of actions that a player executes in a game is called
a strategy, while a set of joint strategies (one for each player)
is called a strategy profile. A strategy profile is called a Nash
Equilibrium (NE) if no player, when finding himself in that
strategy profile, has incentive in deviating unilaterally from its
strategy: a NE conventionally characterizes in game theory the
expected behaviour from rational players [15]. Finite games
(finite number of players, finite number of strategies) are
granted to always have a NE [17]. The goal of a player is
to follow the strategy that maximizes its utility function. The
assumption of rationality requires that such choice takes also
into account the potential strategies of other players. Indeed,
all the factors of the game (i.e. players, order of moves,
possible strategies, utility function) are common knowledge.

All these conditions result in a sequential game with com-
plete but imperfect information, which is usually represented
by its extensive-form, also called game tree [19]. RACOON
derives the game elements from the augmented protocol spec-
ification. Table I summarizes the rules to map the latter into a
game tree. For instance, a player in the game tree corresponds
to a role played by a rational user in the augmented protocol.
The utility ūi for player pi while playing the strategy σi
is a function of the operational costs incurred to implement
the strategy and the incentives received from the security
mechanisms. It can be expressed as:

ūi(σi) =
∑

costi(σi) + γ(oldRepi, newRepi),

Fig. 7: The extensive-form game representation of the aug-
mented automaton shown in Fig. 6.

Augmented Protocol Extensive-form game
Rational User Player
Non-final state Internal Node

Final state Terminal node
Transition Edge

Execution path Strategy profile
Inspection setup Information sets

TABLE I: Correspondences between augmented protocol and
extensive-form game

where γ integrates the reputation values into the utility
function. The intuition behind γ is that the ’shadow of the
future’ affects the perception of today’s utility. The function γ
formulates such effect in terms of additional costs or discounts.
More specifically, when a player expects a punishment (the
new reputation newRep is lower than oldRep), γ identifies
two types of cost:

• Eviction cost: the cost for being expelled from the system,
which is paid only if the new reputation is below a given
threshold. It is conventionally set at a very high nominal
value, since an eviction is the worst utility a player may
have.

• Redemption cost: the cost for regaining the old reputation.
It is the product between the profit margin of a deviation
(i.e. the cost saved by performing a certain deviation) and
the redemption time (i.e. the expected time during which
the player must behave correctly).

In contrast, if a player expects a reward (newRep is greater
than oldRep), then the function γ identifies a cost discount.
This is because the convenience of a future deviation becomes
more important as the reputation value increases. In other
words, the benefit of the profit margin of tomorrow is higher
than the cost of possible punishments. Fig. 7 illustrates the
result of the game mapping of the augmented protocol shown
in Fig. 6. Each leaf of the game tree is associated with a
pair of payoffs, one for each player. For reason of space,
they are not reported in the figure. Moreover, details on the
algorithm that augments the protocol with rational deviations
are omitted but can be found in the companion technical
report [11].

2) Game Analysis: The gamification tool of RACOON can
integrate several solution concepts for the game theoretic
analysis [18]. For the sake of simplicity, and without loss of
generality, the solution concept we use for this paper is the
Subgame-Perfect equilibrium (SPE) in pure strategies [19]. It
is a refinement of NE for extensive-form games. Subgame
perfection ensures that no player has an incentive to change
the equilibrium strategy as the game progresses. We assume
that if a game has a SPE, then all rational players will follow
the equilibrium strategy. If no equilibrium in pure strategies
is found, then we assume that rational players will withdraw
from the protocol (worst case). To find the SPE of the protocols
gamified in the previous step, RACOON uses Gambit1, an
open-source library of tools for game-theoretic analysis. The
algorithm to find the SPE is described in [18].

D. Simulations

We test whether the augmented protocol achieves the
designer’s performance requirements. To this end, we
simulate the system using the predictions of the gamification
phase.

The solution of the gamified protocol represents a ”snap-
shot” of the system evolution. In fact, it holds only for a
particular configuration of factors (e.g., the security setting, the
current reputation of players). Therefore, the predictive power
of a single game solution is too narrow to give a full picture
of the users’ dynamics. The last phase of RACOON frame-
work addresses this issue by adopting a simulation approach.
Simulations provide a practical evaluation of the security
configuration, by reproducing how users behave within a given
system set-up. Another direct advantage of such pragmatic
approach is that it enables to study how different degrees of
tolerance to rational deviations affect the final outcome.

A prerequisite for the simulation phase is to have a simu-
lation environment for the system under consideration. With
this in mind, we have developed a Java-based simulator that
supports cycle-based applications over a generic P2P overlay
network. The simulation workflow proceeds in four steps:

1) Parse the system specifications and configure the simu-
lation setup accordingly.

2) Partition the system dynamics into behavioural units.
Each behavioural unit corresponds to the particular rep-
utation setting in which two or more users may interact.
Behavioural units are the building blocks to generate
every possible evolution of the system.

3) Gamification of the behavioural units as independent
games, which results in a broad range of game solu-
tions. These represent the predictions of selfish users
behaviours, that tell the simulator how to progress.

4) Run the simulation, while collecting the information that
is relevant to the performance evaluation.

The simulation’s result determines whether the configura-
tion of the security modules is satisfactory or not. A satisfac-

1GAMBIT: http://sourceforge.net/projects/gambit/

tory configuration must guarantee good performance even in
presence of rational users. If not, then the designer can set
different security settings and restart the simulation. If instead
the system achieves the desired performance, then the designer
can implement the collaborative system that has been designed
and tested using RACOON.

V. EVALUATION

We present in this section the evaluation of our RACOON
framework. This evaluation divides in three parts. In order
to better understand the scope of the problem posed by
the presence of rational users, the first part, presented in
Section V-A, shows the impact of these users in the collab-
orative live streaming application introduced in Section IV.
Then, the second part, presented in Section V-B, focuses
on the effort required by a software developer to make the
above live streaming application resilient to rational users
using our framework. Furthermore, in this part, we show how
RACOON helps the software developer to easily update its
application if he wants to consider a new rationality model
or change some protocol steps Guido Ishould we omit the
latter, since we don’t show how later?J. Finally, the third part,
presented in Section V-C, shows how the simulation part of our
framework helps the software developer in choosing the right
configuration for its live streaming application considering a
list of performance requirements. Also, in this part we show
that the configuration chosen by the software developer after
the simulation part, implemented and deployed on 100 users
running on real machines, exhibits the expected performance.

A. Impact of Rational Users on the Live Streaming Use Case

To measure the impact of rational users on the live streaming
use case presented in Section IV we implemented this appli-
cation and deployed it on a Grid’5000 cluster2 of 10 eight-
core physical machines. Each machine is clocked at 2.5GHz
with 32GB of RAM, and is interconnected with the others
via a Gigabit switch. We then deployed 100 users, and we
studied different proportions of rational users ranging from 0
to 100%. These users have two possible rationalities, according
to the role they play in the protocol. A receiver performs only
subset deviations, whereas a sender also performs timeout
and multicast deviations. In fact, senders carry most of the
cost of collaboration, but only the receivers benefits from it.
We measure the percentage of video chunks lost by users on
average. According to study performed in [21], if this value
is lower than 3%, users do not notice any degradation in the
quality of the received video. Fig. 8 presents the results of
our experiment. We observe in this figure that, as expected,
the percentage of lost chunks without any rational-resiliency
mechanism (i.e. curve G5K w/o RACOON) increases as the
percentage of rational users increases. Further, this curve
shows that in presence of even 10% of rational users, the
quality of the stream is unvisualisable for all users. In addition
to this curve, Fig. 8 shows the performance of our rational-
resilient live streaming application as simulated by RACOON

2Grid’5000: http://www.grid5000.fr

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

P
e

rc
e
n
ta

g
e
 o

f
lo

s
t
c
h

u
n
k
s
 (

lo
g
 s

c
a
le

)

Percentage of rational users

Maximal acceptable degradation

G5K w/o RACOON

G5K w/ RACOON

SIM w/ RACOON

Fig. 8: Percentage of lost chunks as a function of the propor-
tion of rational users.

(i.e. the SIM w/ RACOON curve), as well as a real imple-
mentation of it (i.e. the G5K w/ RACOON curve). These two
curves show that, thanks to RACOON, we were able to build
a rational resilient live streaming application in which even in
presence of 100% rational users all users are able to visualise
a quality stream. In the remaining of this section, we show
how RACOON was used to reach this objective.

B. Using RACOON for the Design and Evolution of the Live
Streaming Application

We now describe the effort required by a software developer
to design, implement and maintain the rational resilient live
streaming application corresponding to our case study using
RACOON. Table II shows the size of the XML description,
the size of the simulation code and the size of the real
implementation that the software developer has to write to
describe and implement its application. For each of these three
parts, we distinguish between the number of lines that are
specific to the use case application and those that are generic
and thus reusable from one application to another. From this
table, we observe that the amount of reusable code is at least
of 40% (for the XML description) and can be as high as 83%
(for the simulation part). This high degree of reusability is
enabled thanks to the modularity of RACOON.

Lines of code XML description Simulator Prototype
All 140 2500 3064

Specific 83 410 1118
Reusable 57 2090 1946

%tage reusable 40.7 83.6 63.5

TABLE II: Number of lines of code and percentage of reusable
code in the XML description, the simulator and the prototype.

We now focus on the evaluation of the ability of RACOON
in enabling software evolution. Let us consider that the soft-
ware developer, which has initially designed its software by
assuming a proportion of up to 50% rational users, wants
to consider a proportion of 80% instead. Furthermore, let us
consider that the designer, which has initially activated timeout
deviations only for the role of sender, wants now to consider
these deviations also for the role of receiver.

Using RACOON, performing the first modification requires
changing one single line in the XML description of the

application. In particular, the designer has only to set the
rationalFraction property to 0.8 in the following line:

<property name="rationalFraction">0.5</property>

Furthermore, adding the timeout deviation for the receiver
role requires adding one line in the Rationality Domain part
of the XML description. In the following, the bolder line is
the only modification required:

<deviation name="timeout">

<role>sender</role>

<role>receiver</role>

</deviation>

After these two modifications performed on the XML de-
scription, RACOON proceeds automatically by updating the
augmented protocol and the game analysis, which allows to
automatically change the results of the simulation.

This shows that using RACOON, the software developer can
very easily make its system evolve to adapt to changes into
the environment (e.g., updating the rationality model, changing
the protocol steps).

C. Building a Rational Resilient Live Streaming Application
using RACOON

We show in this section how RACOON helps the software
developer in choosing the right configuration for its application
using the simulation module.

Let us consider that the software developer has fixed the
following performance requirements for his rational resilient
live streaming application:
(Req1): Correct nodes are not wrongly evicted by the system,
even in presence of (up to 5% of) message loss due to
disrupted networking conditions.
(Req2): The overhead of the protocol in terms of bandwidth
consumption does not exceed 10% of the bandwidth consumed
by the live streaming.
(Req3): Correct nodes do not lose more than 3% of video
chucks, which ensures that they watch a good quality stream.

There are two parameters in the application that the de-
veloper can tune to get the expected performance. These
parameters are: (1) the penalty, which is the value by which
the reputation of a user is decreased if its log is inspected
and detected as faulty; and (2) the percentage of audits that a
receiver performs on a sender with whom it interacts.

To fix these parameters the software developer performs the
following simulations, for which the results are depicted in
Fig. 9. First, it starts by studying the impact of the penalty on
the percentage of eviction of correct users in presence of 5%
message loss. From Fig. 9(a), we can observe that the higher
the penalty the higher the proportion of evicted correct nodes.
This is due to the fact that with a high penalty, it is enough
to be subject to the loss of one or two messages in order
to be wrongly considered as behaving rationally. From this
experiment, the software developer can decide to fix the value
of penalty to 8 or lower as this value limits the percentage of

evicted correct nodes to less than 1%, which matches its first
performance requirement.

Using this value of penalty, the software developer can also
notice from Fig. 9(b) that the percentage of evicted rational
nodes is at least of 65% (if the probability to audit users
is equal to 10%), which is satisfactory. From this curve,
the developer can also notice that the higher the probability
to audit users, the higher the percentage of evicted rational
users. However, intuitively, the designer may be interested
in the overhead of performing more inspections (in terms
of bandwidth consumption). To help fixing the probability to
audit users, the designer can refer to the results of Fig. 9(c),
which show the overhead in terms of network traffic with
respect to the probability to audit. From this figure the designer
may decide to fix this value to less than 20% in order to meet
its second requirement.

The last experiment (Fig. 9(d)) shows the quality of the
stream perceived by correct users as a function of the percent-
age of rational users for different values of audit probability.
From this experiment, the software developer can finally
decide to fix the audit probability to 15%. Indeed, this value
is enough to get all correct nodes receive a stream with less
than 3% of missed chunks.

Summarising, using the simulations enabled by RACOON,
the software developer decides to fix the value of the penalty to
8 and the audit probability to 15%, which allows to satisfy all
its performance requirements. As discussed at the beginning
of this section and shown in Fig. 8, the performance of the
live streaming application when implemented with the above
parameters and deployed in a real setting validate the choice
prescribed by RACOON.

VI. RELATED WORK

There is a vast amount of literature on designing distributed
systems. We approach this overview with our research ob-
jectives in mind: resilience to rational behaviours, support to
system evolution, and good performance. Table III summarizes
these objectives, along with the contributions of the works
closest to ours. As we can observe, there is no existing solution
that meets all the challenges. The RACOON framework does.

Rationality Evolution Performance
Game Theory

√
- -

Accountability
√ √

-
DSL -

√ √

RACOON
√ √ √

TABLE III: Summary of the state-of-the-art solutions available
to design rational-resilient collaborative systems.

Game theory is recognized as being a good framework to
address rational behaviours [12], [2], [3], [13]. The aim of
game theoretic approaches is to make cooperation the best
rational choice, i.e. a Nash Equilibrium. Unfortunately, their
solutions are tailored to specific applications, thus are ex-
tremely sensitive to changes in the system conditions. Another
well-known criticism of game theoretic solutions concerns

 0

 1

 2

 3

 4

 5

 6

 6 7 8 9 10 11 12

P
e

rc
e

n
ta

g
e

 o
f

e
v
ic

ti
o

n
s

Penalty

Probability of Audit 10%
Probability of Audit 15%
Probability of Audit 20%

(a) Percentage of evicted correct users.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 o
f

e
v
ic

ti
o

n
s

Percentage of rational users

Probability of Audit 10%
Probability of Audit 15%
Probability of Audit 20%

(b) Percentage of evicted rational users.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0N

et
w

o
rk

 t
ra

ff
ic

 o
v
er

h
ea

d
 (

%
)

Probability of Audit (%)

(c) Audit overhead.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90

P
e

rc
e

n
ta

g
e

 o
f

lo
s
t

c
h

u
n

k
s

Percentage of rational users

Probability of Audit 10%
Probability of Audit 15%
Probability of Audit 20%

(d) Percentage of lost chunks.

Fig. 9: RACOON results.

their performance, because of the strict requirements imposed
by the equilibrium assumptions. For example, [12] provides
good rational resilience (along with fault tolerance) in live-
streaming application, but it suffers from high bandwidth
consumption and low scalability [13]. The semi-automatic
procedures adopted by RACOON overcome these limitations.

A rational deviation is a particular type of malicious
behaviour. For this reason, accountability systems like [7]
seem to be an acceptable solution for the rationality issue.
Furthermore, the generality of their specification also meets
the challenge of supporting the system evolution. The major
pitfall of these approaches is that maintaining accountability
incurs a non-negligible cost in terms of performance (i.e. high
communication and computational costs of the monitoring sys-
tem). On the contrary, RACOON enables to take performance
requirements into account, finding the right compromise be-
tween them and rational resilience. Other shortcomings of
accountability methods come from some strong assumptions
about the system. For example, they require a quorum of
collaborative users to be effective [7]. Further, they are not
tolerant to message loss. Using RACOON, the designer can
find proper solutions without relying on these assumptions.

Finally, several frameworks [22] and Domain-Specific Lan-
guages [10], [4] have been proposed in the literature to ease
the task of designing and maintaining a distributed system.
It is well known that domain-specific approaches can yield
to high performance results. Nevertheless, to the best of our
knowledge, none of these solutions considers the problem
of rational behaviours. The game theoretic approach of our
framework meets this challenge.

VII. CONCLUSION

In this paper we have presented RACOON, a framework
for semi-automatic game-theoretic analysis of collaborative
systems. RACOON’s objective is to allow the designer to auto-
matically design a rational-resilient version of a collaborative
system. For this, RACOON augments a given protocol speci-
fication with possible rational deviations using a modular and
extensible approach. Then, it relies on game theory to predict
the behaviour of rational users. Finally, RACOON provides
a simulator to rapidly assess the behaviour and performance
of the system. Evaluation, performed using simulations and
a real prototype with 100 users, shows that the configuration

proposed by RACOON allows all users to visualise a quality
stream even in presence of rational users.

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] H. Andreas et al. Accountable virtual machines. In Proceedings of
OSDI, 2010.

[2] S. Ben Mokhtar et al. Firespam: Spam resilient gossiping in the bar
model. In Proceedings of SRDS. IEEE Computer Society, 2010.

[3] S. Ben Mokhtar et al. RAC: a freerider-resilient, scalable, anonymous
communication protocol. In Proceedings of ICDCS, 2013.

[4] M. Biely et al. Distal: A framework for implementing fault-tolerant
distributed algorithms. In Proceedings of DSN, 2013.

[5] K. Cho et al. The impact and implications of the growth in residential
user-to-user traffic. In Proceedings of SIGCOMM, 2006.

[6] R. Guerraoui et al. Lifting: lightweight freerider-tracking in gossip. In
Proceedings of Middleware. Springer-Verlag, 2010.

[7] A. Haeberlen et al. Peerreview: Practical accountability for distributed
systems. Operating Systems Review, 41(6), 2007.

[8] H. Johansen et al. Fireflies: Scalable support for intrusion-tolerant
network overlays. In Proceedings of EuroSys. ACM, 2006.

[9] T. Karagiannis et al. Is p2p dying or just hiding? [p2p traffic measure-
ment]. In GLOBECOM, volume 3, 2004.

[10] C. E. Killian et al. Mace: Language support for building distributed
systems. In Proceedings of PLDI. ACM, 2007.

[11] G. Lena Cota et al. A Semi-Automatic Framework for the
Design of Rational Resilient Collaborative Systems. Techni-
cal report, Univ. of Milano, LIRIS laboratory, CNRS, 2014.
http://sites.google.com/site/soniabm/.

[12] H. C. Li et al. Bar gossip. In Proceedings of OSDI. USENIX
Association, 2006.

[13] H. C. Li et al. Flightpath: Obedience vs. choice in cooperative services.
In Richard Draves and Robbert van Renesse, editors, OSDI, 2008.

[14] M. Lillibridge et al. A cooperative internet backup scheme. In
Proceedings of Usenix ATC, 2003.

[15] G. J. Mailath. Do people play nash equilibrium? lessons from evolu-
tionary game theory. Journal of Economic Literature, 1998.

[16] S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p
reputation systems. Computer Networks, 50(4), 2006.

[17] J. Nash. Non-Cooperative Games. Annals of Mathematics, 50(2), 1951.
[18] N. Nisan. Algorithmic game theory. Cambridge University Press, 2007.
[19] M. J. Osborne et al. A course in game theory. MIT press, 1994.
[20] L. Plissonneau et al. Analysis of peer-to-peer traffic on adsl. 2005.
[21] S. Traverso et al. Experimental comparison of neighborhood filtering

strategies in unstructured P2P-TV systems. In P2P, 2012.
[22] P. Urban et al. Neko: A single environment to simulate and prototype

distributed algorithms. In Proceedings of ICOIN, 2001.
[23] D. I. Wolinsky et al. Dissent in numbers: Making strong anonymity

scale. In Proceedings of OSDI, 2012.
[24] M. Yang et al. An empirical study of free-riding behavior in the maze

p2p file-sharing system. In Proceedings of IPTPS, 2005.

APPENDIX A
SPECIFICATION OF THE CASE STUDY

In the following, we present the XML Schema for the
RACOON Specification Model. Figure 10 shows a diagram
of the schema.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="systemSpecification">
<xs:complexType>
<xs:sequence>
<xs:element name="userDomain">
<xs:complexType>
<xs:sequence>
<xs:element name="roles">
<xs:complexType>
<xs:sequence>
<xs:element name="role" maxOccurs="unbounded" minOccurs="1">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name" use="required"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="states">
<xs:complexType>
<xs:sequence>
<xs:element name="state" maxOccurs="unbounded" minOccurs="1">
<xs:complexType mixed="true">
<xs:sequence>
<xs:element type="xs:string" name="initial"

minOccurs="0" maxOccurs="1"/>
<xs:element type="xs:string" name="final"

minOccurs="0" maxOccurs="1" />
</xs:sequence>
<xs:attribute type="xs:string" name="name"

use="required"/>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="transitions">
<xs:complexType>
<xs:sequence>
<xs:element name="transition" maxOccurs="unbounded"

minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string" name="fromRole"/>
<xs:element name="toRoles">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string" name="toRole"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute type="xs:string" name="name" use="required"/>
<xs:attribute type="xs:string" name="interface" use="required"/>
<xs:attribute type="xs:string" name="fromState" use="required"/>
<xs:attribute type="xs:string" name="toState" use="required"/>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="interfaces">
<xs:complexType>
<xs:sequence>
<xs:element name="interface" maxOccurs="unbounded"

minOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="methods">
<xs:complexType>
<xs:sequence>
<xs:element name="method">
<xs:complexType>
<xs:sequence>
<xs:element name="content">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name"

use="required"/>
<xs:attribute type="xs:string" name="type"

use="required"/>
</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="constraints" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="constraint">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string"

name="type" use="required"/>
<xs:attribute type="xs:string"

name="wrtContent" use="optional"/>
</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"

use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"

use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="rationalityDomain">
<xs:complexType>
<xs:sequence>
<xs:element name="rationalityModels">
<xs:complexType>
<xs:sequence>
<xs:element name="rationalityModel">
<xs:complexType>
<xs:sequence>
<xs:element name="deviations">
<xs:complexType>
<xs:sequence>
<xs:element name="deviation" maxOccurs="unbounded"

minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="roles">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string" name="role"

maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"

use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"/>
<xs:attribute type="xs:boolean" name="enabled"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="securityDomain">
<xs:complexType>
<xs:sequence>
<xs:element name="inspectionModule">
<xs:complexType>
<xs:sequence>
<xs:element name="inspections">
<xs:complexType>
<xs:sequence>
<xs:element name="inspection" maxOccurs="unbounded"

minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string" name="inspector"/>
<xs:element type="xs:string" name="state"/>
<xs:element name="inspectees">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string" name="inspectee"/>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:float" name="probability"

use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="reputationModule">
<xs:complexType>
<xs:sequence>
<xs:element name="range">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:byte" name="max"/>
<xs:element type="xs:byte" name="min"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="variations">
<xs:complexType>
<xs:sequence>
<xs:element name="inspector">
<xs:complexType>
<xs:sequence>
<xs:element name="reward">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:byte">
<xs:attribute type="xs:string"

name="type"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="penalty">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:byte">
<xs:attribute type="xs:string" name="type"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="inspectee">
<xs:complexType>
<xs:sequence>
<xs:element name="reward">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:byte">
<xs:attribute type="xs:string" name="type"/>
</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="penalty">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:byte">
<xs:attribute type="xs:string" name="type"/>
</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="systemDomain">
<xs:complexType>
<xs:sequence>
<xs:element name="simulationEnvironment">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="simulationSetting">
<xs:complexType>
<xs:sequence>
<xs:element name="property" maxOccurs="unbounded"

minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:float">
<xs:attribute type="xs:string" name="name"

use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"/>
</xs:complexType>

</xs:element>
</xs:schema>

ro
le

ro
le
s

in
it
ia
l

fi
n
a
l

s
ta
te

s
ta
te
s

fr
o
m
R
o
le

to
R
o
le
s

tr
a
n
s
it
io
n

tr
a
n
s
it
io
n
s

c
o
n
te
n
t

c
o
n
s
tr
a
in
ts

in
te
rf
a
c
e
s

u
s
e
rD
o
m
a
in

d
e
v
ia
ti
o
n

ra
ti
o
n
a
li
ty
M
o
d
e
l

ra
ti
o
n
a
li
ty
M
o
d
e
ls

ra
ti
o
n
a
li
ty
D
o
m
a
in

in
s
p
e
c
to
r

s
ta
te

in
s
p
e
c
te
e
s

in
s
p
e
c
ti
o
n

in
s
p
e
c
ti
o
n
s

in
s
p
e
c
ti
o
n
M
o
d
u
le

m
a
x

m
in

ra
n
g
e

re
w
a
rd

p
e
n
a
lt
y

in
s
p
e
c
to
r

re
w
a
rd

p
e
n
a
lt
y

in
s
p
e
c
te
e

v
a
ri
a
ti
o
n
s

re
p
u
ta
ti
o
n
M
o
d
u
le

s
e
c
u
ri
ty
D
o
m
a
in

s
im
u
la
ti
o
n
E
n
v
ir
o
n
m
e
n
t

p
ro
p
e
rt
y

s
im
u
la
ti
o
n
S
e
tt
in
g

s
y
s
te
m
D
o
m
a
in

s
y
s
te
m
S
p
e
c
if
ic
a
ti
o
n

1
..
∞

1
..
∞

0
..
∞

1
..
∞

0
..
∞

0
..
∞

0
..
∞

m
e
th
o
d

m
e
th
o
d
s

in
te
rf
a
c
e

d
e
v
ia
ti
o
n
s

Fig. 10: The diagram of the XML Schema for the RACOON Specification Model.

APPENDIX B
SPECIFICATION OF THE CASE STUDY

In the following, we present the XML encoding of our
case study specification.

1 <systemSpecification name="P2PliveStreaming">
2 <userDomain>
3 <roles>
4 <role name="sender" />
5 <role name="receiver" />
6 </roles>
7 <states>
8 <state name="s0"> <initial /> </state>
9 <state name="s1" />

10 <state name="s2" />
11 <state name="s3"> <final /> </state>
12 </states>
13 <transitions>
14 <transition name="t0" interface="i0"
15 fromState="s0" toState="s1">
16 <fromRole>sender</fromRole>
17 <toRoles>
18 <toRole>receiver</toRole>
19 </toRoles>
20 </transition>
21 <transition name="t1" interface="i1"
22 fromState="s1" toState="s2">
23 <fromRole>receiver</fromRole>
24 <toRoles>
25 <toRole>sender</toRole>
26 </toRoles>
27 </transition>
28 <transition name="t2" interface="i2"
29 fromState="s2" toState="s3">
30 <fromRole>sender</fromRole>
31 <toRoles>
32 <toRole>receiver</toRole>
33 </toRoles>
34 </transition>
35 </transitions>
36 <interfaces>
37 <interface name="i0">
38 <methods>
39 <method name="propose">
40 <content name="m0" type="list" />
41 </method>
42 </methods>
43 </interface>
44 <interface name="i1">
45 <methods>
46 <method name="request">
47 <content name="m1" type="list" />
48 <constraints>
49 <constraint type="subset" wrtContent="m0" />
50 </constraints>
51 </method>
52 </methods>
53 </interface>
54 <interface name="i2">
55 <methods>
56 <method name="serve">
57 <content name="m2" type="list" />
58 <constraints>
59 <constraint type="equal" wrtContent="m1" />
60 </constraints>
61 </method>
62 </methods>
63 </interface>
64 </interfaces>
65 </userDomain>
66 <rationalityDomain>
67 <rationalityModels>
68 <rationalityModel name="communication" enabled="true">
69 <deviations>
70 <deviation name="timeout">
71 <roles>
72 <role>sender</role>
73 </roles>
74 </deviation>

75 <deviation name="subset">
76 <roles>
77 <role>sender</role>
78 <role>receiver</role>
79 </roles>
80 </deviation>
81 <deviation name="multicast">
82 <roles> <role>sender</role> </roles>
83 </deviation>
84 </deviations>
85 </rationalityModel>
86 </rationalityModels>
87 </rationalityDomain>
88 <securityDomain>
89 <inspectionModule>
90 <inspections>
91 <inspection probability="0.15">
92 <inspector>sender</inspector>
93 <state>s2</state>
94 <inspectees>
95 <inspectee>receiver</inspectee>
96 </inspectees>
97 </inspection>
98 <inspection probability="0.1">
99 <inspector>receiver</inspector>

100 <state>s2</state>
101 <inspectees>
102 <inspectee>sender</inspectee>
103 </inspectees>
104 </inspection>
105 </inspections>
106 </inspectionModule>
107 <reputationModule>
108 <range>
109 <max>10</max>
110 <min>0</min>
111 </range>
112 <variations>
113 <inspector>
114 <reward type="fixed">1</reward>
115 <penalty type="fixed">0</penalty>
116 </inspector>
117 <inspectee>
118 <reward type="fixed">1</reward>
119 <penalty type="invrep">8</penalty>
120 </inspectee>
121 </variations>
122 </reputationModule>
123 </securityDomain>
124 <systemDomain>
125 <simulationEnvironment name="p2pOverlayNetwork" />
126 <simulationSetting>
127 <property name="simulationRuns">1</property>
128 <property name="networkSize">500</property>
129 <property name="messageLoss">0</property>
130 <property name="rationalProportion">0.5</property>
131 <property name="mediaSize">100000</property>
132 <property name="broadcastSize">25</property>
133 <property name="broadcastAudience">0.05</property>
134 <property name="playoutDelay">10</property>
135 <property name="fanout">5</property>
136 <property name="period">5</property>
137 <property name="transmissionLimit">500</property>
138 </simulationSetting>
139 </systemDomain>
140 </systemSpecification>

APPENDIX C
AUGMENTATION ALGORITHM

In the following, we present the algorithm to generate
the three Communication Rationality’s deviations for
reducing communication costs: timeout, subset, and multicast
deviations. These deviations augment the original User
domain representation of the protocol, and produce as output
the augmented protocol.

Data: The data structure P parsed from the User domain specification

1 Algorithm CreateCommDeviations(P)

33 NFS := non-final states in P

55 foreach s ∈ NFS do
77 OT := set of the outgoing transitions of s
99 if OT has not legal timeout then

1111 CreateTimeoutDeviation(s)

1313 foreach transition t ∈ OT do
1515 st := target state of t
1717 M := set of methods in t.interface

1919 if m ∈ M | m.content is a complex type then
2121 CreateSubsetDeviation(st, t,m)

2323 if t.toRoles.size > 1 then
2525 CreateMulticastDeviation(st, t)

2727 UpdateConnections(P)

28 Procedure CreateTimeoutDeviation(s)

3030 illegalState := new final state
3232 dev := new transition from s to illegalState

3434 devIntf := new interface
3636 devIntf.method := new method with name ”timeout”
3838 add illegalState, dev and devIntf to P

39 Procedure CreateSubsetDeviation(st,t,m)

4141 illegalState := new state
4343 dev := new transition from st to illegalState

4545 copy t.fromUser and t.toUsers into dev

4747 devMethod := m

4949 devMethod.content := subset of m.content

5151 devIntf := t.interface

5353 replace m with devMethod into devIntf

5555 add illegalState, dev and devIntf to P

56 Procedure CreateMulticastDeviation(st,t)

5858 illegalState := new state
6060 dev := new transition from st to illegalState

6262 copy t.fromUser into dev

6464 dev.toUsers := subset of t.toUsers

6666 devIntf := t.interface

6868 add illegalState, dev and devIntf to P

A. Timeout Deviations

The algorithm checks for each non-final state s of the proto-
col whether s has no outgoing transition that executes a legal
timeout. If so, calls the procedure CreateTimeoutDeviation.
This creates a new final state illegalState and connects it
with s by a timeout deviation (i.e., a new transition dev and
the related interface devIntf).

B. Subset Deviations

The algorithm considers all the outgoing transition of each
non-final state s. If a transition t in this set implements a
method m that transmits a complex-type content, then calls
the procedure CreateSubsetDeviation. The procedure creates
a new state (illegalState), a new transition (dev) and a new
interface (devIntf) to represent the deviation. The interface
defines a method devMethod that is a copy of m except for
the content, which is a subset of the legit one (m.content).

C. Multicast Deviations

If an outgoing transition t of a non-final state s targets more
than one recipient, then the algorithm launches the procedure
CreateMulticastDeviation. A new state (illegalState) is then
generated, and it is connected to s with a new transition dev.
Such transition is equal to t but for the list of recipients, which
is a subset of the one of t (t.toUsers).

D. UpdateConnections

The algorithm ends by calling the procedure UpdateConnec-
tions, which generates the transitions between the new illegal
states and the other states of the automaton. For example, in
Fig. 6, the transition between s0s and s2 is created by the
UpdateConnections procedure.

